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Abstract: Tt is well known that the construction of Voronoi diagrams is based on the notion of
bisector of two given points. Already in normed linear spaces, bisectors have a complicated
structure and can, for many classes of norms, only be described with the help of topological
methods. Even more general, we present results on bisectors for convex distance functions
(gauges). Let C, with the origin o from its interior, be the compact, convex set inducing a
convex distance function (gauge) in the plane, and let B(—zx, z) be the bisector of —x and =,
i.e., the set of points z whose distance (measured with the convex distance function induced
by C) to —z equals that to . For example, we prove the following characterization of the
Euclidean norm within the family of all convex distance functions: if the set L of points x in
the boundary 9C of C that create B(—x,x) as a straight line has non-empty interior with
respect to JC, then C is an ellipse centered at the origin. For the subcase of normed planes
we give an easier approach, extending the result also to higher dimensions.
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