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Abstract : Let Km,2 be the torus knot of type (m, 2). With the help of the explicit description
of the SL(2,C) character variety of this class of torus knots given by the author in a previous
work, we study the relationship between the representations over SU(2) and over SL(2,C) of
the fundamental group of S3 \Km,2. In particular it is shown that the map from the moduli
space of irreducible SU(2)-representations to the moduli space of SL(2,C)-representations
is injective.
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1. Introduction

Let Km,2 be the torus knot of type (m, 2) with odd m (see [8]) and denote
by

Hm = 〈x, y | xyxy · · · yx︸ ︷︷ ︸
length m

=

lenght m︷ ︸︸ ︷
yxyx · · ·xy〉

the fundamental group of its complement in S3. In [2] the variety of rep-
resentations R(Hm) and the character variety X(Hm) of Hm over SL(2,C)
were defined, together with the projection t : R(Hm) −→ X(Hm) which, in
our case, is given by t(ρ) = (trρ(x), trρ(xy)). In [7] an explicit geometric
description of X(Hm) was given via a refinement of the description obtained
using the techniques in [3]. In [5] and [6] the analysis was extended to de-
scribe the SL(2,C)-character varieties of general torus knots. Finally, in [1]
or [4] the space of representations over SU(2), which is clearly a real algebraic
subvariety of R(Hm), was studied.
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In the previous situation it is natural to be interested in the image under
t of the representations over SU(2). In particular this paper is devoted to
compute explicitly (using the main result in [7]) t(R̃(Hm)), where R̃(Hm) is
the set of non-abelian representations over SU(2). This computation will then
be used to study the relationship between representations of Hm over SL(2,C)
and SU(2).

2. Preliminaries

Let G be any group and H ≤ GL(2,C) be a subgroup of matrices. A
representation ρ : G −→ H is just a group homomorphism. We say that two
representations ρ and ρ′ are equivalent if there exists P ∈ GL(2,C) such that
ρ′(g) = P−1ρ(g)P for every g ∈ G. A representation ρ is reducible if the
elements of ρ(G) share a common eigenvector, otherwise it is irreducible. A
representation ρ is abelian if ρ(G) is an abelian subgroup of H. Note that
abelian representations are always reducible.

Let Km,2 be the torus knot of type (m, 2). The fundamental group of its
complement admits a presentation [8]:

Hm = 〈x, y | xyxy · · · yx︸ ︷︷ ︸
length m

=

lenght m︷ ︸︸ ︷
yxyx · · ·xy〉.

Writing Lx = (xy)
m−1

2 , we see that Lxx = yLx, so x and y are conjugate.

2.1. SU(2)-representation spaces. In this section we will follow the
notation in [1]. We also refer to [4] for a good account on this topic. The
following well-known lemma will be useful in the sequel.

Lemma 1. SU(2) ∼= S3 where, if we see S3 as the set of unit quaternions,
the isomorphism is given by:

a0 + a1i+ a2j + a3k ←→
(
a0 + a1i a2 + a3i
a2 − a3i a0 − a1i

)
.

In particular, trA ∈ R for every A ∈ SU(2).

Recall that any element of S3 can be written in the form (P,ϕ) = cos ϕ2 +
sin ϕ

2P with P 2 = −1 being a pure quaternion. Since the group Hm is gen-
erated by x and y, a representation ρ over SU(2) will be determined by the
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images of its generators ρ(x) = (P,ϕ) and ρ(y) = (Q,ϕ), where the angle
ϕ ∈ [0, 2π] is the same for ρ(x) and ρ(y) because x and y are conjugate.
Moreover, this representation will be non-abelian if P 6= ±Q and ϕ 6= 2kπ.

Now, if ψ denotes the unoriented angle between the (oriented) axes P and
Q and putting τ = cosψ, γ = cot ϕ2 it can be seen that there exists a bijection
between the set

R(Hm) = {(τ, γ) ∈ R2 | τ = cosψ, γ = cot
ϕ

2
}

and the set of SU(2)-equivalence classes of non-abelian representations of Hm

over SU(2) [1, p. 104]. Note that ψ ∈ (0, π) hence τ ∈ (−1, 1), γ ∈ R.
Let us define a family of polynomials in the following recursive way ([1,

Lemma 1.2.]):
z0(τ, γ) = 1,

z1(τ, γ) = γ2 − 2τ − 1,

z2(τ, γ) = γ4 + γ2(−6τ − 4) + 4τ2 + 2τ − 1,

zn(τ, γ) = (γ2 − 1− 2τ)(zn−1 + (γ2 + 1)zn−2)− (γ2 + 1)3zn−3, n ≥ 3.

Given the group Hm with odd m, let C(Hm) be the plane algebraic curve

C(Hm) = {(τ, γ) ∈ R2 | zm−1
2

(τ, γ) = 0}.

If we consider D = {(τ, γ) ∈ R2 | − 1 < τ < 1}, it can be seen [1, Theorem
1.3.] that R(Hm) = C(Hm) ∩D.

2.2. SL(2,C)-representation and character varieties. Like in
the previous section, consider the group Hm. Then the set

R(Hm) = {(ρ(x), ρ(y)) | ρ is a representation of Hm over SL(2,C)}

is (see [2]) a well-defined affine algebraic set, up to canonical isomorphism.
Recall that given a representation ρ : Hm −→ SL(2,C) its character

χρ : Hm −→ C is defined by χρ(g) = trρ(g). Note that two equivalent rep-
resentations ρ and ρ′ have the same character, and the converse is also true
if either ρ or ρ′ is irreducible [2, Prop. 1.5.2.]. Now, choose any g ∈ Hm and
define tg : R(Hm) −→ C by tg(ρ) = χρ(g). Let T denote the ring generated
by {tg | g ∈ Hm}, then ([2, Prop. 1.4.1.]) T is a finitely generated ring and
using the well-known identities (A, B ∈ SL(2,C)):

trA = trA−1, trAB = trBA, trAB = trAtrB − trAB−1,
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it can be shown [3, Cor. 4.1.2.] that T is generated by the set {tx, txy}. Note
that x and y being conjugate, tx = ty.

Now define the map t : R(Hm) −→ C2 by t(ρ) = (tx(ρ), txy(ρ)). Put
X(Hm) = t(R(Hm)), then X(Hm) is an algebraic variety which is well-defined
up to canonical isomorphism [2, Cor 1.4.5.] and which is called the character
variety of the group Hm in SL(2,C). Note that X(Hm) is the set of all
characters χρ of representations ρ ∈ R(Hm).

We are now interested in giving a more explicit description of X(Hm) (see
[3, 7] for details). Let us start by recursively defining a family of polynomials
{qn}n≥1:

q1(T ) = T − 2,

q2(T ) = T + 2,∏
16=d|n

qd

(
X +

1

X

)
=
Xn−1 +Xn−2 + · · ·+X + 1

X
n−1
2

if n ≥ 3 is odd,

∏
1,26=d|n

qd

(
X +

1

X

)
=
Xn−2 +Xn−4 + · · ·+X2 + 1

X
n−2
2

if n ≥ 4 is even.

Observe that if we denote by {cn}n≥1 the family of cyclotomic polynomials,
then for n ≥ 3 it holds that

cn(X) = X
ϕ(n)
2 qn

(
X +

1

X

)
.

With this we have the following description.

Proposition 1. ([7], Cor. 4.3.)

X(Hm) ∼= {(X,Z) ∈ C2 | (X2 − Z − 2)
∏

16=d|n

q∗d(Z) = 0},

where q∗d(Z) = (−1)deg qdqd(−Z).

3. Computing t(R̃(Hm))

Let ρ : Hm −→ SU(2) be a non-abelian representation given by{
ρ(x) = (P,ϕ) = cos ϕ2 + P sin ϕ

2

ρ(y) = (Q,ϕ) = cos ϕ2 +Q sin ϕ
2
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where P = ai + bj + ck and Q = a′i + b′j + c′k are pure unit quaternions
such that P 2 = Q2 = −1, P 6= ±Q and ϕ ∈ (0, 2π). By some straightforward
computations we obtain that

ρ(xy) = ρ(x)ρ(y) = cos2
ϕ

2
− 〈P,Q〉 sin2 ϕ

2
+ (P +Q) sin

ϕ

2
cos

ϕ

2
.

And making use of Lemma 1 we get trρ(x) = trρ(y) = 2 cos ϕ2 and trρ(xy) =
2 cos2 ϕ2 − 2〈P,Q〉 sin2 ϕ

2 .

Recalling the notation from Section 2, the previous paragraph leads to:

τ = cosψ = 〈P,Q〉,

γ = cot
ϕ

2
,

X = trρ(x) = trρ(y) = 2 cos
ϕ

2
,

Z = trρ(xy) = 2 cos2
ϕ

2
− 2〈P,Q〉 sin2 ϕ

2
.

Now, some simple computations give:

γ2 =
X2

4−X2
, τ =

X2 − 2Z

4−X2
,

X2 =
4γ2

1 + γ2
, Z =

2γ2(1− τ)− 2τ(1 + γ2)

1 + γ2
.

If we put ω = γ2, a close look at its definition shows that we can write
zn(τ, γ) as a polynomial in the variables (τ, ω). As a consequence we can
consider the rational function z̃n(X,Z) = zn(τ(X,Z), ω(X,Z)) ∈ Z(X,Z)
which allows us to define the polynomial ẑn(X,Z) = (4 − X2)nz̃n(X,Z) ∈
Z[X,Z]. This polynomial defines a real plane algebraic curve Vn = {(X,Z) ∈
R2 | ẑn(X,Z) = 0}. In particular, given the group Hm we will define V (Hm) =
Vm−1

2
.

In Proposition 1 we defined the SL(2,C) character variety of Hm as the
complex algebraic curve

X(Hm) = {(X,Z) ∈ C2 | (X2 − Z − 2)
∏

16=d|m

qd(−Z) = 0} ⊂ C2.
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Observe that we can see X(Hm) ⊂ R4 as a real affine algebraic set and con-
sequently, if we define XR(Hm) = X(Hm) ∩ {ImX = ImZ = 0}, then

XR(Hm) = {(X,Z) ∈ R2 | (X2 − Z − 2)
∏

1 6=d|m

qd(−Z) = 0} ⊂ R2

is a real plane algebraic curve.
Now we will se that V (Hm) ⊂ XR(Hm). This is essentially proved in the

following proposition.

Proposition 2. For every n ≥ 1,

ẑn(X,Z) = 4n
∏

1 6=d|2n+1

q∗d(Z).

Proof. We will proceed by induction on n. The cases n = 1, 2, 3 can be
easily verified by direct computations. Now, if n ≥ 4 we have that

zn(τ, γ) = (γ2 − 1− 2τ)(zn−1 + (γ2 + 1)zn−2)− (γ2 + 1)3zn−3,

and putting γ2 = X2

4−X2 and τ = X2−2Z
4−X2 this recurrence relation becomes:

ẑn(X,Z) = 4n(Z − 1)

( ∏
16=d|2n−1

q∗d(Z) +
∏

16=d|2n−3

q∗d(Z)

)
− 4n

∏
16=d|2n−5

q∗d(Z).

Finally, recalling the definition of the polynomials {qd} and setting Z = W+ 1
W

we get:

Z − 1 =
W 2 −W + 1

W
,∏

16=d|2n−1

q∗d

(
W +

1

W

)
=

∑2n−2
i=0 (−1)iW 2n−2−i

Wn−1 ,

∏
16=d|2n−3

q∗d

(
W +

1

W

)
=

∑2n−4
i=0 (−1)iW 2n−4−i

Wn−2 ,

∏
16=d|2n−5

q∗d

(
W +

1

W

)
=

∑2n−6
i=0 (−1)iW 2n−6−i

Wn−3 .

Now it is enough to substitute and operate in the previous relation to get the
result.
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Remark 1. Observe that if two polynomials coincide over values of the
form a+ 1

a , then they must be equal.

Corollary 1. If m ≥ 1 is odd,

V (Hm) = {(X,Z) ∈ R2 | ẑm−1
2

(X,Z) = 0} =

= {(X,Z) ∈ R2 |
∏

16=d|m

qd(−Z) = 0} ⊂ XR(Hm).

is an algebraic subvariety. In particular, it consists of m−1
2 straight lines.

Proof. It is a clear consequence of the previous proposition. For the last
assertion note that each qd has ϕ(d)

2 distinct real roots.

Let us now define the following subsets of R2:

E+ =
{

(a, b) ∈ R2 | 0 ≤ a < 2, −2 < b < a2 + 2
}
,

E− =
{

(a, b) ∈ R2 | − 2 < a ≤ 0, −2 < b < a2 + 2
}

and put E = E+ ∪ E−. The following lemma is easy to prove.

Lemma 2. Recall that D = {(τ, γ) | τ ∈ (−1, 1), γ ∈ R}. The applications
f+ : D −→ E+ and f− : D −→ E− given by:

f+(τ, γ) =

(
+

√
4γ2

1 + γ2
,
2γ2(1− τ)− 2τ(1 + γ2)

1 + γ2

)
,

f−(τ, γ) =

(
−

√
4γ2

1 + γ2
,
2γ2(1− τ)− 2τ(1 + γ2)

1 + γ2

)
,

are well-defined and surjective.
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Figure 1: V (H5) ∩ E

Example 1. In Figure 1 we can see the intersection between the region
E, limited by the lines x = −2, x = 2, y = −2 and y = x2 + 2, and the curve
V (H5) which is given (due to Corollary 1) by y2 − y − 1 = 0 and consists of
2 horizontal straight lines.

Recall that the set of non-abelian representations of Hm over SU(2) was
bijective to R(Hm) = C(Hm) ∩D. Thus, it makes sense to study the restric-
tions f±|R(Hm).

Lemma 3. fσ|R(Hm) : R(Hm) −→ V (Hm) ∩ Eσ is surjective for σ = ±.

Proof. We will focus on the case σ = +, the other one being analogous.
Let us assume that (τ0, γ0) ∈ R(Hm) and put (X0, Z0) = f+(τ0, γ0). By the
previous lemma, and since (τ0, γ0) ∈ R(Hm) = C(Hm) ∩ D, it is clear that
(X0, Z0) ∈ E+. Moreover,

0 = zm−1
2

(τ0, γ0) = z̃m−1
2

(X0, Z0) =
ẑm−1

2
(X0, Z0)

(4−X2
0 )

m−1
2

with X0 6= 2, so (X0, Z0) ∈ V (Hm) and we have that f+(R(Hm)) ⊆ V (Hm)∩
E+.

Now, let (X0, Z0) ∈ V (Hm) ∩ E+. Since f+ is surjective we can choose
(τ0, γ0) ∈ D such that f+(τ0, γ0) = (X0, Z0). On the other hand,

0 = ẑm−1
2

(X0, Z0) = (4−X2
0 )

m−1
2 z̃m−1

2
(X0, Z0) = zm−1

2
(τ0, γ0)
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so (τ0, γ0) ∈ C(Hm) and surjectivity follows.

Remark 2. Let (τ0, γ0) ∈ C(Hm) ∩ D be a point such that fσ(τ0, γ0) =
(X0, Z0). Then the point (τ0, γ0) determines the equivalence class of a non-
abelian representation ρ of Hm over SU(2). Clearly we have that t(ρ) =
(X0, Z0), where t : R(Hm) −→ X(Hm) is the projection defined in Section 1.

We are now in the conditions to prove the main result of the paper.

Theorem 1. t(R̃(Hm)) = V (Hm) ∩ E.

Proof. If ρ ∈ R̃(Hm), let (τ0, γ0) ∈ R(Hm) be the point given by the iden-
tification between R(Hm) and the set of SU(2)-equivalence classes of elements
of R̃(Hm) (recall Section 2.1). If we put (X0, Z0) = t(ρ) we have already seen
that (X0, Z0) = fσ(τ0, γ0) with σ = ± and it is enough to apply the previous
lemma.

Conversely, if (X0, Z0) ∈ V (Hm) ∩ E we choose (τ0, γ0) ∈ (fσ)−1(X0, Z0)
with σ = ± (recall that E = E+∪E−) and the result follows from the remark
above.

We can give an interpretation of the previous result in terms of represen-
tations.

Corollary 2. Let ρ : Hm −→ SL(2,C) be an irreducible representation
such that (trρ(x), trρ(xy)) ∈ XR(Hm)∩E. Then, there exists a representation
ρ′ : Hm −→ SU(2) such that ρ and ρ′ are equivalent.

Proof. If ρ is irreducible, then t(ρ) ∈ V (Hm). Thus, t(ρ) ∈ V (Hm) ∩ E =
t(R̃(Hm)) and there exists ρ′ ∈ R̃(Hm) such that t(ρ) = t(ρ′) and in these
conditions ρ and ρ′ are equivalent due to [2, Prop. 1.5.2.].
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