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Abstract : It is well known that the construction of Voronoi diagrams is based on the notion of
bisector of two given points. Already in normed linear spaces, bisectors have a complicated
structure and can, for many classes of norms, only be described with the help of topological
methods. Even more general, we present results on bisectors for convex distance functions
(gauges). Let C, with the origin o from its interior, be the compact, convex set inducing a
convex distance function (gauge) in the plane, and let B(−x, x) be the bisector of −x and x,
i.e., the set of points z whose distance (measured with the convex distance function induced
by C) to −x equals that to x. For example, we prove the following characterization of the
Euclidean norm within the family of all convex distance functions: if the set L of points x in
the boundary ∂C of C that create B(−x, x) as a straight line has non-empty interior with
respect to ∂C, then C is an ellipse centered at the origin. For the subcase of normed planes
we give an easier approach, extending the result also to higher dimensions.

Key words: Birkhoff orthogonality, bisector, characterization of ellipse, convex distance
function, Euclidean norm, gauge, isosceles orthogonality, Roberts orthogonality, Voronoi
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1. Introduction

It is well known that for the construction of Voronoi diagrams the notion
of bisector of two given points is fundamental. To construct bisectors in
Euclidean spaces is an elementary task, but to investigate them in general
normed spaces can be, from the geometric and topological viewpoint, very
difficult, since bisectors can even be full-dimensional sets. For results on
bisectors and Voronoi diagrams in normed linear spaces we refer to the survey
[14]. Here we want to prove some new theorems on bisectors for convex
distance functions, which are more general than respective statements for
norms. More precisely, for a planar convex body C taken as unit ball of a
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Figure 1: A planar convex body and the corresponding gauge.

convex distance function (gauge) we show the following: If the set L of all
points x in the boundary of C that create their bisectors B(−x, x) (see the
definition below) as straight lines has nonempty interior with respect to that
boundary of C, then C is an ellipse centered at the origin. An easier approach
to that characterization of Euclidean geometry, which is also available for
higher dimensions, is applied to the subcase when C is centrally symmetric
with respect to the origin, i.e., when the gauge γC (see the definition below)
is a norm.

Let C ⊆ R2 be a convex body (i.e., a compact, convex set with non-empty
interior intC) satisfying o ∈ intC, and ∂C be the boundary of C. The gauge
(or Minkowski functional) γC , defined by

γC : R2 → R
x→ inf{λ > 0 : x ∈ λC},

has the following properties (see Figure 1 and, for instance, [7, p. 128–130]):

1. γC(x) ≥ 0 ∀x ∈ R2,

2. γC(x) = 0 if and only if x is the origin o,

3. γC(λx) = λγC(x) ∀x ∈ R2, λ ≥ 0,

4. γC(x+ y) ≤ γC(x) + γC(y).

The convex distance function dC(·, ·) induced by C is then defined via
γC(x) by:

dC(y, x) := γC(x− y).

Clearly, dC(·, ·) satisfies the following properties.
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1. dC(y, x) = dC(y + z, x+ z) ∀x, y, z ∈ R2,

2. dC(αy, αx) = αdC(y, x) ∀α ≥ 0.

Notice that dC(·, ·) is not necessarily symmetric, i.e., in general dC(p, q) 6=
dC(q, p). The distance function dC(·, ·) is symmetric if and only if C is sym-
metric with respect to the origin o, in which case γC is a norm.

By [p, q] we denote the segment (possibly degenerate) between two points
p, q ∈ X, by [p, q〉 the ray with starting point p passing through q (p 6= q),
and by 〈p, q〉 the line passing through p and q (p 6= q).

For each point x ∈ ∂C, we denote by x− the point in which the ray [x, o〉
intersects ∂C. Also, each point x ∈ ∂C is associated with a number µx > 0
such that x− = −µxx. Let u and v be two linearly independent points in ∂C.
Then we call the set

arc(u, v) := {λu+ µv : λ, µ ≥ 0} ∩ ∂C

the (minor) arc of ∂C connecting u and v. Let L be the set of points x in
∂C such that B(−x, x) is a straight line, where B(−x, x) is the bisector of −x
and x, which is defined by

B(−x, x) :=
{
z ∈ R2 : dC(−x, z) = dC(x, z)

}
.

More generally, the bisector B(p, q) of two distinct points p and q is defined
by

B(p, q) :=
{
z ∈ R2 : dC(p, z) = dC(q, z)

}
.

Due to various applications (such as Voronoi diagrams, see [5], [12], and
[13]), bisectors are deeply studied in Computational Geometry. But also in
Minkowski Geometry they play an increasing role; see [8], [9], [14], and [16].
Of course, since the convex distance function is not necessarily symmetric,
there are other ways to define bisectors. For example, we can put the set

B′(−x, x) :=
{
z ∈ R2 : dC(z,−x) = dC(z, x)

}
.

to be the bisector of the points−x and x. One can easily verify thatB(−x, x)=
−B′(−x, x).

The set L introduced above can be empty, even if C is symmetric with
respect to the origin. Such an example can be found in [10, Example 2.1].
The aim of the paper is to show that, if the interior of L with respect to ∂C
is not empty, then C is an ellipse centered at the origin.
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In Section 2 we deal with the general planar case, namely when C is not
necessarily symmetric with respect to the origin. Extending our investigations
also to higher dimensions, we study in Section 3 the special case when C is
symmetric with respect to the origin o. Benefiting from recent results in
Functional Analysis, our approach in Section 3 is much easier. It is also
working for the case when C is the unit ball of an infinite dimensional real
normed linear space, in which case C is a bounded closed (but not compact)
convex set with non-empty interior, which is symmetric with respect to the
origin.

2. The general case

The results in this section hold for R2. We note that if x ∈ L, then
x− = −µxx ∈ L, which can be easily seen from the following equality:

B(−µxx, µxx) = µxB(−x, x).

The following lemma describes the relation between the structure of a
bisector and a property of ∂C.

Lemma 2.1. (cf. [13, Lemma 2.1.1.1, Corollary 2.1.1.2]) Let x be a point
distinct from o. Then B(−x, x) is homeomorphic to a line if and only if there
is no non-trivial segment contained in ∂C and parallel to 〈−x, x〉.

By Lemma 2.1, if B(−x, x) is homeomorphic to a line, then the two sup-
porting lines of C which are parallel to the line 〈−x, x〉 intersect C, in each
case, in precisely one point.

Lemma 2.2. If x ∈ L, then there exist precisely two points nx and sx in
∂C such that the lines nx + 〈−x, x〉 and sx + 〈−x, x〉 are the two supporting
lines of C which are parallel to 〈−x, x〉. Moreover, o ∈ [nx, sx].

Proof. First, since B(−x, x) is a straigth line, there exist precisely two
points nx and sx in ∂C such that the lines nx + 〈−x, x〉 and sx + 〈−x, x〉 are
two supporting lines of C. For each point z ∈ B(−x, x) we have the inequality

α(z) := dC(−x, z) = dC(o, z + x) ≤ dC(o, z) + 1. (1)
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Also, we have

dC(o, z) = dC

(
o,

1

2
(z + x) +

1

2
(z − x)

)
≤ dC

(
o,

1

2
(z + x)

)
+ dC

(
o,

1

2
(z − x)

)
=

1

2
dC(−x, z) +

1

2
dC(x, z) =

1

2
α(z) +

1

2
α(z) = α(z).

(2)

From (1) and (2) it follows that

1 ≥ dC
(
o,

1

α(z)
z
)
≥ dC(o, z)

dC(o, z) + 1
.

Thus, when dC(o, z) tends to infinity, dC
(
o, 1

α(z)z
)

tends to 1. In the meantime,

since α(z) = dC(−x, z) = dC(x, z),

dC

(
o,

1

α(z)
(z + x)

)
= dC

(
o,

1

α(z)
(z − x)

)
= 1.

Thus 1
α(z)z is the midpoint of the chord

[
1

α(z)(z + x), 1
α(z)(z − x)

]
of C which

is parallel to 〈−x, x〉.
Denote by H+

x and H−x the two open halfplanes bounded by 〈−x, x〉 and
containing nx and sx, respectively. If {zn}∞n=1 is a sequence contained in
H+
x ∩ B(−x, x) such that dC(o, zn) tends to infinity, then zn

α(zn)
tends to nx

since
[
zn+x
α(zn)

, zn−xα(zn)

]
is a chord of C parallel to 〈−x, x〉, whose midpoint zn

α(zn)

has distance to the origin tending to 1. Similarly, if {zn}∞n=1 is a sequence
contained in H−x ∩ B(−x, x) such that dC(o, zn) tends to infinity, then zn

α(zn)
tends to sx.

Next we show that o ∈ [nx, sx]. Suppose that this is not true. Then we can
suitably choose a pair of lines l and l′ from the following four lines: the two
supporting lines of C which are parallel to 〈nx, sx〉 and the two lines parallel to
〈nx, sx〉 and passing through x and −x, respectively. “Suitably” here means
that the other two lines lie between them. Without loss of generality, we
may assume that l and o are separated by the line 〈nx, sx〉. We denote by
X+ the halfplane bounded by l which does not contain C. From foregoing
discussions, there exist two points z1 and z2 in B(−x, x) such that z1 lies
in the halfplane bounded by 〈−x, x〉 containing nx, and z2 lies in the other
halfplane containing sx. These two points z1 and z2 can be chosen so that

z1
dC(o,z1)

and z2
dC(o,z2)

are “sufficiently close to” nx and sx, respectively. Here

“sufficiently close to” means that the rays [o, z1〉 and [o, z2〉 both intersect l.
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Also, the numbers dC(o, z1) and dC(o, z2) can be chosen large enough such
that z1 and z2 are both in X+. Then the line 〈z1, z2〉, which is precisely
B(−x, x), intersects the line 〈−x, x〉 but does not touch the relative interior
of the segment [−x, x]. This is impossible and leads to a contradiction.

By Lemma 2.2, we can associate each x ∈ L with two points nx and sx
such that

1. nx + 〈−x, x〉 and sx + 〈−x, x〉 are the two supporting lines of C which
are parallel to 〈−x, x〉;

2. nx is contained in the part of ∂C that connects x with x− counterclock-
wise.

Lemma 2.3. If x ∈ L, then

B(−x, x) =
1− µx
1 + µx

x+ 〈nx, sx〉.

Proof. First we show that B(−x, x) is parallel to the line 〈nx, sx〉. Suppose
to the contrary that this is not true. Let {zn} ⊂ B(−x, x) be a sequence, which
is contained in the halfplane bounded by 〈−x, x〉 and containing nx, such that
lim
n→∞

dC(o, zn) =∞. We claim that

lim
n→∞

zn
dC(o, zn)

6= nx,

which is a contradiction to the fact that zn
α(zn)

tends to nx (cf. the proof of

Lemma 2.2). Otherwise,

lim
n→∞

zn − p
dC(o, zn)

= nx,

where p is the point of intersection of the lines 〈nx, sx〉 and B(−x, x). By
Lemma 2.2, o ∈ [nx, sx]. It follows that the lines 〈nx, sx〉 and B(−x, x) coin-
cide, which is a contradiction.

Next we show that 1−µx
1+µx

x ∈ B(−x, x), which follows directly from the
equations

dC

(
x,

1− µx
1 + µx

x
)

= dC

(
o,− 2µx

1 + µx
x
)

=
2

1 + µx
dC(o,−µxx)

=
2

1 + µx
=

2

1 + µx
dC(o, x)

= dC

(
o,

2

1 + µx
x
)

= dC

(
− x, 1− µx

1 + µx
x
)
.
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Figure 2: The definition of refx(z).

Lemma 2.4. If x ∈ L, then, for each number β ∈ R,

dC

(
o,− 2µx

1 + µx
x+ βnx

)
= dC

(
o,

2

1 + µx
x+ βnx

)
. (3)

Proof. From Lemma 2.3 and the relation o ∈ [nx, sx] it follows that, for
each number β ∈ R,

1− µx
1 + µx

x+ βnx ∈ B(−x, x).

Thus

dC

(
o,

1− µx
1 + µx

x+ βnx − x
)

= dC

(
o,

1− µx
1 + µx

x+ βnx + x
)
,

from which (3) follows.

Let x be a point in L. For any point z = αx+βnx = − 1
µx
αx−+βnx ∈ R2,

set (see Figure 2)

refx(z) =

{
− 1
µx
αx+ βnx, α < 0,

αx− + βnx, α ≥ 0.

Lemma 2.5. Let x be a point in L. Then, for each point z ∈ R2, we have

1. refx
(
refx(z)

)
= z,

2. dC(o, z) = dC
(
o, refx(z)

)
.
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Proof. Assume that z = αx+ βnx.

1)

refx
(
refx(z)

)
=

{
refx

(
− 1

µx
αx+ βnx

)
, α < 0,

refx(−µxαx+ βnx), α ≥ 0,

= αx+ βnx.

2) If α < 0, then, by Lemma 2.4,

dC(o, αx+ βnx) = −α · 1 + µx
2µx

dC

(
o,− 2µx

1 + µx
x− β

α
· 2µx

1 + µx
nx

)
= −α · 1 + µx

2µx
dC

(
o,

2

1 + µx
x− β

α
· 2µx

1 + µx
nx

)
= dC

(
o,− α

µx
x+ βnx

)
= dC

(
o, refx(z)

)
.

If α > 0, then

dC(o, αx+ βnx) = α · 1 + µx
2

dC

(
o,

2

1 + µx
x+

β

α
· 2

1 + µx
nx

)
= α · 1 + µx

2
dC

(
o,− 2µx

1 + µx
x+

β

α
· 2

1 + µx
nx

)
= dC(o,−µxαx+ βnx)

= dC
(
o, refx(z)

)
.

If α = 0, then

dC(o, z) = dC(o, βnx) = dC
(
o, refx(z)

)
.

Lemma 2.6. If x and y are two linearly independent points in ∂C and
arc(x, y) ⊂ L, then there exists a number γ0 such that

arc(nx, ny) = γ0arc(sx, sy).

Proof. We note that, since C is a convex curve, for each smooth point
w ∈ arc(nx, ny) there exists a unique point z ∈ arc(x, y) such that w = nz.
Let f1(θ)(cos(θ), sin(θ)) (θ ∈ [θ1, θ2]) and f2(θ + π)(cos(θ + π), sin(θ + π))



on bisectors for convex distance functions 65

(θ ∈ [θ1, θ2]) be the polar equations of arc(nx, ny) and arc(sx, sy), respectively.
Then

f ′1(θ)
f1(θ)

=
f ′2(θ + π)

f2(θ + π)
(4)

holds for all θ ∈ [θ1, θ2] with a countable set of exceptions. By integration,
(4) yields

f1(θ)

f1(θ1)
=

f2(θ + π)

f2(θ1 + π)
, ∀θ ∈ [θ1, θ2].

Thus

f1(θ)

f2(θ + π)
=

f1(θ1)

f2(θ1 + π)
, ∀θ ∈ [θ1, θ2].

Hence there exists a number γ0 such that arc(nx, ny) = γ0arc(sx, sy).

To continue our discussion we need the forthcoming Lemma 2.8, which
proves a seemingly obvious fact. In its proof we use the following lemma from
[13].

Lemma 2.7. (cf. Lemma 2.1.2.13 in [13]) For three points a1, a2, a3, we
have B(a1, a2, a3) := B(a1, a2) ∩ B(a1, a3) = ∅ if and only if either a3 is
contained in the interior of the set FG12 or a3 lies on one of the boundary
line segments of FG12 and the tangent to C, where this line segments stems
from, does not contain a boundary line segment of ∂C.

Lemma 2.8. Let C ⊂ R2 be a convex body containing the origin o in its
interior, and dC(·, ·) be the convex distance function induced by C. Then, for
any two pairs of distinct points a1 and a2, a3 and a4 such that the segment
[a1, a2] is not parallel to [a3, a4], B(a1, a2) and B(a3, a4) cannot be two parallel
straight lines.

Proof. Suppose to the contrary that B(a1, a2) and B(a3, a4) are two par-
allel straight lines. First, observe that for any α > 0 and any vectors p, q, z,
the following equalities hold
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Figure 3: FG12 is the shaded region.

B(αp+ z, αq + z) = {w : dC(αp+ z, w) = dC(αq + z, w)}

=
{
w : dC

(
p+

1

α
z,

1

α
w
)

= dC

(
q +

1

α
z,

1

α
w
)}

=
{
w : dC

(
p,

1

α
(w − z)

)
= dC

(
q,

1

α
(w − z)

)}
= {αv + z : dC(p, v) = dC(q, v)}
= α{v : dC(p, v) = dC(q, v)}+ z

= αB(p, q) + z,

Thus we may assume, without loss of generality, that a4 = a1.

Next we take some terminology from [13], to apply Lemma 2.7. Without
loss of generality we assume that the line 〈a1, a2〉 is horizontal. Let t12 and
d12 be the top and bottom point of C1 := C + a1, respectively; t21 and d21 be
the top and bottom point of C2 := C + a2, respectively; and let U and L be
the upper and lower common supporting lines of C1 and C2, respectively.

Let T21 be the steepest tangent to C2 at t21, and let T12 be the least steep
tangent to C1 at t12. Correspondingly, let D12 be the steepest tangent to C1

at d12, and let D21 be the least steep tangent to C2 at d21.

We consider the four cones with apex a1 defined by the lines through a1
parallel to T12 and D12, respectively. Let F12 denote the cone bounded by the
line parallel to D12 from above and by the line parallel to T12 from below, and
let G12 be the opposite cone. Analogously we have F21 and G21 with apex a2.
For brevity let FG12 denote the set G12 ∪ (F12 ∩ F21) ∪G21, see Figure 3.
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On the line 〈a1, a3〉 there is precisely one point a such that the bisectors
B(a1, a2) and B(a1, a) intersect. Since the lines 〈a1, a2〉 and 〈a1, a〉 do not
coincide, there exists a point a′3 distinct from a on the line 〈a1, a〉\FG12.
Then B(a1, a2, a

′
3) := B(a1, a2) ∩ B(a1, a

′
3) = ∅, since B(a1, a

′
3) is a straight

line parallel to B(a1, a3). This is a contradiction to Lemma 2.7.

Lemma 2.9. If x lies in the closure of the interior of L with respect to ∂C,
then µx = 1.

Proof. First suppose that x is in the interior of L in ∂C. Then there exist
two linearly independent points u, v ∈ L such that

x ∈ arc(u, v) ⊂ L.
If nu = nx, then, by Lemma 2.2, su = sx. By Lemma 2.3, B(−u, u) is parallel
to B(−x, x), which is in contradiction to Lemma 2.8. Thus nu 6= nx. Similarly,
nv 6= nx.

Without loss of generality, these two points u and v are chosen such that

nv = refx(nu) and nu = αx+ βnx,

where α, β > 0. Then from the definition of refx it follows that

nv = −µxαx+ βnx.

Lemma 2.6 shows that there exists a number γ0 > 0 such that

arc(su, sv) = −γ0arc(nu, nv). (5)

Thus
su = −γ0nu = −γ0αx− γ0βnx

and
sv = −γ0nv = γ0µxαx− γ0βnx.

From (5) it follows that the line 〈su, sv〉 is parallel to the line 〈−x, x〉. By
Lemma 2.1, {su, sv} = 〈su, sv〉 ∩ ∂C. Since su, sv ∈ ∂C, by the definition of
refx and Lemma 2.5 we have

γ0µxαx− γ0βnx = sv = refx(su) = refx(−γ0αx− γ0βnx)

=
1

µx
γ0αx− γ0βnx,

which implies that µx = 1
µx

. Thus µx = 1.
One can easily verify that µx is continuous with respect to x. Thus, for

each point y in the closure of the interior of L with respect to ∂C, µy = 1.
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ox −x

B(−x, x)

Figure 4: A bisector B(−x, x) which is a line not passing through the origin.

Corollary 2.10. If x ∈ ∂C lies in the interior of L in ∂C, then

1. B(−x, x) contains the origin,

2. refx(z) = −αx+ βnx holds for any point z = αx+ βnx, and

3. refx is linear.

Proof. 1) Since, by Lemma 2.3,

1− µx
1 + µx

x ∈ B(−x, x),

it follows from Lemma 2.9 that o ∈ B(−x, x).

2) This is an easy consequence of the definition of refx and the fact that
µx = 1.

3) Let z1 = α1x + β1nx and z2 = α2x + β2nx be two arbitrary points in
R2, and λ, γ be two arbitrary real numbers. Then

refx(λz1 + γz2) = refx
(
(λα1 + γα2)x+ (λβ1 + γβ2)nx

)
= −(λα1 + γα2)x+ (λβ1 + γβ2)nx

= λrefx(α1x+ β1nx) + γrefx(α2x+ β2nx)

= λrefx(z1) + γrefx(z2).

This implies that refx is linear.
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Remark 2.11. Without further assumptions, B(−x, x) being a straight
line does not imply that B(−x, x) is a straight line containing the origin. Here
is an example: Let C be a convex body in R2, the polar coordinate ρ = ρ(θ)
of whose boundary ∂C satisfies the following conditions (cf. Figure 4):

1. For each θ ∈ [0, π/2] and each θ ∈ [3π/2, 2π), ρ(θ) = 1.

2. For each θ ∈ (π/2, π), ρ(θ) = sin(arctan(3 tan(π− θ)))/ sin(π− θ). And
ρ(π) = 3.

3. For each θ ∈ (π, 3π/2), ρ(θ) = sin(arctan(3 tan(θ − π)))/ sin(θ − π).

Let x = (−3, 0) and o′ = (−1.5, 0). We claim that B(−x, x) is the straight
line o′ + 〈(0, 1), (0,−1)〉.

In fact, for any z ∈ o′+[o, (0, 1)〉, the polar angles θ and θ′ of vectors z−x
and z − (−x), respectively, satisfy θ ∈ [0, π/2) and

tan θ′ = − ‖z − o
′‖E

‖−x− o′‖E
= −‖z − o

′‖E
‖x− o′‖E

· ‖x− o
′‖E

‖−x− o′‖E
= −1

3
tan θ,

where ‖p− q‖E stands for the Euclidean distance between two points p and
q. Then

θ′ = π + arctan
(
− 1

3
tan θ

)
= π − arctan

(1

3
tan θ

)
∈
(π

2
, π
]
.

For any point z ∈ (o′ + [o, (0, 1)〉)\{o′}, the polar angle θ′ of z − (−x) is in
(π/2, π). In this case we have the equation

ρ(θ′) =
sin θ

sin(π − θ′) .

It follows that

dC(x, z)

dC(−x, z) =
‖z − x‖E
ρ(θ)

· ρ(θ′)
‖z − (−x)‖E

=
‖z − x‖E sin θ

‖z − (−x)‖E sin(π − θ′) ·
sin(π − θ′)

sin θ
· ρ(θ′)
ρ(θ)

=
‖z − o′‖E
‖z − o′‖E

· sin(π − θ′)
sin θ

· ρ(θ′)
ρ(θ)

= 1.

For the case of o′, the polar angle of o′ − (−x) is π. Thus

dC(x, o′)
dC(−x, o′) =

‖o′ − x‖E
ρ(0)

· ρ(π)

‖o′ − (−x)‖E
=

1.5

1
· 3

4.5
= 1,
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which implies that o′ ∈ B(−x, x). Hence

o′ + [o, (0, 1)〉 ⊂ B(−x, x).

In a similar way, the inclusion

o′ + [o, (0,−1)〉 ⊂ B(−x, x)

can be proved. Hence

o′ + 〈(0, 1), (0,−1)〉 ⊂ B(−x, x).

Notice that, by Lemma 2.1, B(−x, x) is homeomorphic to a straight line. Thus

B(−x, x) = o′ + 〈(0, 1), (0,−1)〉.

Also, it can be seen from Figure 4 that, even if B(−x, x) is a straight line, the
set of midpoints of chords of C, which are parallel to 〈−x, x〉, is not necessarily
contained in a line.

Lemma 2.12. If x ∈ ∂C lies in the interior of L with respect to ∂C and y
is a point in L, then refx(y) ∈ L.

Proof. From Lemma 2.5 and Corollary 2.10 it follows that

B(−y, y) = {z : dC(−y, z) = dC(y, z)}
= {z : dC(o, z + y) = dC(o, z − y)}
=
{
z : dC

(
o, refx(z + y)

)
= dC

(
o, refx(z − y)

)}
=
{
z : dC

(
o, refx(z) + refx(y)

)
= dC

(
o, refx(z)− refx(y)

)}
=
{
z : dC

(
− refx(y), refx(z)

)
= dC

(
refx(y), refx(z)

)}
.

Thus

refx
(
B(−y, y)

)
= B

(
− refx(y), refx(y)

)
.

Since refx is linear, B(−refx(y), refx(y)) is also a straight line. Therefore
refx(y) ∈ L.

Theorem 2.13. If the interior of L with respect to ∂C is not empty, then
C is an ellipse centered at the origin.
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Proof. If L = ∂C then, by Corollary 2.10, o ∈ B(−x, x) holds for every
x ∈ ∂C. This implies that C is symmetric with respect to the origin o. This,
together with the assumption that B(−x, x) is a straight line for each point
x ∈ ∂C, implies that C is an ellipse centered at the origin (cf. [4, pp. 26–28]).

Thus we only need to show that L = ∂C. If this is not true, then there
exists a point z ∈ ∂C\{L}. It follows that z− is also not in L. Let x ∈ L
be a relative interior point of L with respect to ∂C, and Lx be the maximal
connected component of L containing x. Then Lx is contained in one of the
open halfplanes bounded by the line 〈z−, z〉. Hence there exist two points
u and v in ∂C such that the closure of Lx is arc(u, v). Now we know that
the interior of −arc(u, v) with respect to ∂C is contained in L. Let u′ be
a point in the relative interior of arc

(
u, u+x

dC(o,u+x)

)
with respect to ∂C. By

the definition of refu′ , the line 〈refu′(−x),−x〉 is parallel to the line 〈−u′, u′〉.
Thus refu′(−x) 6∈ arc(u, v). Moreover,

refu′
(
arc(−u′,−x)

)
=
{

refu′(y) : y ∈ arc(−u′,−x)
}

= arc
(
refu′(−x), u′

)
.

From Lemma 2.12 it follows that arc(u′, refu′(−x)) ⊂ L. This contradicts the
fact that Lx is the maximal connected component of L containing x.

3. A characterization of inner product spaces

In this section, C is the unit ball BX of a real normed linear space X with
norm ‖·‖, whose unit sphere is the boundary of BX and denoted by SX . In
this situation, C is a closed bounded convex body (which is not necessarily
compact) with o as interior point and center of symmetry. A normed linear
space is called a Banach space if it is complete. A Banach space X is a
Hilbert space if the norm ‖·‖ is compatible with an inner product on the
linear space X. Although we study the general case when X is not necessarily
finite dimensional, our method belongs to the geometry of finite dimensional
Banach spaces (or Minkowski spaces, cf. [15], [14], and the monograph [18]).

Some notions of generalized orthogonality types in normed linear spaces
are needed for the discussion in the sequel. Let x and y be in X. We say that
x is isosceles orthogonal to y if the equality

‖x+ y‖ = ‖x− y‖

holds, and for this situation we write x ⊥I y; x is said to be Roberts orthogonal
to y if the equality

‖x+ αy‖ = ‖x− αy‖
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holds for any number α ∈ R, and we write x ⊥R y for this case. The implica-
tion

∀x, y ∈ X, x ⊥R y ⇒ x ⊥I y
is trivial while its reverse, namely

∀x, y ∈ X, x ⊥I y ⇒ x ⊥R y,

forces X to be an inner product space (cf. [10], [4], [2], or [3]). In other words,
isosceles orthogonality is in general not homogeneous. We notice that

B(−x, x) = {z ∈ X : ‖z − x‖ = ‖z + x‖} = {z ∈ X : z ⊥I x}.

We also need the notion of Birkhoff orthogonality. x is said to be Birkhoff
orthogonal to y if the inequality

‖x+ λy‖ ≥ ‖x‖

holds for any number λ ∈ R, and in this case we write x ⊥B y.
Geometrically, x ⊥B y means that, when ‖x‖ ‖y‖ 6= 0, there exists a line

which contains x, is parallel to the line passing through−y and y, and supports
the disc of radius ‖x‖ centered at o in the two-dimensional subspace spanned
by x and y (cf. Figure 5). One can also verify the implication

∀x, y ∈ X, x ⊥R y ⇒ x ⊥B y.

For more information about the structure of bisectors, also in view of
relations to properties of generalized orthogonality types (especially isosceles
and Birkhoff orthogonality), we refer to [14], [16], [8], and [9].

Still we denote by L the set of points x in SX such that B(−x, x) is a
hyperplane. Notice that, since BX is symmetric with respect to the origin,
B(−x, x) always contains the origin o.

A subset R of a topological space T is said to be rare in T if the interior
of the closure of R in T is empty.

An operator on a real Banach space of the form se,e∗ : x → x − 2e∗(x)e
is called a reflection, where e ∈ X and e∗ ∈ X∗ (the dual space of X) satisfy
e∗(e) = 1. For a point e ∈ SX there exists at most one e∗ ∈ SX∗ such that
se,e∗ is an isometric reflection. When there exists such an e∗ we say that e
is a vector of isometric reflection and that e∗ is the isometric reflection func-
tional associated to e. We refer to [17], [6], and [1] for more about isometric
reflections and isometric reflection vectors.
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x

y

o

Figure 5: Birkhoff orthogonality.

Lemma 3.1. Let X be a real Banach space, e ∈ SX , e∗ ∈ SX∗ , and se,e∗

be a reflection. Then se,e∗ is an isometric reflection if and only if

e ⊥R H := {x : x ∈ X, e∗(x) = 0}.

Proof. First we recall that x ⊥R y ⇒ x ⊥B y holds for any x, y ∈ X.

Now suppose that se,e∗ is an isometric reflection. Then for any point z ∈ H
and any real number α we have that

se,e∗(e+ αz) = αz − e.

Since se,e∗ is a linear isometry, we have

‖e+ αz‖ = ‖e− αz‖ ,

which implies that e ⊥R z. Thus e ⊥R H.

Now suppose that e ⊥R H holds. Clearly, H is a hyperplane of X. Then
for any point y ∈ X there exists a point z ∈ H such that y = e∗(y)e+z. Then

‖se,e∗(y)‖ = ‖e∗(y)e+ z − 2e∗(e∗(y)e+ z)e‖
= ‖z − e∗(y)e‖ = ‖e∗(y)e+ z‖ = ‖y‖ ,

which implies that se,e∗ is an isometry.

Lemma 3.2. Let e be a point in SX . If B(−e, e) is a hyperplane, then e
is an isometric reflection vector.
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Proof. Let H be the hyperplane B(−e, e). First we show that e ⊥R H. For
each point z ∈ H = B(−e, e), it is clear that e ⊥I z. Since H is a hyperplane
passing through the origin o (this is because o ∈ B(−e, e)), we have

{λz : λ ∈ R} ⊂ H.

Thus e ⊥I λz holds for each number λ ∈ R, which implies that e ⊥R z. Since
z is arbitrary in H, e ⊥R H.

Note that the relation e ⊥R H implies that e ⊥B H. Then there exists a
point e∗ in SX∗ such that e∗(e) = 1 and (cf. [11, Theorem 2.1])

H = {x : x ∈ X, e∗(x) = 0}.

Then se,e∗ is a reflection and

e ⊥R {x : x ∈ X, e∗(x) = 0}.

By Lemma 3.1, se,e∗ is an isometric reflection and e is an isometric reflection
vector.

Remark 3.3. The reverse of Lemma 3.2 is not true. Take, for example,
the normed (or Minkowski) plane X = (R2, ‖·‖∞). Let e = (1, 0). Then e is
an isometric reflection vector. To see this, we put e∗ = (1, 0). Then e∗ ∈ SX∗ ,
e∗(e) = 1, and

e ⊥R {λ(0, 1) : λ ∈ R} = {x : x ∈ X, e∗(x) = 0}.

However, B(−e, e) is not a hyperplane, but even a set with nonempty interior
(cf. Figure 6).

Lemma 3.4. (cf. [6]) A Banach space X is a Hilbert space if and only if
the set of all isometric reflection vectors in X is not rare in SX .

The following is the result that we announced.

Theorem 3.5. A Banach space X is a Hilbert space (or, BX is an ellip-
soid) if and only if the set L is not rare in SX .

Proof. The necessity is obvious, so we only need to show the sufficiency.
By Lemma 3.2, the set L is a subset of the set of isometric reflection vectors
in X. Since L is not rare in SX , the set of isometric reflection vectors is also
not rare in SX . Then it follows from Lemma 3.4 that X is a Hilbert space.
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e−e

Figure 6: B(−e, e) is not a hyperplane.

In the following we extend Theorem 2.13 to higher dimensional cases. Now
we assume that C ⊂ Rn (n ≥ 2) is a convex body containing the origin o in its
interior. Let L be the set of points x ∈ ∂C such that B(−x, x) is a hyperplane.
Then we have the following theorem.

Theorem 3.6. If the interior of the set L with respect to ∂C is not empty,
then C is an ellipsoid centered at the origin.

Proof. By Theorem 2.13 we only need to deal with the subcase when n > 2,
and by Theorem 3.5 it suffices to show that C is centered at the origin. Indeed,
if this is true, then ‖·‖ = γC is a norm on Rn and the interior of the set L
with respect to SX = ∂C is not empty. By Theorem 3.5, X = (Rn, ‖·‖) is a
Hilbert space and BX = C is an ellipsoid.

Let x be an interior point of L with respect to ∂C, and z be an arbitrary
point in ∂C such that x and z are linearly independent. We denote by Xx,z

the two-dimensional subspace of Rn spanned by x and z, and by C0 the
intersection of C and Xx,z. Then it is clear that x is an interior point of
L ∩ ∂C0 with respect to ∂C0. By Theorem 2.13, C0 is an ellipse centered at
the origin. This implies that {−x,−z} ⊂ ∂C0 ⊂ ∂C. Since z is arbitrary, it
follows that C is centered at the origin.
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