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Abstract: Tt is well known that a commutative C*-algebra has no nonzero derivations. In
this article, we extend this result to complete commutative GB*-algebras having jointly
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with their underlying C*-algebras being W*-algebras.
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1. INTRODUCTION

GB*-algebras (i.e., generalized B*-algebras) are locally convex #-algebras
which are generalizations of C*-algebras. They were introduced in 1967 by
G.R. Allan in [2], and later, the concept was extended by P.G. Dixon in
[16] to include non-locally convex algebras. GB*-algebras are also abstract
algebras of unbounded operators on Hilbert spaces, i.e., O*-algebras. The
latter algebras were introduced by G. Lassner in [26] and play an important
role in the theory of unbounded operators and their physical applications.
To be more precise, the observables of a quantum mechanical system can
be realized as unbounded self-adjoint operators on a Hilbert space, and one
considers these operators to be elements of an algebra of unbounded operators
(O*-algebra). The time-evolution of the quantum mechanical system can be
modeled by one-parameter automorphism groups of the latter algebras, and
derivations are the generators of these groups.

If A is an algebra, and X is an A-bimodule, then a linear map § : A — X
is called a derivation if 6(ab) = ad(b)+ 6(a)b for all a,b € A. We say that ¢ is
inner if there exists € X such that §(a) = ax —za for all a € A. The theory
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of derivations of C*-algebras is well developed and, as mentioned above, is of
importance to the algebraic formalism of quantum mechanics ([11], [32]). For
instance, it is well known that all derivations of a C*-algebra are continuous
[32, Theorem 2.3.1], and that all derivations of a von Neumann algebra are
inner [32, Theorem 2.5.3]. Also, the zero derivation is the only derivation of
a commutative C*-algebra [15]. A wealth of automatic continuity results for
derivations and homomorphisms of Banach algebras are given in [15].

The first article about derivations of unbounded operator algebras to ap-
pear in the literature is the article of C. Brédel and G. Lassner [12]. In this
article, they proved that every derivation of a complete O*-algebra A of type
R is spatial, and is the generator of a one-parameter automorphism group of
A. A special type of GB*-algebra is a pro-C*-algebra, i.e., a complete topolog-
ical x-algebra A[rr] for which there exists a directed family of C*-seminorms
I' = {pn : A € T'} defining the topology m [18, Definition 7.1]. If A[mr]| is
a pro-C*-algebra, R. Becker proved in 1992 that all derivations § : A — A
are continuous [7, Proposition 2]. He also proved that the zero derivation is
the only derivation of a commutative pro-C*-algebra [7, Corollary 3]. Other
results concerning derivations of non-normed topological x-algebras and un-
bounded operator algebras can be found in [30], [23], [5], [6], [8], [4], [34] and
[35]. For a more detailed survey of derivations of locally convex x-algebras,
see [20].

All of the above, together with [20, discussion after Theorem 5.2], provides
good motivation for a general investigation of derivations of GB*-algebras. We
prove in Section 3 that the zero derivation is the only derivation of a complete
commutative GB*-algebra having jointly continuous multiplication. This is
an extension to GB*-algebras of the well known fact that every commutative
C*-algebra (more, generally, a pro-C*-algebra) has no nonzero derivations.
In Section 4, we give an example of a commutative O*-algebra admitting a
nonzero derivation.

A GB*-algebra A[r] has the property that there is a C*-algebra A[By]
dense in A (Proposition 2.3), which plays an important role for its study. In
Section 5, we give some results about derivations of GB*-algebras, with A[By]
being a W*-algebra. Examples of GB*-algebras having A[By]| as a W*-algebra
are given. Section 2 consists of all the necessary background for understanding
and proving the main results of this paper.
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2. PRELIMINARIES

All vector spaces in this paper are over the field C of complex numbers and
all topological spaces are assumed to be Hausdorff. Moreover, all algebras are
assumed to have an identity element denoted by 1.

A topological algebra is an algebra, which is also a topological vector space
such that the multiplication is separately continuous in both variables [18].
A topological x-algebra is a topological algebra endowed with a continuous
involution. A topological x-algebra which is also a locally convex space is
called a locally convex x-algebra. The symbol A[r] will stand for a topological
x-algebra A endowed with given topology 7.

DEFINITIONS 2.1. ([2]) Let A[r] be a topological x-algebra and B* a col-
lection of subsets B of A with the following properties:

(i) B is absolutely convex, closed and bounded,
(ii) 1€ B, B2C B and B* = B.

For every B € B*, denote by A[B] the linear span of B, which is a normed
algebra under the gauge function || - [|p of B. If A[B] is complete for every
B € B*, then A[r] is called pseudo-complete.

An element x € A is called (Allan) bounded if for some nonzero complex
number A, the set {(Az)" : n =1,2,3,...} is bounded in A. We denote by
Ag the set of all bounded elements in A.

A topological x-algebra A[r] is called symmetric if, for every x € A, the
element (1 + z*x)~! exists and belongs to A.

In [16], the collection B* in the definition above is defined to be the same
as above, except that B € B* is no longer assumed to be absolutely convex.
The notion of a bounded element is a generalization of the concept of bounded
operator on a Banach space, and was introduced by G.R. Allan in [1] in order
to develop a spectral theory for general locally convex x-algebras.

DEFINITION 2.2. ([2]) A symmetric pseudo-complete locally convex -
algebra A[7] such that the collection B* has a greatest member denoted by
By, is called a GB*-algebra over By.

Every sequentially complete locally convex algebra is pseudo-complete
[1, Proposition 2.6]. In [16], P.G. Dixon extended the notion of GB*-algebras
to include topological *-algebras which are not locally convex. In this defi-
nition, GB*-algebras are not assumed to be pseudo-complete, By is the only
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element in B* which is necessarily absolutely convex (see the paragraph before
Definition 2.2), and only A[By] is assumed to be complete with respect to the
gauge function || - ||g,. For a survey on GB*-algebras, see [19].

PROPOSITION 2.3. ([2, Theorem 2.6], [10, Theorem 2|) If A[r]| is a GB*-
algebra, then the Banach x-algebra A[By| is a C*-algebra sequentially dense
in A, and (1 + z*x)~! € A[By] for every x € A. Furthermore, By is the unit
ball of A[By].

The C*-algebra A[By] of Proposition 2.3 is also called the bounded part
of the GB*-algebra A. If A is commutative, then Ay = A[By] [2, p. 94]. In
general, Ag is not a *-subalgebra of A, and A[By| contains all normal elements
of Ap [2, p. 94].

It is well known that every commutative C*-algebra is topologically and
algebraically *-isomorphic to C'(X) for some compact Hausdorff space (in fact,
X is the maximal ideal space of A). More generally, any commutative GB*-
algebra is algebraically #-isomorphic to an algebra of functions on a compact
Hausdorff space X, which are allowed to take the value infinity on at most a
nowhere dense subset of X [2, Theorem 3.9]. This algebraic *-isomorphism
extends the Gelfand isomorphism of A[By| onto the corresponding C(X).

Recall that every C*-algebra is topologically-algebraically *-isomorphic to
a norm closed x-subalgebra of B(H) for some Hilbert space H. In general,
every GB*-algebra is algebraically *-isomorphic to an algebra of unbounded
operators on a Hilbert space [16, Theorem 7.6 and Theorem 7.11]. Therefore,
in light of Proposition 2.3, one can think of a GB*-algebra as a C*-algebra
with “unbounded elements” adjoined to it.

A pro-C*-algebra is a complete locally convex x-algebra A[7], whose topol-
ogy 7 is defined by a directed family of C*-seminorms [18, Definition 7.1].
Every pro-C*-algebra is topologically *-isomorphic to an inverse limit of C*-
algebras [18], and every pro-C*-algebra is a GB*-algebra [2, p. 95].

Suppose now that A[7] is a locally convex x-algebra, where 7 is defined
by a directed family {p,},ca of seminorms with the following properties: for
every v € A, there is 1/ € A such that p,(zy) < pu(2)py (y), pu(z*) < pu(x)
and p,(z)? < p,(z*x) for all 7,y € A. Such a family of seminorms is called
C*-like. A complete locally convex *-algebra A[r]| for which 7 is defined by a
family of C*-like seminorms is called a C*-like locally convex x-algebra if

Ap = {3: €A: sgppy(x) < oo}
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is 7-dense in A [22]. Every C*-like locally convex *-algebra is a GB*-algebra
over By = {z € A : sup,p,(z) < 1} [22, Theorem 2.1]. Clearly, every pro-
C*-algebra is a C*-like locally convex x-algebra. Examples of GB*-algebras,
including pro-C*-algebras and C*-like locally convex x-algebras, can be found
in [2], [16], [18] and [22]. We give the following example, which we will need
in Section 3.

EXAMPLE 2.4. (][22, Example 3.3]) Let M be a von Neumann algebra with
a faithful finite normal trace 7. Let LS(M) denote the x-algebra of all locally
measurable operators affiliated with M (see Definition 2.6 below), and let
LP(M,7) = {x € LS(M) : 7(|z|P) < oo} for all p > 1, where |z| = (x*:v)%
Then LP(M,T) is a Banach space with respect to the norm

lzll, = (r(|2f?)) 7

for every p > 1. Let L*(M,7) = (), LP(M,7). Then L“(M,7) is a C*-
like locally convex x-algebra, and hence a GB*-algebra, with respect to the
seminorms || - ||,, where p > 1.

If D denotes an inner product space, then £T(D) denotes the set of all
closable linear operators a such that D C D, the domain of a* contains
D and a*D C D. We define an involution on LT(D) by af = a*|p for all
a € LI(D). Then LI(D) is a *-algebra with respect to this involution, and
with multiplication being defined by the usual composition of operators [26].
A x-subalgebra of L£T(D) containing the identity operator on D is called an
O*-algebra on D [26].

DEFINITION 2.5. Let x and y be closed operators on a Hilbert space H.
If x 4+ y is closable, then its closure x + y is called the strong sum of z and y,
and is denoted by x +y. The strong product of x and y is defined similarly by
7y, and is denoted by z-y. If 0 #% A € C, then we define A -z to be Az, and if
A =0, then -z is defined to be the zero operator defined on the whole of H.

The following concepts of locally measurable operator and EW*-algebra
will be needed in Section 5.

DEFINITION 2.6. ([36, Theorem 2.1 and Definition 2.2]) Let M be a von
Neumann algebra on a Hilbert space H and x a closed operator affiliated
with M.
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(i) The operator z is called measurable if the domain of x is dense in H and
1 — E, is finite for some A > 0, where |z| = [ X dE) is the spectral
decomposition of |xz|.

(ii) If there exist projections gy, in the centre of M such that ¢, 1 1 and zq,
is measurable for each n, then z is called locally measurable.

We denote the set of all locally measurable operators affiliated with a von
Neumann algebra M by LS(M). This is a x—algebra with respect to the
usual adjoint, the strong sum and strong product [36, p. 260].

DEFINITION 2.7. ([17, Definition 1.2]) Let A be a set of closed, densely
defined operators on a Hilbert space A which is a %-algebra under strong
sum, strong product, scalar multiplication (it is understood that Az = 0, the
zero operator on the whole of #H, if A = 0) and the usual adjoint of operators.
We call A an EW*-algebra if the following conditions are satisfied:

(i) (1+a*2)"! exists in A for every z € A,
(ii) the subalgebra A. of bounded operators in A is a W*-algebra.

We sometimes say that A is an EW*-algebra over the von Neumann alge-
bra A..

PROPOSITION 2.8. ([29, Proposition 3.4]) If A[rr]| is a pro-C*-algebra and
X|[7] is a complete locally convex A-bimodule having v X T — T jointly contin-
uous module actions, then the topology T on X can be defined by a directed
family of seminorms I such that for every q € I", there is a C*-seminorm
p € I satisfying q(az) < p(a)q(x) and q(xa) < p(a)q(z) for all a € A and
rzeX.

If, in particular, A[|| - ||] is a C*-algebra and X|7] is a complete locally
convex A-bimodule having || - || X 7 — 7 jointly continuous module actions,
then the topology 7 on X can be defined by a family of seminorms I" such
that for every g € IV, q(az) < |lalj¢(x) and g(xza) < ||a||g(z) for all a € A and
zecX.

3. DERIVATIONS OF COMMUTATIVE GB*-ALGEBRAS

The main result of this section is that a complete commutative GB*-
algebra having jointly continuous multiplication has no nonzero derivations.
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This result is a partial answer to the question in [20, discussion after Theorem
5.2], concerning the structure of derivations of GB*-algebras.

The strategy of the proof is as follows: given a complete commutative
GB*-algebra A[r] with jointly continuous multiplication, and a derivation ¢ :
A — A, we prove that 6] 4p,) = 0. The result then follows from the following
proposition.

PROPOSITION 3.1. If 6 : A — A is a derivation of a GB*—algebra A[r]
such that there is an a € A satisfying §(z) = ax — xa for all x € A[By), then
d(x) = ax — za for all x € A.

Proof. Let x € A such that z > 0. Then (1 + z)~! € A[Bo] ([16, Proposi-
tion 5.1] and [2, Theorem 2.6]). Also, we have that

0=06(1)=6((1+z)(1+2)""

=0((1+2) ' 4z +2)™

=51+ H+20((1+2)™ Y +6x)Q+2z) .
Therefore

S(x)==0((1+2) ™ H(1 +xz) —26((1+2)"H(1 +2)
=—(a(l+2)"' = (1+2) " a)(1 +2)
—z(a(l4+2)"' =1 +2)" a)(1 +2)

Now let € A be arbitrary. By the proof of [16, Theorem 6.5], there exist

positive elements x; € A,1 < i < 4, such that * = 1 — x5 +iz3 — ix4.
Therefore, from the above, §(x) = ax — za. I

If A is a commutative amenable Banach algebra, X a commutative Ba-
nach A-bimodule, and 6 : A — X a continuous derivation, then § = 0
[24, Proposition 8.2]. Also, every derivations of a C*-algebra A into any
Banach A-bimodule is continuous [31, Theorem 2]. These facts are needed in
the proof of the following theorem, which is the key for proving that the zero
derivation is the only derivation of a commutative Fréchet GB*-algebra.

THEOREM 3.2. Let A be a commutative C*—algebra and X|[r| a commu-
tative complete locally convex A—bimodule with jointly continuous module
actions. Then every derivation § : A — X is inner and thus the zero deriva-
tion.
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Proof. From Proposition 2.8, we have that the topology 7 of X is de-
termined by a family (¢;);e; of seminorms such that g¢;(az) < [|a||g;(x) and
gi(za) < ||al|gi(z) for all x € X and a € A. Then, for all i € I, it follows that
X; = X/kerg; is a normed A-bimodule with respect to the following (well
defined) module actions:

a-(zx+ N;)=ax+ N; and (x+ N;)-a=za+ N;,

where N; = {x € X : ¢;(x) = 0} for each i € I. Therefore X = @yi, up to
isomorphism of locally convex spaces, where X; is the completion of X; with
respect the norm g;, where g;(z + ker¢;) = ¢;(z) for every x € X and ¢ € I.
Therefore X; is a commutative Banach A-bimodule for every i € I. We now
consider the map

52‘:A—>Yi, 51':71'1'05,

where m; : X — X; is the i*® projection (module) map of X into X;. It is
easily verified that d; is a derivation for every i € I. By [31, Theorem 2|, ¢; is
| - Il = @; continuous for every i € I. Since A is a commutative C*-algebra, A
is an amenable Banach algebra, and therefore, by [24, Proposition 8.2], §; = 0
for all 7 € I. Hence 6§ = 0. 1

THEOREM 3.3. Let A[r] be a commutative complete GB*—algebra with
jointly continuous multiplication. Then the zero derivation is the only deriva-
tion of A.

Proof. Let 0 : A — A be a derivation of A. Then § 45, : A[Bo] = A
is a derivation from the commutative C*—algebra A[Bp] into A, which is a
complete locally convex A[By]—bimodule with || - || x 7 — 7 jointly continuous
module actions (the module actions being the multiplication on A). The latter
comes from the fact that the multiplication in A is jointly continuous and that
7 X || - || on A[Bg]. Therefore, from Theorem 3.2, we have that & 4/, = 0.
Hence, by Proposition 3.1, § = 0. 1

Every Fréchet topological algebra has the property that multiplication is
jointly continuous [18], and therefore the following result is an immediate
consequence of Theorem 3.3.

COROLLARY 3.4. If A[r] is a commutative Fréchet GB*—algebra, then the
zero derivation is the only derivation of A.

Since C*—like locally convex x—algebras are complete GB*—algebras hav-
ing jointly continuous multiplication, we get the following corollary.
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COROLLARY 3.5. If A[r] is a commutative C*—like locally convex
x—algebra, then the zero derivation is the only derivation of A.

Since LY (M, ) is a C*-like locally convex *-algebra, as in Example 2.4,
one can deduce the following result from Corollary 3.5, which is a special case
of [5, Corollary 3.5].

COROLLARY 3.6. If M is a commutative von Neumann algebra with a
faithful finite normal trace T, then the zero derivation is the only derivation
of L¥(M,T).

Remark. If A is a pro-C*-algebra and X is a complete locally convex
A-bimodule with jointly continuous module actions, then every derivation
d : A — X is continuous (this follows from Proposition 2.8 and [35,
Theorem 3.8]).

4. AN EXAMPLE OF A COMMUTATIVE O*-ALGEBRA
WITH A NONZERO DERIVATION

Consider the inner product space D = S(R) of all infinitely differentiable
functions on R which are rapidly decreasing. The completion of D is the
Hilbert space H = L2(R). Recall the position and momentum operators ¢
and p from quantum mechanics.

Let A be the commutative *-subalgebra of £7(D) generated by ¢ and 1.
Then A is a commutative O*-algebra. For each a € A, let d(a) = pa — ap.
Observe that ¢ is nonzero since ¢ € A and 6(q) = pg — qp = —ihl # 0, where
h is Planck’s constant. We prove that d(a) € A for every a € A, implying that
0 is a nonzero derivation of A.

In proving that §(A) C A, we require the following observation.

LEMMA 4.1. ¢"p —pqg™ € A for all n € N.

Proof. We will use mathematical induction. Firstly, gp — pg = ihl € A.
Now assume that ¢™p — pg™ € A for some m € N. For any k € N, it follows
from the identity gp—pgq = ihl that ¢*p—pq® = ¢*~1(pq) — (pq)g"~* +ihg" L.
Then

" p — pg™tt = q™(pq) —

pq)q" +1ihg™
= (¢"p)g — (pg™)q +ihg™
( m

q"p—pq")g+ihg™ € A

(
—(



86 M. WEIGT, 1. ZARAKAS

by assumption. By induction, ¢"p — pg" € A for all n € N. |

Coming back to our claim, let a € A. Then, by the very definition of A, it
follows that @ = g™ + ap_1¢""' + -+ - + a1q + agl, for some n € N, o; € C,
1 =0,...,n. Therefore

d(a) = pa — ap = p(ang" + Oénflqn_l + -+ a1qg+ apl)
— (ang" + 1" P+ o+ apl)p
= an(pq" — q"p) + an—1(pg" ' —¢" " 'p) + - +ai(pg—qp) € A

by Lemma 4.1. Consequently, the commutative O*-algebra A, defined as
above, admits at least one nonzero derivation.
The graph topology [26] tp on D induced by an O*-algebra B on D is
defined by the family of seminorms ||¢||, = ||a¢|| for all ¢ € D, where a € B.
We equip an O*-algebra B on D with the uniform topology [26], which is
defined by the following family of seminorms:

p/\/l(a): sup ’<a¢7w>|7
o, peM

for all tg-bounded subsets M of D. The uniform topology of LT(D) is a direct
generalization of the norm topology of the algebra of bounded linear operators
on a Hilbert space, although the preceding seminorms are not C*-seminorms.
This motivates the following example.

EXAMPLE 4.2. Consider the x-algebra A from above, and let A denote
the closure of A in £T(D) with respect to the uniform topology on Lf(D). We
remark that our derivation d can be defined, with the same formula, on the
whole L(D), for which we retain the same symbol. Then 6(A) C A, so that
§ is a nonzero derivation of the commutative *-subalgebra A of L(D).

In contrast to this fact, recall that commutative C*-algebras have no
nonzero derivations.

If there is a *-subalgebra B of L£(D) which is also a GB*-algebra in
some topology 7, and it contains A, then ¢ (ZT) c A", where A" denotes the
7-closure of A in B. Furthermore, A’ is a (commutative) GB*-algebra
[2, Proposition 2.9], implying that there is a commutative GB*-algebra having
a nonzero derivation. The authors currently do not know if such a GB*-algebra
B exists.



DERIVATIONS OF GENERALIZED B*-ALGEBRAS 87

5. DERIVATIONS OF GB*-ALGEBRAS WITH A[By] A W*-ALGEBRA

In this section, we give some results about derivations of GB*-algebras
whose bounded part is a W*-algebra. We first give some examples of such
GB*-algebras below. The motivation for this section comes mainly from [3],
[4], [9] and [13].

EXAMPLE 5.1. (][22, Example 3.3], [5, p. 292]) If M is a von Neumann al-
gebra with a faithful semifinite normal trace 7, then the algebra A = L¥(M, )
of Example 2.4 is a GB*-algebra with A[By] = M. Therefore A[Bp] is a W*-
algebra.

ExaMpPLE 5.2. If M is a von Neumann algebra with a faithful finite nor-
mal trace 7, then the algebra A = LS(M) (see Section 2), equipped with the
topology of convergence in measure 7Ty, is a (not necessarily locally convex)
GB*-algebra with A[By] = M [33, Theorem 1.5.29]. Under reasonable condi-
tions, the topology 7., above is a locally convex topology [14, Section 1.5],
implying that A is a (locally convex) GB*-algebra with A[By] a W*-algebra.

EXAMPLE 5.3. If M is a finite von Neumann algebra, we denote by F the
set of all faithful finite normal traces on M. Let My = (), ,cx L*(M, p) (we
refer to Example 2.4 for the latter notation). By [6, Theorem 3.1] and the
remark thereafter, A = My is a GB*-algebra with A[Bg] = M.

If A is an algebra, we will, from here on, use the notation Z(A) to denote
the center of A.

PROPOSITION 5.4. Let A[r] be a GB*—algebra with A[By| a W*—algebra.
If§ : A — A is a continuous derivation of A, then 6(xz) = 0(x)z, for allz € A
and z € Z(A[By)) (such a derivation is called Z—linear, with Z = Z(A[By]).

Proof. Since A[By] is T—dense in A [10, Theorem 2], we have that Z(A[By])
C Z(A). Therefore, for a projection p € Z(A[By]), we get that

5(p) = 6(p®) = d(p)p + pd(p) = 2pd(p).

Therefore pd(p) = 2pd(p), implying that pd(p) = 0, and hence d(p) = 0.

Let z € Z(A[By]). Since Z(A[By]) is a W*—algebra, then z is the norm
limit of the sequence (Zzzl )\ikpik), where )\;, € C and p;, are projections
in Z(A[By]) for all i, € N. So for z € A and z € Z(A[By]), it follows from
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the continuity of §, and the fact that 7 is weaker than the norm topology on
A[Bo], that

d(zz) = 0(x)z + xd(2)

n—00
k=1

= d(x)z +xd ( lim /\%pzk>
=0(z)z+x hm Z)\lképzk = 0(x)z.
|

At this point, we remark that if A[By] in Proposition 5.4 is a properly
infinite W*-algebra, then the derivation § : A — A is automatically Z-linear
without the assumption of continuity [9, Proposition 6.22] and [13, Theorem
1]. Results involving Z-linearity of derivations of locally measurable operators
can be found in [3].

THEOREM 5.5. ([3] and [4]) Let M be a type I von Neumann algebra with
center Z, and let A be an arbitrary x—subalgebra of the x—algebra LS(M) of
locally measurable operators affiliated with M, such that A contains M. If §
is a Z—linear derivation of A, then ¢ is spatial, i.e., there exists a € LS(M)
such that §(z) = ax — xa for all x € A.

Any GB*-algebra, whose bounded part is a W*-algebra, is *—isomorphic
to an EW*—algebra [13, Corollary 2]. Moreover, every EW*—algebra B over
the von Neumann algebra M is a full x—subalgebra of LS(M) [13, Theorem 1]
(see Section 2 for the definition of LS(M)). The term full means that 1 € B
and if y € B, x € LS(M) and 0 < z < y, then z € B.

Using these facts, Corollary 5.6, Corollary 5.10, Proposition 5.12 and
Proposition 5.13, given below, are analogues of the corresponding results for
measurable and locally measurable operators given in [4], [3] and [9]. We give
the proofs for sake of completeness.

COROLLARY 5.6. Let A[r] be a GB*-algebra with A[By] a type I von Neu-
mann algebra, such that all derivations on A are continuous. Then A is iden-
tifiable with an EW*—algebra B over the von Neumann algebra M = A[By],
such that all derivations of B are spatial and implemented by an element

of LS(M).

Proof. From [13, Corollary 2|, there exists an algebra x-isomorphism
¢: A— B of Aonto B, where B is an EW*—algebra over the von Neumann
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algebra M, say. Therefore B admits a GB*—topology 7/ such that B[r'] is a
GB*—algebra topologically *—isomorphic to A, with bounded part By, say
(see discussion immediately after Proposition 2.3): Let (p;);e; denote a fam-
ily of seminorms defining the GB*-topology on A, and let ¢;(¢(z)) = pi(z)
for every x € A. Then the family of seminorms (g;)ie; defines a locally
convex topology 7 on B, such that ¢ : A — B is a topological-algebraic
x-isomorphism. It now follows easily that B[7’] is a GB*-algebra.

By [13, Corollary 2], M = Byg. Therefore, since A = B and thus A[By] =
Bpg [16, Theorem 7.14], we get that A[Bp] = M. This last isomorphism
implements the isomorphism Z(A[By]) with Z(M).

Let now § : B — B be a derivation of B. We then have that the
map 65 : A = A dy(a) = ¢71(6(¢(a)), for all a € A, is a derivation of
A, thus continuous from the hypothesis. Then from Proposition 5.4, 4 is
Z(A[By])—linear. So from Z(A[By|) = Z(M), we have that § is Z(M)—linear
and thus from Theorem 5.5, ¢ is implemented by an element of LS(M). I

The next result and Corollary 5.9 that follows inform us that the spatiality
of a derivation in the previous corollary can in fact be improved to innerness.

THEOREM 5.7. ([9, Proposition 5.17]) Let B be a x—subalgebra of LS(M)
with M C B, such that if x € LS(M), y € B and |z| < |y|, then x € B. If
w € LS(M) is such that wr — zw € B for all x € B, then there exists v € B
such that vx — v = wx — zw for all x € B.

In proving Corollary 5.9, we need the following simple fact. Lemma 5.8
below is known and exists as Proposition 2.3.3 in the monograph [28], written
in Russian. We include a proof for convenience of the reader.

LeEMMA 5.8. If x € LS(M), then |z| € LS(M).

Proof. Let = u|x| be the polar decomposition of z. Since z is affiliated
with M, it follows from [25, Theorem 6.1.11] that v € M and that |z| is
affiliated with M. We note that since |z| is closed, |z| = v*z = vw*x = u* - x
(see Definition 2.5). Now, since M C LS(M), and given the fact that LS(M)
is a x—algebra [36, p. 260], we get that |x| € LS(M). 1

COROLLARY 5.9. Let A[r] be a GB*—algebra with A[By] a type I
W*—algebra. If all derivations of A are continuous, then all derivations of
A are inner.
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Proof. From Corollary 5.6, A is identifiable with an EW*—algebra B over
the von Neumann algebra M = A[By|, such that all derivations on B are
spatial. Let z € LS(M), y € B and |z| < |y|. From Lemma 5.8, |z| € LS(M).
Also from [21, Proposition 2.12], we get that |y| € B. Recall that B is a full
x—subalgebra of LS(M). Therefore, we have that |z| € B. By the polar
decomposition of x, we then get that z = ulz| € MB C B. It follows from
Theorem 5.7 that every derivation of B is inner and thus every derivation of
A is inner. 1

Every commutative W*-algebra is of type I, and so the following result
follows immediately from Corollary 5.9.

COROLLARY 5.10. Let A[r] be a commutative GB*—algebra with A[By]

a W*—algebra. Then the zero derivation is the only continuous derivation
of A.

If M is a type I von Neumann algebra, then, for any = € LS(M), there
exists a sequence (z,) of mutually orthogonal central projections in M such
that VneN zn = 1 and z,x € M for all n € N. Let B be a x-subalgebra of
LS(M) such that M C B. If D : B — B is a derivation, then D can be
extended to a derivation of LS(M) by the formula D(z) = 3°°° | 2, D(z,z),
where x € LS(M) [3]. We summarize this in the following result, which we
require in order to prove Proposition 5.12 and Proposition 5.13 below.

PROPOSITION 5.11. ([3]) Let M be a type I von Neumann algebra, and
B a x-subalgebra of LS(M) such that M C B. Then every derivation of B
can be extended to a derivation of LS(M).

The following proposition shows that, under extra conditions, the conti-
nuity assumption for the derivation in the previous corollary can be dropped.
We say that a von Neumann algebra M has an atomic projection lattice if
for every nonzero projection p € M, there exists a minimal projection ¢ € M
such that ¢ < p.

PROPOSITION 5.12. Let A[r] be a commutative GB*—algebra such that
A[By] is a W*—algebra having an atomic projection lattice. Then the zero
derivation is the only derivation of A.

Proof. By [13, Corollary 2 and Theorem 1], A is algebraically *—isomorphic
to an EW*—algebra B over a von Neumann algebra, say M, which is a full
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x—subalgebra of LS(M). By Proposition 5.11, every derivation of B can be
extended to LS(M). Since LS(M) is commutative and M, being isomorphic
with A[By], has an atomic projection lattice, the zero derivation is the only
derivation of LS(M) ([8, Theorem 3.4] and [27, Theorem 2]). Therefore, B,
and consequently A, has no nonzero derivations. [

An example of a GB*-algebra, with the hypothesis of the previous propo-
sition, is Example 2.4, with the additional assumptions that M has an atomic
projection lattice and is commutative.

Also, if (X, 3, ) is an atomic measure space satisfying the conditions of
[14, Corollary 1.5.7(ii)], then, for M = Lo (X, X, ), we have that LS(M) =
{My : f finite almost everywhere} is also a GB*-algebra of the kind in Propo-
sition 5.12.

If M is a von Neumann algebra of type I., then every derivation
d: LS(M) — LS(M) is inner [4]. This is needed in the proof of our next
proposition.

PROPOSITION 5.13. Let A[r] be a GB*—algebra with A[By] a type I
W*—algebra. Then all derivations of A are inner and thus continuous.

Proof. By [13, Corollary 2 and Theorem 1], A is algebraically x—isomorphic
to an EW*—algebra B whose underlying von Neumann algebra is a type I
von Neumann algebra M = A[By], and B is a x—subalgebra of LS(M). By
Proposition 5.11, every derivation can be extended to a derivation of LS(M),
which is inner. Therefore every derivation of B is spatial in LS(M). Thus
from Theorem 5.7, every derivation of B is inner. [

If M = Loo(X, X, p)®@B(1?), where (X, X, 11) is a localizable measure space,
then M is a type I, von Neumann algebra, and LS(M) = Lo(X, X, u)® B(I?)
is, under certain conditions (see [14, Section 1.5]), a GB*-algebra of the kind
in Proposition 5.13.

Remark. An open problem is whether or not every derivation of a GB*-
algebra is continuous. The authors are currently working on this problem for
Fréchet GB*-algebras (see also [20, discussion after Theorem 5.2]).
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