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Abstract: We introduce some new subclasses of the class of meromorphic multivalent func-
tions, which are defined by subordination and superordination using the close-to-convexity
condition. In some particular cases, these new subclasses are the well-known classes of mero-
morphic close-to-convex functions. We establish the conditions such that when we apply a
certain integral operator (similar to Bernardi integral operator) to a function which belongs
to one of these subclasses, the image we get belongs to a similar class.
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1. INTRODUCTION AND PRELIMINARIES

For a € C and r > 0 we consider U(a,7) = {2z € C: |z —a| < r}. Let
U =1U(0,1) = {z € C: |z|] < 1} be the unit disc in the complex plane,
U=U\{0}, HU) = {f : U = C : f is holomorphic in U}, H,(U) = {f €
H(U) : f is univalent in U}, N={0,1,2,...} and N* = N\ {0}.

For p € N*, let X, denote the class of meromorphic functions of the form

a_ .
9(2’)=7pp+ao+alz+~~+anz"+---,zGU, a—p # 0.

We will also use the following notations:
Ypo={9€%,:ap, =1},

Yo ={g €X10:gis univalent in U and g(z) #0, z € U},
2(2)
9'(2)

ZKp(a,é):{geEp:a<Re[—1— ]<5,z€U},wherea<p<5.

YK, 0(a,0) = XKp(o,0) N Xy 0,
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9'(2)
p'(2)

ECpo(a,d;9) = {9 € Xpo:a<Re
and ¢ € XK, o(a,9).

<5,z€U},Wherea<1§p<6

/
YCpo(a,0) = {g €Xpo: (e eXKpp(,0) s.t. a < Re gi’((zz)) <4, z€ U},
where a <1 <p <.

Hla,n] ={f € HU) : f(2) =a+ apz" + aps12"1 +---} fora € C, n € N*.

Ay ={f € HU) : f(2) = 2+ ant12"™ + apioz"™? + .-}, n € N*. For
n = 1 we denote Ay by A, and this set is called the class of analytic functions
normalized at the origin.

DEFINITION 1.1. ([4, p.4]) Let f and F be members of H(U). The func-
tion f is said to be subordinate to F, written f < F or f(z) < F(z), if there
exists a function w analytic in U, with w(0) = 0 and |w(z)| < 1, and such
that f(z) = F(w(2)).

DEFINITION 1.2. ([4, p.16]) Let v : C> x U — C and let h be univa-
lent in U. If p is analytic in U and satisfies the (second order) differential
subordination

¥ (p(2), 20 (2), 2°p"(2); 2) < h(z), (1)

then p is called a solution of the differential subordination. The univalent
function ¢ is called a dominant of the solutions of the differential subordina-
tion, or more simply, a dominant, if p < ¢ for all p satisfying (1). A dominant
¢ that satisfies ¢ < ¢ for all dominants ¢ of (1) is said to be the best dominant
of (1). (Note that the best dominant is unique up to a rotation of U).

If we require the more restrictive condition p € Hla, n], then p will be called
an (a,n)-solution, g an (a,n)-dominant, and ¢ the best (a,n)-dominant.

DEFINITION 1.3. ([5], [2, p.98]) Let o : C> x U — C and let h be analytic
in U. If p and ¢(p(2),2p'(2), 2°p"(2); z) are univalent in U and satisfy the

second order differential superordination

h(z) < go(p(z),zp'(z),zQp”(z);z), (2)

then p is called a solution of the differential superordination. An analytic
function ¢ is called a subordinant of the solutions of the differential superor-
dination, or more simply, a subordinant, if ¢ < p for all p satisfying (2). An
univalent subordinant ¢ that satisfies ¢ < ¢ for all subordinants ¢ of (2) is said
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to be the best subordinant. Note that the best subordinant is unique up to a
rotation of U.

DEFINITION 1.4. ([2, p.99]) We denote by @ the set of functions f that
are analytic and injective on U \ E(f), where

B(f)={¢ceaU: lim f(2) = oo},

and they are such that f'(¢) # 0 for ¢ € OU \ E(f). The subclass of @ for
which f(0) = a, is denoted by Q(a).

THEOREM 1.1. ([3]) Let 5,7 € C and let h be a convex function in U,
with
Re[Bh(z) +~] >0, z € U.

Let g,, and qr be the univalent solutions of the Briot-Bouquet differential
equation

a(z) + ggfq)” _h(=), 2 €U, q(0) = h(0),

for n = m and n = k respectively. If m/k, then qi(z) < gm(z) < h(z). So,
qk(2) < q1(2) < h(z).

THEOREM 1.2. ([6]) Letp € N* A e C with ReX > p. If g € ¥,, then
Jpa(g) € Xy, where Jp, x(9)( ()t Ldt.

THEOREM 1.3. ([2, p.102], [5]) Let Q C C, ¢ € Hla,n], ¢ : C> x U — C,
and suppose that
t

Jtzq (2 C) € Q,

q(2)
forz € U, ( €0U and 0 <t < L < 1. Ifp € Q(a) and ¢(p(2),2p'(2); 2) is

univalent in U, then
QC{QO( ), zp'(2); ) zeU}:q(z)<p(z).

THEOREM 1.4. ([4, p.70]) Let h be convex in U and let P : U — C with
Re P(z) > 0. If p is analytic in U, then

p(z) + P(2)2p/ (2) < h(z) = p(2) < h(z).
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DEFINITION 1.5. ([7]) Let p € N* and h € H(U) with h(0) = p. We
define:

S (h) = {g €%, - [1 N zgg((»;)} y h(z)} ,

ZKILO(h) = ZKp(h) N Epp.

COROLLARY 1.1. ([7]) Let p € N*,v € C with Rey > p and g € XK,(h)
with h convex in U. If

Re[y —Nh(z)] >0, z € U,
then
Ip(9) € BK(q),
where q is the univalent solution of the Briot-Bouquet differential equation

a(2) + (p+1)2¢(2)

pog g =h(z),zeU, ¢q(0)=np.

The function q is the best (p,p + 1)-dominant.

2. MAIN RESULTS

Next we consider some subclasses of 3, o associated with superordination
and subordination, using the close-to-convexity condition and throughout this
paper we establish the conditions such that when we apply the integral oper-
ator J, 4 to a function which belongs to one of these new subclasses, we get
an image that belongs to a similar class.

DEFINITION 2.1. Let p € N*, hy,ho,h € H(U) with h1(0) = ho(0) = 1,
h(0) = p, h1 < hy and ¢ € XK, o(h). We define:

Epro(hl, hg; ©, h) = {g S Zp’() : hl(z) =< (Z//((ZZ)) =< hg(z)} R

Ecpp(hQ;(p,h) = {g (S Ep’(] : (i/,(é)) =< hQ(Z)} .
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DEFINITION 2.2. Let p € N* and ho,h € H(U) with ha(0) = 1, h(0) = p.
We define:

$Cp.0(ho; h) = {g €0 Qg € SK,o(h) sit. 9() hg(z)} ,

©'(2)
¥Cpo(h) = {g €Xp0: (A € TK,o(h) s.t. i//((zz)) < ;h(z)}.

Remark 2.1.
1. If He H(U), H(0) =p and h < H, then XCpg(ha; h) C XCpo(he; H).
2. If Hy € H(U), HQ(O) = 1l and hy < Ho, then Ecpp(hg; h) C Zcpp(Hg;h).

3. If hy,ho,h, H € H(U) with hl(O) = hQ(O) =1, h(O) = H(O) =p, h1=< ho
and ¢ € XK o(h) N XK, o(H), then
2Cp0(h1, ha; o, h) = XCpo(h1, ha; ¢, H),
Zcp,O(hQ; ®, h) = Ecp,ﬂ(hQ; P, H)
Next we present some particular cases for the classes defined above.
If p=1and hy(z) = h(z) = 12, z € U, then a function ¢ is in the class
YK (h) if and only if

2" (2)
¢'(2)

Re{—l— ]>0,Z€U,

so, the class of meromorpic close-to-convex functions is included in the class
ZCI’O (%) .

Let « <1 < p < d. We consider hg = hi s and h = hy, s, where
hpas : U — Cis the convex function with hy o 5(U) = {2 € C:a <Rez < 4}
and hy, . 5(0) = p. We know that h, o s exists and it is obtained by composing
different well-known elementary functions. It is not difficult to see that

EKp,O(hp,oc,é) = E[(}7,0(0‘a 6)7 (3)

YCp0(h1,0,65 0, Ppas) = ECpo(a, d;¢), where p € XKy o(av,0). (4)

We denote the class ¥Cp, 0(h1,0,65 p,a,6) by XCpo(a,d).
We mention that the class XCp, o(c, ; ¢) was introduced and studied in [6].
Also, a class similar with the class 3C1 o(c, ) was defined and studied in [1].
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THEOREM 2.1. Let p € N* and v € C with Rey > p. Let hy and h be
convex functions in U with ha(0) =1, h(0) = p and let g € £Cpo(h2; h). If we
have Re [y — h(z)] >0, z € U, then

Jp(9) € XCpo(ha;q),

where q is the univalent solution of the Briot-Bouquet differential equation

(p+1)2¢'(2) A s
q(2)+7viq(z) =h(z), z €U,

with q(0) = p. The function q is the best (p,p + 1)-dominant.

Proof. Since g € ¥Cp o(h2; h) we know that there is a function ¢ € XK, o(h)
such that ,
g(z)

(,0,(2) < hg(z) (5)

Because ¢ € XK, 0(h), where XK, o(h) = EK,(h) N, 0, and Re [y — h(z)] >
0, z € U, we have from Corollary 1.1 that

P = Jpy(p) € BK(q),
where ¢ is the univalent solution of the Briot-Bouquet differential equation

q(z) + P+ 124 (z) Dz4(2) =h(z), z€U,

v —q(2)
with ¢(0) = p. Of course, the function ¢ is the best (p, p + 1)-dominant.
From the definition of the operator .J,, we remark that ® € X, when
p € Xp0,50 P eXK,o(q).
Let G = Jp,(g). We know from Theorem 1.2 that G € ¥, and it is easy
to see that G € ¥, (since g € ¥,¢). Using the definition of the operator J,, 5
and the fact that G = J,,(g9), ® = Jp~(p), we get

YG(2) + 2G'(2) = (v — p)g(2)
and ‘
YP(2) 4+ 29" (2) = (v — p)p(z), z € U,

hence
(v + )G (2) + 2G"(2) = (v — p)g'(2)
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and

(v +1)@'(2) + 22"(2) = (v = p)¢'(2)-
Let us denote
_ G2
S @(2)
Because ® € XK, 0(q) we have zPT1®'(2) # 0, 2 € U, hence P € H(U). From
P(2)®'(z) = G'(2), we get G"(z) = P'(2)®'(z) + P(2)®"(2), so, the identity

P(z2) zeU.

(v + DG (2) + 2G"(2) = (y = p)g'(2), z € U,
can be rewritten as
(Y + DP(2)®(2) + 2[P'(2)®'(2) + P(2)®"(2)] = (v = p)d'(2).  (6)

Using the identity (v + 1)®'(2) 4+ 2®"(2) = (v — p)¢'(2), we obtain from (6)

that
P(z) + 2 (zZ<I)>”(z) = 5/((2))’ zel,
y+1+ ()
which is equivalent to
From (5) and (7) we obtain
P(z) + Zg;;) < ha(2). (8)

Next we show that Re R(z) > 0, z € U. We know that ® € XK, ((¢q) and
q < h (see Theorem 1.1), so

29" (2)

—1- h
@/(Z) =< (2)7
which is equivalent to
29" (2)
1 —h
141+ T < =), )

hence

R(z) < v —h(z). (10)
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Since Re[y — h(z)] > 0, z € U, we get from (10) that Re R(z) > 0, z € U.
Because Re R(z) > 0, z € U, we can use Theorem 1.4 for the subordination

2P'(2)

P(z) + R(2)

=< hQ(Z),

and we get P < ho, which is equivalent to

G'(z)
o'(2)

Since G € ¥, and ® € YK, (q) we obtain from (11) that G = J,,(g) €
EC]o,()(hQQ Q)‘ |

From the proof of Theorem 2.1 we remark that we also have:

< hg(z). (11)

THEOREM 2.2. Let p € N* and v € C with Rey > p. Let hy and h be
convex functions in U with ha(0) = 1, h(0) =p and Re[y — h(z)] >0, z € U.
If p € ¥Kpo(h) and g € £Cp0(ha; ¢, h), then

Jp,w(g) € Ecp,o(hz; Jp,'y(‘P)aQ)a

where q is the univalent solution of the Briot-Bouquet differential equation

q(z)—i—wzh(z),zea

v —aq(z)
with ¢q(0) = p. The function q is the best (p,p + 1)-dominant.

If we consider that the conditions from the hypothesis of Theorem 2.1
and Theorem 2.2 respectively, are met, since we know from Theorem 1.1 that
q < h, we obtain the next corollaries:

COROLLARY 2.1. Let p € N* and v € C with Rey > p. Let ho, h be
convex functions in U with hy(0) = 1, h(0) = p and let g € XCpo(ho; h). If
Reh(z) < Renw, z € U, then

Jpﬁ(g) S Ecp70<h2; h)

COROLLARY 2.2. Let p € N* and v € C with Revy > p. Let hy and h be
convex functions in U with hy(0) = 1, h(0) = p and Reh(z) < Re~, z € U. If
p € XK, 0(h) and g € ¥Cp0(h2; ¢, h), then

Jp~(9) € ECpo (h2? Ip (), h)'
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Next we present two results which concern the particular classes ¥Cp (v, )
and XCpo(a, d; ¢).

THEOREM 2.3. Let p e N*, a,d e Randy e Cwitha<1<p<di<
Ren. If g € ¥Cp0(av, d), then

Jp~(9) € XCpo(cv,0).

Proof. We know that the class ¥Cpo(c, 9) is the class XCp0(h1,0,5; hp,a,s)-
Taking ho = hi,q,5, h = hp s for Corollary 2.1 we remark that the hypothesis
of this corollary is fulfilled, so we get

JIL’Y(Q) € ECp,O(hl,a,(S; hp,a,zS) = Z:Cp,O(CVa 5)
i

THEOREM 2.4. Let p e N*, a,0 e Randvy e Cwitha<1<p<d<
Rew. If p € ¥Kpo(,0) and g € £Cpo(c,0; ), then

Jpy(9) € ECpo(a, 5 P),
where ® = J, (o).

Proof. From (3) we know that XK, o(hpas) = XKpo(e,0) and from (4)
we have XCp0(h1,0.5; 0, Ppas) = XCpole, 0;¢), wherep € XK o(a,d). Con-
sidering hy = hiqs and h = h, o for Corollary 2.2, we remark that the
hypothesis of this corollary is fulfilled, so we get

‘]P,’Y (g) € ECp,O (hl,a,d; Jp,'y(@)a hp,oz,&) = EC]o,O (aa 0; Jp,ﬂ/(‘p))'
|

We remark that a result which is similar to Theorem 2.4 was also obtained
in [6] but using a different method. We also remark that in the hypothesis of
Theorem 2.4 we do not have the condition z*1.J; _(¢)(z) # 0, z € U, which
appears in the hypothesis of the result presented in [6].

LEMMA 2.1. Let » > 0 and let A : U — C be an analytic function in U
such that sup_ i [A(2)| = M < oo. If p € H[1,1]NQ and p(z) + \(2)zp'(2) is
univalent in U, then

U(l,r) C{p(z) + A(2)zp/ () : 2 € U} = U(l, : —:M> C p(U).
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Proof. To prove this lemma we use Theorem 1.3. Let us consider () =
U,r), q(2) = 7372+ 1, 2 €U, and C2xU —C, ¢(u,s;¢) =u+ A{)s.
Since we know from the hypothesis that p € H[1,1]NQ and p(z) + A(z)zp'(2)
is univalent in U, to apply Theorem 1.3, we need only to verify that

go(q(z),tzq'(z); C) eQ=U(l,r), when z €U, (€ 0U, 0 <t <1, (12)
which is equivalent to

lg(2) + MO)tzq'(2) — 1] <7, when z € U, ( € U, 0 < t < 1. (13)

We have
‘q(z) + XMO)tzq'(2) — 1‘ =1 :M‘z[l —i—t)\(C)H < 1—:M‘1 +t)\(C)‘
r r
< o THINQD) < g0+ M) =

Therefore, the condition (13) is satisfied, so we get from Theorem 1.3 that
q < p, which implies
r
Ull, —— U).
( T M) Cp(U) I

THEOREM 2.5. Let m,r > 0, p € N* and v € C with Rey > p. Let hy
and h be convex functions in U such that he(0) = 1, h(0) = p and Re|y —
h(z)] > m,z € U. Let ¢ € ¥K,o(h) and g € XCpo(h1,h2; ¢, h), where
hi(z) = rz+ 1, z € U. Suppose that z—l, is univalent in U and jﬁ”"((ggp)) € Q.

P,y
Then

G = Jp;y(Q) € ECILO(qth; (I)7Q)7

where
¢ = Jp,'y(‘P)a
m
= 1
q1(2) m+1z—i— , zeU,

and q is the univalent solution of the Briot-Bouquet differential equation

a(2) + (p+1)zd'(2)

S =) =h(z), z €U,

with q(0) = p. The function q is the best (p, p + 1)-dominant.
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Proof. Since ¢ € XKy o(h) = XK,(h) N X, and Re [y — h(z)] > m > 0,
z € U, we have from Corollary 1.1 that

D = Jp,(p) € XKp(q),
where ¢ is the univalent solution of the Briot-Bouquet differential equation

(p+ 1)zq'(2)
q(z) + ———————==h(z2), z €U,
(2) v —q(z) )
with ¢(0) = p. It is easy to see that & € XK}, 0(q). Of course, the function ¢
is the best (p,p + 1)-dominant.
We have G = J,(g) and ® = J, ,(¢). Let

)

PO

, z € U.

Since ® € XK, 0(q) we have z2PT1®'(2) £0, 2 € U, so P € H(U).
Analogously to the proof of Theorem 2.1 we obtain
2P'(z) _ g'(2)

PEY R = o6y

where
29" (2)

®'(z)
It is obvious that R € H(U). From g € ¥C,o(h1, ho; ¢, h) we have

R(z)=v+1+ zeU.

hence
2P'(z)

R(z)
Because Re R(z) > 0, z € U, (see the proof of Theorem 2.1), we can use
Theorem 1.4 for the subordination of (14), which is

hi(z) < P(z) +

< hg(z) (14)

2P'(z)
R(z)

P(z) + =< ha(z2),

and we get
P < hs. (15)



198 A. TOTOI

Next we consider the superordination of (14), which is

2P'(2)
R(z2) ~

hi(z) < P(z) +

Since hi(z) =rz + 1, z € U, this superordination implies

U(l,r) c {P(z) + Z;S) ze U}.

Let us denote A = 5. We know from (10) that R(z) < v — h(z) and from the
hypothesis we have Re [y — h(z)] > m > 0, z € U, hence Re R(z) > m, z € U.

We have the function A : U — C analytic in U and sup, g [A\(2)] < =. We
may apply now Lemma 2.1 and we obtain

U <1, W;'”T1> c P(U). (16)

Since P is univalent in U and P(0) = ¢1(0), we have (16) equivalent to

q1 < P, where ¢q1(z) = mrle+1’ zeU. (17)

From (15), (17) and the fact that
P = Jpy(p) € XKp0(q),

where ¢ is the univalent solution of the Briot-Bouquet differential equation

q(z) + (p+1D2q(z) =h(z), z€ U,

v —q(z)

with ¢(0) = p, we obtain that

G = Jpﬁ(g) € ECp,O(quhZ; (I)7q)
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