
E extracta mathematicae Vol. 27, Núm. 2, 155 – 161 (2012)
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Abstract : In this paper, we study the superstability problem for the cosine type functional
equation

f(x1x2, x1y2 + x2y1) + f(x1x2, y1x2 − x1y2) = 2f(x1, y1)f(x2, y2)

on the commutative monoid (R2,×). As a result we obtain cosine type functions satisfying
the equation approximately.
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1. Introduction

In 1940, S.M. Ulam [17] gave a talk before the Mathematics Club of the
University of Wisconsin in which he discussed a number of unsolved prob-
lems. Among these was the following question concerning the stability of
homomorphisms.

Question 1.1. Let (G1, ∗) be a group and let (G2, ⋄, d) be a metric group
with the metric d. Given ϵ > 0, does there exist δ(ϵ) > 0 such that if a mapping
h : G1 −→ G2 satisfies the inequality d(h(x ∗ y), h(x) ⋄ h(y)) < δ for all x, y ∈
G1, then there is a homomorphism H : G1 −→ G2 with d(h(x),H(x)) < ϵ for
all x1 ∈ G1?.

In 1941, Hyers [11] answered this question for the case where G1 and G2 are
Banach spaces. In [2] and [15] Aoki and Th. M. Rassias respectively provided
a generalization of Hyer’s theorem which allows the Cauchy difference to be
unbounded. The interested reader may refer to the book by Hyers, Isac,
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Rassias [12] for an in depth account on the subject of stability of functional
equations. In 1982, J.M. Rassias [14] solved the Ulam problem by involving
a product of powers of norms. Since then, the stability problems of various
functional equations has been investigated by many authors (see [9], [10]).
In [4] and [7] Baker et al. and Bourgin respectively, introduced the notion
that by now is frequently referred to as superstability or Baker’s stability :
if a function f satisfies the stability inequality |E1(f) − E2(f)| ≤ ε, then
either f is bounded or E1(f) = E2(f). The superstability of d’Alembert’s
functional equation f(x+y)+f(x−y) = 2f(x)f(y) was investigated by Baker
[5] and Cholewa [8]. Badora and Ger [3] proved its superstability under the
condition |f(x+y)+f(x−y)−2f(x)f(y)| ≤ φ(x) or φ(y). In a previous work,
Bouikhalene et al [6] investigated the superstability of the cosine functional
equation on the Heisenberg group.

Now, Let R2 = R×R be the commutative monoid equipped with compo-
sition rule

(x1, y1)(x2, y2) := (x1x2, x1y2 + x2y1). (1.1)

The map i : R2 −→ R2, given by i(x, y) = (x,−y) for any (x, y) ∈ R2,
is an involution of R2, i.e., i

(
(x1, y1)(x2, y2)

)
= i(x1, y1)i(x2, y2) for any

(x1, y1), (x2, y2) ∈ R2 and i◦i = id (the identity map). Consider the functional
equation

f(x1x2, x1y2 + x2y1) + f(x1x2, y1x2 − x1y2) = 2f(x1, y1)f(x2, y2) (1.2)

for (x1, y1), (x2, y2) ∈ R2. By setting a = (x1, y1), b = (x2, y2) in (1.2) we
obtain the cosine type functional equation

f(ab) + f
(
ai(b)

)
= 2f(a)f(b), a, b ∈ R2 (1.3)

on the commutative monoid R2. This equation has the same form as the
cosine functional equation, also called d’Alembert’s functional equation ([1],
[13])

f(x+ y) + f(x− y) = 2f(x)f(y), x, y ∈ G, (1.4)

on an abelian group G, except that the group inversion y −→ −y is replaced
by the involution i. We say that a function f : R2 −→ C is of approximate a
cosine type function, if there is δ > 0 such that∣∣f(ab) + f

(
ai(b)

)
− 2f(a)f(b)

∣∣ < δ, a, b ∈ R2. (1.5)

In the case where δ = 0, f satisfies the functional equation (1.3). We call f
a cosine type function on R2. The main purpose of this work is to prove the
superstability problem of equation (1.2) in the commutative monoid R2.
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2. Superstability of equation (1.2)

Proposition 2.1. let φ,ψ, ϕ, ζ : R −→ [0,+∞[ be functions and let
f : R2 −→ C satisfies the functional inequality∣∣f(ab) + f

(
ai(b)

)
− 2f(a)f(b)

∣∣ ≤ min
{
φ(x1), ψ(y1), ϕ(x2), ζ(y2)

}
(2.1)

for any a = (x1, y1), b = (x2, y2) ∈ R2. Then m(x) = f(x, 0) for any x ∈ R, is
either bounded or multiplicative function from R to C. Furthermore f satisfies
the following inequality∣∣∣∣f(a)2 − 1

2
f(a2)− 1

2
m(x2)

∣∣∣∣ ≤ 1

2
min

{
φ(x), ψ(y), ϕ(x), ζ(y)

}
(2.2)

for any a = (x, y) ∈ R2.

Proof. Setting a = (x, 0), b = (y, 0) in (2.1), we get

∣∣f(x, 0)f(y, 0)− f(xy, 0)
∣∣ ≤ 1

2
min

{
φ(x), ψ(0), ϕ(y), ζ(0)

}
for any x, y ∈ R. According to [16] we get thatm(x) = f(x, 0) for any x ∈ R is
either bounded or a multiplicative function from R to C. Once again, putting
a = (x, y) in (2.1) we get that∣∣f(x2, 2xy) + f(x2, 0)− 2f(x, y)2

∣∣ ≤ min
{
φ(x), ψ(y), ϕ(x), ζ(y)

}
for any x, y ∈ R. So that∣∣∣∣f(a)2 − 1

2
f(a2)− 1

2
m(x2)

∣∣∣∣ ≤ 1

2
min

{
φ(x), ψ(y), ϕ(x), ζ(y)

}
for any a = (x, y) ∈ R2.

Proposition 2.2. Let f : R2 −→ C satisfies the functional inequality
(2.1) and let F (y) = f(1, y) for any y ∈ R. Then

i) F is either bounded, or

ii) F satisfies the cosine functional equation

F (x+ y) + F (x− y) = 2F (x)F (y), x, y ∈ R. (2.3)
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Further, in the latter case, there exists an exponential function γ : R −→ C
such that

F (x) =
1

2

(
γ(x) + γ(−x)

)
for any x ∈ R.

Proof. Let a = (1, x), b = (1, y) for any x, y ∈ R in (2.1). By setting
F (y) = f(1, y) for any y ∈ R we get∣∣F (x+ y) + F (x− y)− 2F (x)F (y)

∣∣ ≤ min
{
φ(1), ψ(x), ϕ(1), ζ(y)

}
for any x, y ∈ R. According to ([3], [5]) it follows that F is either bounded or
F is a cosine function. In view of ([1], [5], [13]) we get that there exists an
exponential function γ : R −→ C such that F (x) = 1

2

(
γ(x) + γ(−x)

)
for any

x ∈ R.

Proposition 2.3. Let f : R2 −→ C satisfies the functional inequality
(2.1). Then f is either bounded or f ◦ i = f .

Proof. Let Pf = f+f◦i
2 . Since f satisfies (2.1), we have∣∣Pf (ab) + Pf

(
ai(b)

)
− 2Pf (a)f(b)

∣∣ ≤ min
{
φ(x1), P̃ψ(y1), ϕ(x2), P̃ζ(y2)

}
for any a = (x1, y1), b = (x2, y2) ∈ R2, where P̃ψ(x) = ψ(x)+ψ(−x)

2 for any
x ∈ R. By using the same way as in [3] and [5] we get that f is either
bounded or f satisfies the Wilson’s type functional equation

Pf (ab) + Pf
(
ai(b)

)
= 2Pf (a)f(b), a, b ∈ R2

on the commutative monoid R2. By small computations we get that f ◦ i = f .

Proposition 2.4. Let φ,ψ, ϕ, ζ : R −→ [0,+∞[ be functions and let
f : R2 −→ C, with f(0, 0) ̸= 0, satisfies the functional inequality (2.1). Then
f is bounded and we have∣∣f(a)− 1

∣∣ ≤ 1

2|f(0, 0)|
min

{
φ(x), ψ(y), ϕ(0), ζ(0)

}
(2.4)

for any a = (x, y) ∈ R2.
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Proof. By letting b = (0, 0) in (2.1) we get∣∣2f(0, 0)− 2f(a)f(0, 0)
∣∣ ≤ min

{
φ(x), ψ(y), ϕ(0), ζ(0)

}
for any a = (x, y) ∈ R. So that we have∣∣2f(0, 0)∣∣∣∣f(a)− 1

∣∣ ≤ min
{
φ(x), ψ(y), ϕ(0), ζ(0)

}
for any a = (x, y) ∈ R2.

Theorem 2.5. let φ, ψ, ϕ, ζ : R −→ [0,+∞[ be functions and let
f : R2 −→ C satisfies the functional inequality (2.1). Then

i) f is either bounded and∣∣f(0, y)2 − f(0, 0)
∣∣ ≤ 1

2
min

{
φ(0), ψ(y), ϕ(0), ζ(y)

}
(2.5)

for any y ∈ R or

ii) f satisfies the functional inequality∣∣∣∣∣f(a)−m(x)
γ( yx) + γ(−yx )

2

∣∣∣∣∣ ≤ 1

2
min

{
φ(x), ψ(0), ϕ(1), ζ( yx)

}
(2.6)

for any a = (x, y) ∈ R with x ̸= 0, where m : R −→ C is a multiplicative
function and γ : R −→ C is an exponential function.

Proof. i) Letting a = b = (0, y) in (2.1), we get∣∣f(0, y)2 − f(0, 0)
∣∣ ≤ 1

2
min

{
φ(0), ψ(y), ϕ(0), ζ(y)

}
for any y ∈ R.
ii) Let f be unbounded. Hence by Propositions 2.1 and 2.2 we get that
f(x, 0) = m(x) for any x ∈ R is a multiplicative function from R to C and
f(1, y) = F (y) for any y ∈ R is a solution of the cosine functional equation
(1.4). Therefore there exists an exponential function γ : R −→ C such that

f(1, y) = F (y) = γ(y)+γ(−y)
2 for any y ∈ R. By letting a = (x, 0), b = (1, yx),

with x ̸= 0, in (2.1) we get the following inequality∣∣f(x, y) + f(x,−y)− 2f(x, 0)f(1, yx)
∣∣ ≤ min

{
φ(x), ψ(0), ϕ(1), ζ( yx)

}
(2.7)



160 b. bouikhalene, e. elqorachi, a. charifi

for any x, y ∈ R with x ̸= 0. Therefore by Proposition 2.3 we get that
f(x, y) = f ◦ i(x, y) = f(x,−y) for any x, y ∈ R. So that we get from (2.7)
that ∣∣f(x, y)−m(x)F ( yx)

∣∣ ≤ 1

2
min

{
φ(x), ψ(0), ϕ(1), ζ( yx)

}
for any x, y ∈ R with x ̸= 0.

In the next corollary we let φ(x1) = ψ(y1) = φ(x2) = ζ(y2) = δ for any
x1, y1, x2, y2 ∈ R.

Corollary 2.6. Let δ > 0 and let f : R2 −→ C satisfies the functional
inequality ∣∣f(ab) + f(ai(b))− 2f(a)f(b)

∣∣ ≤ δ (2.8)

for any a, b ∈ R2. Then

i) f is bounded and there exists η ∈ C∗ such that |f(a)− 1| ≤ δ
2η for any

a = (x, y) ∈ R, with x ̸= 0. Furthermore |f(0, y)− η| ≤ δ
2 for an y ∈ R

or

ii) f is unbounded and there exist a multiplicative function m : R −→ C
and an exponential function γ : R −→ C such that∣∣∣∣∣f(a)−m(x)

γ( yx) + γ(−yx )

2

∣∣∣∣∣ ≤ δ

2
(2.9)

for any a = (x, y) ∈ R2 with x ̸= 0.

Proof. By using Proposition 2.4 and Theorem 2.5 with η = f(0, 0).

In the next corollary we give the explicit formula of cosine type functions
on R2

Corollary 2.7. Let f : R2 −→ C be a cosine type function on R2. Then

i) f(x, y) = 1 for any x, y ∈ R or

ii)

f(x, y) =

0 if x = 0,

m(x)
2

(
γ( yx) + γ(− y

x)
)

if x ̸= 0,

for any x, y ∈ R.

Proof. By letting δ = 0 in Corollary 2.6.
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