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Abstract : We introduce some new subclasses of the class of meromorphic multivalent func-
tions, which are defined by subordination and superordination using the close-to-convexity
condition. In some particular cases, these new subclasses are the well-known classes of mero-
morphic close-to-convex functions. We establish the conditions such that when we apply a
certain integral operator (similar to Bernardi integral operator) to a function which belongs
to one of these subclasses, the image we get belongs to a similar class.
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1. Introduction and preliminaries

For a ∈ C and r > 0 we consider U(a, r) = {z ∈ C : |z − a| < r}. Let
U = U(0, 1) = {z ∈ C : |z| < 1} be the unit disc in the complex plane,
U̇ = U \ {0}, H(U) = {f : U → C : f is holomorphic in U}, Hu(U) = {f ∈
H(U) : f is univalent in U}, N = {0, 1, 2, . . .} and N∗ = N \ {0}.

For p ∈ N∗, let Σp denote the class of meromorphic functions of the form

g(z) =
a−p

zp
+ a0 + a1z + · · ·+ anz

n + · · · , z ∈ U̇ , a−p ̸= 0.

We will also use the following notations:

Σp,0 = {g ∈ Σp : a−p = 1},
Σ0 = {g ∈ Σ1,0 : g is univalent in U̇ and g(z) ̸= 0, z ∈ U̇},

ΣKp(α, δ) =

{
g ∈ Σp : α < Re

[
− 1− zg′′(z)

g′(z)

]
< δ, z ∈ U

}
, where α < p < δ.

ΣKp,0(α, δ) = ΣKp(α, δ) ∩ Σp,0,
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ΣCp,0(α, δ;φ) =

{
g ∈ Σp,0 : α < Re

g′(z)

φ ′(z)
< δ, z ∈ U

}
, where α < 1 ≤ p < δ

and φ ∈ ΣKp,0(α, δ).

ΣCp,0(α, δ) =

{
g ∈ Σp,0 : (∃)φ ∈ ΣKp,0(α, δ) s.t. α < Re

g′(z)

φ ′(z)
< δ, z ∈ U

}
,

where α < 1 ≤ p < δ.

H[a, n] = {f ∈ H(U) : f(z) = a+ anz
n + an+1z

n+1 + · · · } for a ∈ C, n ∈ N∗.

An = {f ∈ H(U) : f(z) = z + an+1z
n+1 + an+2z

n+2 + · · · }, n ∈ N∗. For
n = 1 we denote A1 by A, and this set is called the class of analytic functions
normalized at the origin.

Definition 1.1. ([4, p. 4]) Let f and F be members of H(U). The func-
tion f is said to be subordinate to F , written f ≺ F or f(z) ≺ F (z), if there
exists a function w analytic in U , with w(0) = 0 and |w(z)| < 1, and such
that f(z) = F (w(z)).

Definition 1.2. ([4, p. 16]) Let ψ : C3 × U → C and let h be univa-
lent in U . If p is analytic in U and satisfies the (second order) differential
subordination

ψ
(
p(z), zp′(z), z2p′′(z); z

)
≺ h(z), (1)

then p is called a solution of the differential subordination. The univalent
function q is called a dominant of the solutions of the differential subordina-
tion, or more simply, a dominant, if p ≺ q for all p satisfying (1). A dominant
q̃ that satisfies q̃ ≺ q for all dominants q of (1) is said to be the best dominant
of (1). (Note that the best dominant is unique up to a rotation of U).

If we require the more restrictive condition p ∈ H[a, n], then p will be called
an (a, n)-solution, q an (a, n)-dominant, and q̃ the best (a, n)-dominant.

Definition 1.3. ([5], [2, p. 98]) Let φ : C3×U → C and let h be analytic
in U. If p and φ

(
p(z), zp′(z), z2p′′(z); z

)
are univalent in U and satisfy the

second order differential superordination

h(z) ≺ φ
(
p(z), zp′(z), z2p′′(z); z

)
, (2)

then p is called a solution of the differential superordination. An analytic
function q is called a subordinant of the solutions of the differential superor-
dination, or more simply, a subordinant, if q ≺ p for all p satisfying (2). An
univalent subordinant q̃ that satisfies q ≺ q̃ for all subordinants q of (2) is said
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to be the best subordinant. Note that the best subordinant is unique up to a
rotation of U.

Definition 1.4. ([2, p. 99]) We denote by Q the set of functions f that
are analytic and injective on U \ E(f), where

E(f) =
{
ζ ∈ ∂U : lim

z→ζ
f(z) = ∞

}
,

and they are such that f ′(ζ) ̸= 0 for ζ ∈ ∂U \ E(f). The subclass of Q for
which f(0) = a, is denoted by Q(a).

Theorem 1.1. ([3]) Let β, γ ∈ C and let h be a convex function in U ,
with

Re [βh(z) + γ] > 0, z ∈ U.

Let qm and qk be the univalent solutions of the Briot-Bouquet differential
equation

q(z) +
nzq′(z)

βq(z) + γ
= h(z), z ∈ U, q(0) = h(0),

for n = m and n = k respectively. If m/k, then qk(z) ≺ qm(z) ≺ h(z). So,
qk(z) ≺ q1(z) ≺ h(z).

Theorem 1.2. ([6]) Let p ∈ N∗, λ ∈ C with Reλ > p. If g ∈ Σp , then

Jp,λ(g) ∈ Σp , where Jp,λ(g)(z) =
λ−p
zλ

∫ z
0 g(t)t

λ−1dt.

Theorem 1.3. ([2, p. 102], [5]) Let Ω ⊂ C, q ∈ H[a, n], φ : C2 × U → C,
and suppose that

φ
(
q(z), tzq′(z); ζ

)
∈ Ω,

for z ∈ U, ζ ∈ ∂U and 0 < t ≤ 1
n ≤ 1. If p ∈ Q(a) and φ

(
p(z), zp′(z); z

)
is

univalent in U , then

Ω ⊂
{
φ
(
p(z), zp′(z); z

)
: z ∈ U

}
⇒ q(z) ≺ p(z).

Theorem 1.4. ([4, p. 70]) Let h be convex in U and let P : U → C with
ReP (z) > 0. If p is analytic in U, then

p(z) + P (z)zp′(z) ≺ h(z) ⇒ p(z) ≺ h(z).



190 a. totoi

Definition 1.5. ([7]) Let p ∈ N∗ and h ∈ H(U) with h(0) = p. We
define:

ΣKp(h) =

{
g ∈ Σp : −

[
1 +

zg′′(z)

g′(z)

]
≺ h(z)

}
,

ΣKp,0(h) = ΣKp(h) ∩ Σp,0.

Corollary 1.1. ([7]) Let p ∈ N∗, γ ∈ C with Re γ > p and g ∈ ΣKp(h)
with h convex in U . If

Re [γ − h(z)] > 0, z ∈ U,

then

Jp,γ(g) ∈ ΣKp(q),

where q is the univalent solution of the Briot-Bouquet differential equation

q(z) +
(p+ 1)zq′(z)

γ − q(z)
= h(z) , z ∈ U, q(0) = p.

The function q is the best (p, p+ 1)-dominant.

2. Main results

Next we consider some subclasses of Σp,0 associated with superordination
and subordination, using the close-to-convexity condition and throughout this
paper we establish the conditions such that when we apply the integral oper-
ator Jp,γ to a function which belongs to one of these new subclasses, we get
an image that belongs to a similar class.

Definition 2.1. Let p ∈ N∗, h1, h2, h ∈ H(U) with h1(0) = h2(0) = 1,
h(0) = p, h1 ≺ h2 and φ ∈ ΣKp,0(h). We define:

ΣCp,0(h1, h2;φ, h) =
{
g ∈ Σp,0 : h1(z) ≺

g′(z)

φ ′(z)
≺ h2(z)

}
,

ΣCp,0(h2;φ, h) =
{
g ∈ Σp,0 :

g′(z)

φ ′(z)
≺ h2(z)

}
.
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Definition 2.2. Let p ∈ N∗ and h2, h ∈ H(U) with h2(0) = 1, h(0) = p.
We define:

ΣCp,0(h2;h) =
{
g ∈ Σp,0 : (∃)φ ∈ ΣKp,0(h) s.t.

g′(z)

φ ′(z)
≺ h2(z)

}
,

ΣCp,0(h) =
{
g ∈ Σp,0 : (∃)φ ∈ ΣKp,0(h) s.t.

g′(z)

φ ′(z)
≺ 1

p
h(z)

}
.

Remark 2.1.

1. If H ∈ H(U), H(0) = p and h ≺ H, then ΣCp,0(h2;h) ⊂ ΣCp,0(h2;H).

2. IfH2 ∈ H(U),H2(0) = 1 and h2 ≺ H2, then ΣCp,0(h2;h) ⊂ ΣCp,0(H2;h).

3. If h1, h2, h,H ∈ H(U) with h1(0) = h2(0) = 1, h(0) = H(0) = p, h1≺ h2
and φ ∈ ΣKp,0(h) ∩ ΣKp,0(H), then

ΣCp,0(h1, h2;φ, h) = ΣCp,0(h1, h2;φ,H),

ΣCp,0(h2;φ, h) = ΣCp,0(h2;φ,H).

Next we present some particular cases for the classes defined above.
If p = 1 and h2(z) = h(z) = 1+z

1−z , z ∈ U , then a function φ is in the class
ΣK1,0(h) if and only if

Re

[
−1− zφ′′(z)

φ ′(z)

]
> 0, z ∈ U,

so, the class of meromorpic close-to-convex functions is included in the class
ΣC1,0

(
1+z
1−z

)
.

Let α < 1 ≤ p < δ. We consider h2 = h1,α,δ and h = hp,α,δ, where
hp,α,δ : U → C is the convex function with hp,α,δ(U) = {z ∈ C : α < Re z < δ}
and hp,α,δ(0) = p. We know that hp,α,δ exists and it is obtained by composing
different well-known elementary functions. It is not difficult to see that

ΣKp,0(hp,α,δ) = ΣKp,0(α, δ), (3)

ΣCp,0(h1,α,δ;φ, hp,α,δ) = ΣCp,0(α, δ;φ), whereφ ∈ ΣKp,0(α, δ). (4)

We denote the class ΣCp,0(h1,α,δ;hp,α,δ) by ΣCp,0(α, δ).
We mention that the class ΣCp,0(α, δ;φ) was introduced and studied in [6].

Also, a class similar with the class ΣC1,0(α, δ) was defined and studied in [1].
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Theorem 2.1. Let p ∈ N∗ and γ ∈ C with Re γ > p. Let h2 and h be
convex functions in U with h2(0) = 1, h(0) = p and let g ∈ ΣCp,0(h2;h). If we
have Re [γ − h(z)] > 0, z ∈ U , then

Jp,γ(g) ∈ ΣCp,0(h2; q),

where q is the univalent solution of the Briot-Bouquet differential equation

q(z) +
(p+ 1)zq′(z)

γ − q(z)
= h(z) , z ∈ U,

with q(0) = p. The function q is the best (p, p+ 1)-dominant.

Proof. Since g ∈ ΣCp,0(h2;h) we know that there is a function φ ∈ ΣKp,0(h)
such that

g′(z)

φ ′(z)
≺ h2(z). (5)

Because φ ∈ ΣKp,0(h), where ΣKp,0(h) = ΣKp(h)∩Σp,0, and Re [γ − h(z)] >
0, z ∈ U, we have from Corollary 1.1 that

Φ = Jp,γ(φ) ∈ ΣKp(q),

where q is the univalent solution of the Briot-Bouquet differential equation

q(z) +
(p+ 1)zq′(z)

γ − q(z)
= h(z) , z ∈ U,

with q(0) = p. Of course, the function q is the best (p, p+ 1)-dominant.

From the definition of the operator Jp,γ we remark that Φ ∈ Σp,0, when
φ ∈ Σp,0, so Φ ∈ ΣKp,0(q).

Let G = Jp,γ(g). We know from Theorem 1.2 that G ∈ Σp and it is easy
to see that G ∈ Σp,0 (since g ∈ Σp,0). Using the definition of the operator Jp,γ
and the fact that G = Jp,γ(g), Φ = Jp,γ(φ), we get

γG(z) + zG′(z) = (γ − p)g(z)

and

γΦ(z) + zΦ′(z) = (γ − p)φ(z), z ∈ U̇ ,

hence

(γ + 1)G′(z) + zG′′(z) = (γ − p)g′(z)
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and
(γ + 1)Φ′(z) + zΦ′′(z) = (γ − p)φ′(z).

Let us denote

P (z) =
G′(z)

Φ ′(z)
, z ∈ U.

Because Φ ∈ ΣKp,0(q) we have zp+1Φ′(z) ̸= 0, z ∈ U, hence P ∈ H(U). From
P (z)Φ′(z) = G′(z), we get G′′(z) = P ′(z)Φ′(z) + P (z)Φ′′(z), so, the identity

(γ + 1)G′(z) + zG′′(z) = (γ − p)g′(z), z ∈ U̇ ,

can be rewritten as

(γ + 1)P (z)Φ′(z) + z
[
P ′(z)Φ′(z) + P (z)Φ′′(z)

]
= (γ − p)g′(z). (6)

Using the identity (γ + 1)Φ′(z) + zΦ′′(z) = (γ − p)φ′(z), we obtain from (6)
that

P (z) +
zP ′(z)

γ + 1 +
zΦ′′(z)

Φ′(z)

=
g′(z)

φ ′(z)
, z ∈ U,

which is equivalent to

P (z) +
zP ′(z)

R(z)
=

g′(z)

φ ′(z)
, where R(z) = γ + 1 +

zΦ′′(z)

Φ′(z)
. (7)

From (5) and (7) we obtain

P (z) +
zP ′(z)

R(z)
≺ h2(z). (8)

Next we show that ReR(z) > 0, z ∈ U . We know that Φ ∈ ΣKp,0(q) and
q ≺ h (see Theorem 1.1), so

−1− zΦ′′(z)

Φ′(z)
≺ h(z),

which is equivalent to

γ + 1 +
zΦ′′(z)

Φ′(z)
≺ γ − h(z), (9)

hence
R(z) ≺ γ − h(z). (10)
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Since Re [γ − h(z)] > 0, z ∈ U, we get from (10) that ReR(z) > 0, z ∈ U.
Because ReR(z) > 0, z ∈ U, we can use Theorem 1.4 for the subordination

P (z) +
zP ′(z)

R(z)
≺ h2(z),

and we get P ≺ h2, which is equivalent to

G′(z)

Φ′(z)
≺ h2(z). (11)

Since G ∈ Σp,0 and Φ ∈ ΣKp,0(q) we obtain from (11) that G = Jp,γ(g) ∈
ΣCp,0(h2; q).

From the proof of Theorem 2.1 we remark that we also have:

Theorem 2.2. Let p ∈ N∗ and γ ∈ C with Re γ > p. Let h2 and h be
convex functions in U with h2(0) = 1, h(0) = p and Re [γ − h(z)] > 0, z ∈ U .
If φ ∈ ΣKp,0(h) and g ∈ ΣCp,0(h2;φ, h), then

Jp,γ(g) ∈ ΣCp,0
(
h2; Jp,γ(φ), q

)
,

where q is the univalent solution of the Briot-Bouquet differential equation

q(z) +
(p+ 1)zq′(z)

γ − q(z)
= h(z) , z ∈ U,

with q(0) = p. The function q is the best (p, p+ 1)-dominant.

If we consider that the conditions from the hypothesis of Theorem 2.1
and Theorem 2.2 respectively, are met, since we know from Theorem 1.1 that
q ≺ h, we obtain the next corollaries:

Corollary 2.1. Let p ∈ N∗ and γ ∈ C with Re γ > p. Let h2, h be
convex functions in U with h2(0) = 1, h(0) = p and let g ∈ ΣCp,0(h2;h). If
Reh(z) < Re γ, z ∈ U , then

Jp,γ(g) ∈ ΣCp,0(h2;h).

Corollary 2.2. Let p ∈ N∗ and γ ∈ C with Re γ > p. Let h2 and h be
convex functions in U with h2(0) = 1, h(0) = p and Reh(z) < Re γ, z ∈ U . If
φ ∈ ΣKp,0(h) and g ∈ ΣCp,0(h2;φ, h), then

Jp,γ(g) ∈ ΣCp,0
(
h2;Jp,γ(φ), h

)
.
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Next we present two results which concern the particular classes ΣCp,0(α, δ)
and ΣCp,0(α, δ;φ).

Theorem 2.3. Let p ∈ N∗, α, δ ∈ R and γ ∈ C with α < 1 ≤ p < δ ≤
Re γ. If g ∈ ΣCp,0(α, δ), then

Jp,γ(g) ∈ ΣCp,0(α, δ).

Proof. We know that the class ΣCp,0(α, δ) is the class ΣCp,0(h1,α,δ;hp,α,δ).
Taking h2 = h1,α,δ, h = hp,α,δ for Corollary 2.1 we remark that the hypothesis
of this corollary is fulfilled, so we get

Jp,γ(g) ∈ ΣCp,0(h1,α,δ;hp,α,δ) = ΣCp,0(α, δ).

Theorem 2.4. Let p ∈ N∗, α, δ ∈ R and γ ∈ C with α < 1 ≤ p < δ ≤
Re γ. If φ ∈ ΣKp,0(α, δ) and g ∈ ΣCp,0(α, δ;φ), then

Jp,γ(g) ∈ ΣCp,0(α, δ; Φ),

where Φ = Jp,γ(φ).

Proof. From (3) we know that ΣKp,0(hp,α,δ) = ΣKp,0(α, δ) and from (4)
we have ΣCp,0(h1,α,δ;φ, hp,α,δ) = ΣCp,0(α, δ;φ), whereφ ∈ ΣKp,0(α, δ). Con-
sidering h2 = h1,α,δ and h = hp,α,δ for Corollary 2.2, we remark that the
hypothesis of this corollary is fulfilled, so we get

Jp,γ(g) ∈ ΣCp,0
(
h1,α,δ; Jp,γ(φ), hp,α,δ

)
= ΣCp,0

(
α, δ; Jp,γ(φ)

)
.

We remark that a result which is similar to Theorem 2.4 was also obtained
in [6] but using a different method. We also remark that in the hypothesis of
Theorem 2.4 we do not have the condition zp+1J ′

p,γ(φ)(z) ̸= 0, z ∈ U, which
appears in the hypothesis of the result presented in [6].

Lemma 2.1. Let r > 0 and let λ : U → C be an analytic function in U
such that supz∈U |λ(z)| =M <∞. If p ∈ H[1, 1]∩Q and p(z) + λ(z)zp′(z) is
univalent in U, then

U(1, r) ⊂
{
p(z) + λ(z)zp′(z) : z ∈ U

}
⇒ U

(
1,

r

1 +M

)
⊂ p(U).
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Proof. To prove this lemma we use Theorem 1.3. Let us consider Ω =
U(1, r), q(z) = r

1+M z + 1, z ∈ U, and φ : C2 × U → C, φ(u, s; ζ) = u+ λ(ζ)s.
Since we know from the hypothesis that p ∈ H[1, 1]∩Q and p(z)+λ(z)zp′(z)
is univalent in U, to apply Theorem 1.3, we need only to verify that

φ
(
q(z), tzq′(z); ζ

)
∈ Ω = U(1, r), when z ∈ U, ζ ∈ ∂U, 0 < t ≤ 1, (12)

which is equivalent to

|q(z) + λ(ζ)tzq′(z)− 1| < r, when z ∈ U, ζ ∈ ∂U, 0 < t ≤ 1. (13)

We have∣∣q(z) + λ(ζ)tzq′(z)− 1
∣∣ = r

1 +M

∣∣z[1 + tλ(ζ)]
∣∣ < r

1 +M

∣∣1 + tλ(ζ)
∣∣

≤ r

1 +M

(
1 + t|λ(ζ)|

)
≤ r

1 +M
(1 +M) = r.

Therefore, the condition (13) is satisfied, so we get from Theorem 1.3 that
q ≺ p, which implies

U

(
1,

r

1 +M

)
⊂ p(U).

Theorem 2.5. Let m, r > 0, p ∈ N∗ and γ ∈ C with Re γ > p. Let h2
and h be convex functions in U such that h2(0) = 1, h(0) = p and Re [γ −
h(z)] > m, z ∈ U . Let φ ∈ ΣKp,0(h) and g ∈ ΣCp,0(h1, h2;φ, h), where

h1(z) = rz + 1, z ∈ U. Suppose that g′

φ ′ is univalent in U and
J ′
p,γ(g)

J ′
p,γ(φ)

∈ Q.

Then
G = Jp,γ(g) ∈ ΣCp,0(q1, h2; Φ, q),

where

Φ = Jp,γ(φ),

q1(z) =
rm

m+ 1
z + 1, z ∈ U,

and q is the univalent solution of the Briot-Bouquet differential equation

q(z) +
(p+ 1)zq′(z)

γ − q(z)
= h(z), z ∈ U,

with q(0) = p. The function q is the best (p, p+ 1)-dominant.



integral operators 197

Proof. Since φ ∈ ΣKp,0(h) = ΣKp(h) ∩ Σp,0 and Re [γ − h(z)] > m > 0,
z ∈ U, we have from Corollary 1.1 that

Φ = Jp,γ(φ) ∈ ΣKp(q),

where q is the univalent solution of the Briot-Bouquet differential equation

q(z) +
(p+ 1)zq′(z)

γ − q(z)
= h(z), z ∈ U,

with q(0) = p. It is easy to see that Φ ∈ ΣKp,0(q). Of course, the function q
is the best (p, p+ 1)-dominant.

We have G = Jp,γ(g) and Φ = Jp,γ(φ). Let

P (z) =
G′(z)

Φ ′(z)
, z ∈ U.

Since Φ ∈ ΣKp,0(q) we have zp+1Φ′(z) ̸= 0, z ∈ U, so P ∈ H(U).
Analogously to the proof of Theorem 2.1 we obtain

P (z) +
zP ′(z)

R(z)
=

g′(z)

φ ′(z)
,

where

R(z) = γ + 1 +
zΦ′′(z)

Φ′(z)
, z ∈ U.

It is obvious that R ∈ H(U). From g ∈ ΣCp,0(h1, h2;φ, h) we have

h1(z) ≺
g′(z)

φ ′(z)
≺ h2(z),

hence

h1(z) ≺ P (z) +
zP ′(z)

R(z)
≺ h2(z). (14)

Because ReR(z) > 0, z ∈ U, (see the proof of Theorem 2.1), we can use
Theorem 1.4 for the subordination of (14), which is

P (z) +
zP ′(z)

R(z)
≺ h2(z),

and we get
P ≺ h2. (15)
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Next we consider the superordination of (14), which is

h1(z) ≺ P (z) +
zP ′(z)

R(z)
.

Since h1(z) = rz + 1, z ∈ U, this superordination implies

U(1, r) ⊂
{
P (z) +

zP ′(z)

R(z)
: z ∈ U

}
.

Let us denote λ = 1
R . We know from (10) that R(z) ≺ γ − h(z) and from the

hypothesis we have Re [γ − h(z)] > m > 0, z ∈ U, hence ReR(z) > m, z ∈ U.
We have the function λ : U → C analytic in U and supz∈U |λ(z)| ≤ 1

m . We
may apply now Lemma 2.1 and we obtain

U

(
1,

rm

m+ 1

)
⊂ P (U). (16)

Since P is univalent in U and P (0) = q1(0), we have (16) equivalent to

q1 ≺ P, where q1(z) =
rm

m+ 1
z + 1, z ∈ U. (17)

From (15), (17) and the fact that

Φ = Jp,γ(φ) ∈ ΣKp,0(q),

where q is the univalent solution of the Briot-Bouquet differential equation

q(z) +
(p+ 1)zq′(z)

γ − q(z)
= h(z), z ∈ U,

with q(0) = p, we obtain that

G = Jp,γ(g) ∈ ΣCp,0(q1, h2; Φ, q).
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