
E extracta mathematicae Vol. 28, Núm. 2, 213 – 224 (2013)
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Abstract : Let H be an infinite complex Hilbert space and consider two bounded linear
operators A,B ∈ L(H). Let LA ∈ L(L(H)) and RB ∈ L(L(H)) be the left and the right
multiplication operators, respectively, and denote by dA,B ∈ L(L(H)) either the elementary
operator ∆A,B(X) = (LARB − I)(X) = AXB−X or the generalized derivation δA,B(X) =
(LA −RB)(X) = AX −XB. This paper is concerned with the problem of the transference
of Browder’s theorem from operators A and B to their elementary operator dA,B . We give
necessary and sufficient conditions for dA,B to satisfy Browder’s theorem. Some applications
for completely hereditarily normaloid operators are given.
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1. Introduction

LetH be an infinite complex Hilbert space and consider two bounded linear
operators A,B ∈ L(H). Let LA ∈ L(L(H)) and RB ∈ L(L(H)) be the left and
the right multiplication operators, respectively. We denote by dA,B ∈ L(L(H))
either the elementary operator ∆A,B(X) = (LARB−I)(X) = AXB−X or the
generalized derivation δA,B(X) = (LA−RB)(X) = AX−XB. The problem of
the transmission of Weyl type theorems from A and B to dA,B was studied by
numerous mathematicians, see [5, 8, 19, 20, 21, 17] and the references therein.

The main objective of this paper is the transmission of Browder’s theorem
from A and B to dA,B. In the third section of this paper, we characterize the
Browder spectrum of dA,B by showing that

σb(δA,B) =
(
σb(A)− σ(B)

)
∪
(
σ(A)− σb(B)

)
,

σb(∆A,B) = σ(A)σb(B) ∪ σb(A)σ(B)− {1} .
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Moreover, when A and B satisfies Browder’s theorem we give necessary and
sufficient conditions for dA,B to satisfy Browder’s theorem. We also give an-
swer to a question posed in [5]. In the last section we give an application to
completely hereditarily normaloid operators and then extend some well-known
results

2. Notation and terminology

Let T ∈ L(X) be a bounded linear operator on an infinite dimensional
complex Banach space X and denote by α(T ) the dimension of the kernel
kerT , and by β(T ) the codimension of the range R(T ). T ∈ L(X) is said to
be a Fredholm operators if R(T ) is closed and α(T ) and β(T ) are both finite.
In this case the index of T is defined by ind(T ) = α(T )− β(T ). An operator
T ∈ L(X) is said to be Weyl operator if it is Fredholm operator of index zero.
The essentiel (Fredholm) spectrum σe(T ) and the Weyl spectrum σW (T ) are
defined by

σe(T ) = {λ ∈ C : T − λI is not Fredholm operator} ,

σW (T ) = {λ ∈ C : T − λI is not Weyl operator} .

Recall that the ascent p(T ) of an operator T is defined by

p(T ) = inf
{
n ∈ N : kerTn = kerTn+1

}
and the descent

q(T ) = inf
{
n ∈ N : R

(
Tn

)
= R

(
Tn+1

)}
,

with inf ∅ = ∞. It is well known that if p(T ) and q(T ) are both finite then
p(T ) = q(T ). T ∈ L(X) is said to be Browder operator if T is Fredholm
operator with finite ascent and descent. Note that if T is Browder then T is
Weyl. The Browder spectrum σb(T ) is defined by

σb(T ) = {λ ∈ C : T − λI is not Browder operator} .

We recall that

σb(T ) = σe(T ) ∪ accσ(T ) ,

here and in the sequel we shall denote by accD and isoD, the set of accumu-
lation points and the set of isolated points of D ⊂ C, respectively.
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For T ∈ L(X) and a nonnegative integer n define Tn to be the restriction
of T to R(Tn) viewed as a map from R(Tn) into R(Tn). If for some integer n
the range space R(Tn) is closed and Tn is Fredholm operator, then T is called
B-Fredholm operator. In this case the index of T is defined as the index of the
Fredholm operator Tn, see [6]. An operator T ∈ L(X) is said to be B-Weyl
operator if it is B-Fredholm operator of index zero. The B-Weyl spectrum
σBW (T ) of T is defined by

σBW (T ) = {λ ∈ C : T − λI is not B-Weyl operator} .

We say that generalized Weyl’s theorem holds for T if

σ(T )\σBW (T ) = E(T ) ,

where E(T ) is the set of isolated eigenvalues of T .
A weaker version of generalized Weyl’s theorem was given in [7], T is said

to satisfy generalized Browder’s theorem if

σ(T )\σBW (T ) = Π(T ) ,

where Π(T ) is the set of poles of the resolvent of T .
M. Berkani [6, Theorem 4.5] has shown that every normal operator T

acting on a Hilbert space satisfies generalized Weyl’s theorem. This gives a
generalization of the classical Weyl’s theorem. Recall that the classical Weyl’s
theorem asserts that for every normal operator T acting on a Hilbert space,

σ(T )\σW (T ) = E0(T ) ,

where E0(T ) is the set of isolated eigenvalues of finite multiplicity of T [23].
A weaker version for Weyl’s theorem was introduced in [16], Browder’s

theorem holds for T if
σ(T )\σW (T ) = Π0(T ) ,

where Π0(T ) is the set of all isolated points of σ(T ) for which the corresponding
spectral projection has finite dimensional range, or equivalently necessary and
sufficient condition for T to satisfy Browder’s theorem is the identity σW (T ) =
σb(T ). In [2, Theorem 2.1] the authors proved that Browder’s and generalized
Browder’s theorems are equivalent.

Definition 2.1. An operator T ∈ L(X) is said to have the single valued
extension property at λ0 ∈ C (abbreviated SVEP at λ0), if for every open disc
D centered at λ0, the only analytic function f : D → X which satisfies the
equation (T − λI)f(λ) = 0 for all λ ∈ D is the function f ≡ 0. An operator
T ∈ L(X) is said to have SVEP if T has SVEP at every λ ∈ C.
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Evidently, every operator T , as well as its dual T ∗, has SVEP at every point
in ∂σ(T ), where ∂σ(T ) is the boundary of the spectrum σ(T ), in particular
at every isolated point of σ(T ).

3. Browder’s theorem for dA,B

Lemma 3.1. Let K and L two compact subset of C. Then

acc(K − L) = (accK − L) ∪ (K − accL) .

Proof. Let λ ∈ accK−L. Then λ = µ−ν with µ ∈ accK and ν ∈ L. Hence
there exist a sequence µn ∈ K which converge to µ. Now λn = µn−ν ∈ (K−L)
and converge to λ. Thus λ ∈ acc(K − L). Then accK − L ⊆ acc(K − L).
With the same argument we get K − accL ⊆ acc(K − L). Therefore

(accK − L) ∪ (K − accL) ⊆ acc(K − L) .

Conversely, let λ ∈ acc(K−L). Then there exist a sequence λn ∈ (K−L)
such that λn converge to λ. Hence for each integer n, there exist µn ∈ K and
νn ∈ L such that λn = µn − νn. Then from the sequence (µn) there exists
a subsequence (µni) which converge to some µ. Also from the sequence (νn)
there exists a subsequence (νni) which converge to some ν. Hence µ ∈ accK,
ν ∈ accL and λ = µ− ν. Thus

acc(K − L) ⊆ (accK − L) ∪ (K − accL) .

Definition 3.2. An operator T ∈ L(X) is said to be polaroid if

isoσ(T ) ⊆ Π(T ) .

The next Lemma has been established in [19, Lemma 2.2] for Hilbert
spaces operators. We show here that it holds also in the general case of
Banach spaces.

In the following result we give the expression for the Browder spectrum of
the elementary operator dA,B.

Lemma 3.3. Let A,B ∈ L(X), then

σb(δA,B) =
(
σb(A)− σ(B)

)
∪
(
σ(A)− σb(B)

)
,

and
σb(∆A,B) = σ(A)σb(B) ∪ σb(A)σ(B)− {1} .



browder’s theorem of an elementary operator 217

Proof. It is well-known that

σ(δA,B) = σ(A)− σ(B) ,

σe(δA,B) =
(
σe(A)− σ(B)

)
∪
(
σ(A)− σe(B)

)
.

For the first equality, we have

σb(δA,B) = σe(δA,B) ∪ accσ(δA,B)

=
[(
σe(A)− σ(B)

)
∪
(
σ(A)− σe(B)

)]
∪
[
acc

(
σ(A)− σ(B)

)]
=

[(
σe(A)− σ(B)

)
∪
(
σ(A)− σe(B)

)]
∪
(
accσ(A)− σ(B)

)
=

[(
σe(A)− σ(B)

)
∪
(
accσ(A)− σ(B)

)]
∪
[(
σ(A)− σe(B)

)
∪
(
σ(A)− accσ(B)

)]
=

(
σb(A)− σ(B)

)
∪
(
σ(A)− σb(B)

)
,

where the third equality follows from Lemma 3.1.
The equality σb(∆A,B) = σ(A)σb(B) ∪ σb(A)σ(B) − {1} follows at once

from [5, Proposition 4.3 (iii)].

Lemma 3.4. Let A and B ∈ L(H). Then

σW (δA,B) ⊆
(
σW (A)− σ(B)

)
∪
(
σ(A)− σW (B)

)
and

σW (∆A,B) ⊆ σ(A)σW (B) ∪ σW (A)σ(B)− {1} .

Proof. Let λ ̸∈ (σW (A)−σ(B))∪(σ(A)−σW (B)), then from [13, Theorem
3.1] λ ∈ σ(δA,B)\σe(δA,B), it follows from [14, Theorem 4.2] and [15, Theorem
3.6] that

λ = αi − βi (1 ≤ i ≤ n) ,

where αi ∈ isoσ(A), for 1 ≤ i ≤ m and βi ∈ isoσ(B), for m+ 1 ≤ i ≤ n. We
have

ind(δA,B − λI) =

n∑
j=m+1

dimH0(B − βj) ind(A− αj)

−
m∑
k=1

dimH0(A− αk) ind(B − βk) .
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Here H0(A− αk) and H0(B − βj) denotes the quasi-nilpotent part

H0(A− αk) =
{
x ∈ H : lim

n→∞

∥∥(A− αk)
nx

∥∥ 1
n = 0

}
of the operator A− αk.

A−αi and B−βj are Fredholm operators and ind(A−αi) = ind(B−βj) =
0. Since αi ∈ isoσ(A) for 1 ≤ i ≤ m, and βi ∈ isoσ(B) for m + 1 ≤ i ≤ n,
it follows that dimH0(A− αk) is finite, for 1 ≤ i ≤ m and dimH0(B − βj) is
finite for m+1 ≤ i ≤ n. Thus ind(δA,B−λI) = 0, consequently λ ̸∈ σW (δA,B).

The inclusion σW (∆A,B) ⊆ σ(A)σW (B) ∪ σW (A)σ(B) − {1} follows
from [5].

In the following results we give necessary and sufficient condition for dA,B

to satisfy Browder’s theorem.

Theorem 3.5. If A,B ∈ L(H) satisfy Browder’s theorem, then the
following conditions are equivalent

(i) δA,B satisfies Browder’s theorem;

(ii) σW (δA,B) =
(
σW (A)− σ(B)

)
∪
(
σ(A)− σW (B)

)
.

Proof. Since A and B satisfy Browder’s theorem then σW (A) = σb(A) and
σW (B) = σb(B). Assume that σW (δA,B) =

(
σW (A)−σ(B)

)
∪
(
σ(A)−σW (B)

)
.

Then by Lemma 3.3 and Lemma 3.4

σb(δA,B) =
(
σb(A)− σ(B)

)
∪ (σ(A)− σb(B))

=
(
σW (A)− σ(B)

)
∪
(
σ(A)− σW (B)

)
= σW (δA,B) .

If δA,B satisfies Browder’s theorem, then

σb(δA,B) = σW (δA,B) ⊆
(
σW (A)− σ(B)

)
∪
(
σ(A)− σW (B)

)
⊆

(
σb(A)− σ(B)

)
∪
(
σ(A)− σb(B)

)
= σb(δA,B) .

Theorem 3.6. If A,B ∈ L(H) satisfy Browder’s theorem, then the
following conditions are equivalent

(i) ∆A,B satisfies Browder’s theorem;

(ii) σW (∆A,B) = σ(A)σW (B) ∪ σW (A)σ(B)− {1}.
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Proof. We argue as in the proof of Theorem 3.5.

Example 3.7. For a ∈ C and r > 0 let D(a, r) be the closed disc centered
at a and with radius r. Let {en, n ≥ 1} be the usual basis of l2. Let S be the
unilateral weighted shift on l2 defined by S(en) = en+1. Let A and B be the
operators defined on H = l2 ⊕ l2 by

A = (e1 ⊗ e1)⊕
(
1

2
S∗ − I

)
,

B = (−e1 ⊗ e1)⊕
(
1

2
S + I

)
.

It is well known that

σ(S) = σW (S) = D(0, 1) ,

σ(e1 ⊗ e1) = σ(e1 ⊗ e1) = {0, 1} ,

σW (e1 ⊗ e1) = {0} .

Then

σ(A) = {0, 1} ∪D
(
− 1,

1

2

)
, σ(B) = {−1, 0} ∪D

(
1,

1

2

)
,

while

σW (A) = {0} ∪D
(
− 1,

1

2

)
, σW (B) = {0} ∪D

(
1,

1

2

)
.

Since S satisfies SVEP, then A∗ and B also satisfy the SVEP and hence satisfy
the Browder’s theorem by [22]. Since Browder’s theorem is stable by duality
[4], then A satisfies Browder’s theorem. In particular, σW (A) = σb(A) and
σW (B) = σb(B). Hence

σW (A)σ(B) = σb(A)σ(B) =

[
D
(
− 1,

1

2

)
·D

(
1,

1

2

)]
∪ {0} ∪D

(
1,

1

2

)
,

σ(A)σW (B) = σ(A)σb(B) =

[
D
(
− 1,

1

2

)
·D

(
1,

1

2

)]
∪ {0} ∪D

(
1,

1

2

)
.

Thus

σb(∆A,B) =

[(
D
(
− 1,

1

2

)
·D

(
1,

1

2

))
∪ {0} ∪D

(
1,

1

2

)]
− 1 .
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Then 0 ∈ σb(∆A,B). But 0 /∈ σW (∆A,B) by [18]. Hence

σW (∆A,B) ̸= σW (A)σ(B) ∪ σ(A)σW (B)− 1 .

Therefore ∆A,B does not satisfy Browder’s theorem.

It is easily seen that, if T ∈ L(X) is polaroid, then Π(T ) = E(T ).

Theorem 3.8. Assume that A and B are polaroid. If A and B satisfy
generalized Browder’s theorem, then the following assertions are equivalent.

(i) LARB satisfies generalized Browder’s theorem.

(ii) σBW (LARB) = σBW (A)σ(B) ∪ σ(A)σBW (B).

Proof. Since A and B are polaroid, then it follows from [5, Lemma 4.7],
that LARB is polaroid. Hence E(LARB) = Π(LARB). Then, LARB sat-
isfies generalized Browder’s theorem if and only if it satisfies generalized
Weyl’s theorem, by [2, Corollary 2.1]. Now (i) is equivalent to (ii) by
[19, Theorem 2.6].

If we combine last result with [5, Theorem 4.5] we get

Corollary 3.9. Assume that A and B are polaroid. If A and B satisfy
Browder’s theorem (or generalized Browder’s theorem), then the following
assertions are equivalent.

(i) LARB satisfies generalized Browder’s theorem;

(ii) σBW (LARB) = σBW (A)σ(B) ∪ σ(A)σBW (B);

(iii) LARB satisfies Browder’s theorem;

(iv) σW (LARB) = σW (A)σ(B) ∪ σ(A)σW (B).

Theorem 3.8 gives a partial positive answer to the first question posed in
[5, Remark 4.6]. However, in the general case the answer is negative as shown
by the following example:

Example 3.10. Let A be a nonzero nilpotent operator (Ap−1 ̸= 0 = Ap

for some integer p > 1). Let B be a quasinilpotent which is not nilpotent. Here
A is polaroid and B is not. Also A and B satisfies Browder’s and generalized
Browder’s theorems. It is not difficult to see that

σ(A) = {0} , σBW (A) = ∅ and σ(B) = σBW (B) = {0} .
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Hence

σBW (A)σ(B) ∪ σ(A)σBW (B) = {0} .

But since LARB is nilpotent ((LARB)
p = 0) then 0 is a pole and then

σBW (LARB) = ∅. Here LARB satisfies Browder’s and generalized Browder’s
theorems.

Remark. Let A and B satisfy Browder’s theorem. It follows from Example
3.10 that in general, equality σW (LARB) = σW (A)σ(B) ∪ σ(A)σW (B) does
not imply σBW (LARB) = σBW (A)σ(B) ∪ σ(A)σBW (B).

4. Application

A Banach space operator T ∈ L(X) is said to be hereditarily normaloid,
T ∈ HN , if every part of T (i.e., the restriction of T to each of its invariant
subspaces) is normaloid (i.e., ∥T∥ equals the spectral radius r(T )), T ∈ HN
is totally hereditarily normaloid T HN if also the inverse of every invertible
part of T is normaloid and T is completely (totally) hereditarily normaloid
T ∈ CHN , if either T ∈ T HN or T − λI ∈ HN for every complex number λ.
The class CHN is large. In particular, Hilbert space operators T, which are
either hyponormal

(
T ∗T ≥ TT ∗) or p-hyponormal

(
(T ∗T )p ≥ (TT ∗)p for some

0 < p ≤ 1
)
or w-hyponormal

((
|T ∗|

1
2 |T ||T ∗|

1
2

) 1
2 ≥ |T ∗|

)
are T HN operators.

Again totaly *-paranormal operators
(
∥(T − λI)∗x∥2 ≤ ∥(T − λI)x∥2 for

every unit vector x
)
are HN operator and paranormal operators

(
∥Tx∥2 ≤

∥T 2x∥∥x∥ for all unit vector x
)
are T HN operators.

It is proved in [12] that if A,B∗ ∈ L(H) are log-hyponormal or p-hyponor-
mal operators, then generalized Weyl’s theorem holds for f(dA,B) for every
f ∈ H(σ(dA,B)), where H(σ(dA,B)) is the set of all analytic functions defined
on a neighborhood of σ(dA,B). This result was extended by [8] and [21] to
w-hyponormal operators. In [9, Theorem 4.3] it proved that if A,B ∈ T HN ,
with the additional conditions kerB ⊆ kerB∗ and dA,B has SVEP, then Weyl’s
theorem holds for f(dA,B) and f(d∗A,B). In the next results we can give more.

Theorem 4.1. Suppose that A,B ∈ L(H) are CHN operators, then

σW (δA,B) =
(
σW (A)− σ(B)

)
∪
(
σ(A)− σW (B)

)
,

and

σW (∆A,B) = σ(A)σW (B) ∪ σW (A)σ(B)− {1} .
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Proof. Let λ ∈ σ(δA,B) \ σW (δA,B). Then λ = µ− ν, such that µ ∈ σ(A),
ν ∈ σ(B) and δA,B −λI is a Fredholm operator of index 0, from [13, Theorem
3.1] we have A−µI and B−νI are Fredholm operators, and from [10, Theorem
2.9] we have A and A∗ have SVEP on the complement of σW (A), it follows
from [1, Corollary 3.21] that µ ∈ Π(A). Similarly we get ν ∈ Π(B).

Since Browder’s theorem holds for CHN operators [10, Corollary 2.15],
consequently µ ̸∈ σb(A) = σW (A), ν ̸∈ σb(B) = σW (B) and(

σW (A)− σ(B)
)
∪
(
σ(A)− σW (B)

)
⊆ σW (δA,B) .

The other inclusion holds from Lemma 3.4, then

σW (δA,B) =
(
σW (A)− σ(B)

)
∪
(
σ(A)− σW (B)

)
.

Similarly we get σW (∆A,B) = σ(A)σW (B) ∪ σW (A)σ(B)− {1}.

Corollary 4.2. Suppose that A,B ∈ L(H) are CHN operators, then
dA,B has SVEP at points λ ̸∈ σW (dA,B).

Proof. By Theorem 3.5 and Theorem 4.1, we get Browder’s theorem
holds for dA,B and from [3, Proposition 2.2] dA,B has SVEP at points
λ ̸∈ σW (dA,B).

Corollary 4.3. Suppose that A,B ∈ L(H) are CHN operators, then
generalized Weyl’s theorem holds for f(dA,B) and f(d∗A,B) for every f ∈
H(σ(dA,B)), where d∗A,B is the dual of dA,B.

Proof. By Theorem 3.5 and Theorem 4.1, Browder’s theorem holds for
dA,B this is equivalent to Browder’s theorem holds for d∗A,B. Recall from
[10, Proposition 2.1] that A and B are polaroid, it follows from [19, Lemma
2.2] that dA,B is polaroid, hence E(dA,B) = Π(dA,B). Then it follows by
[2, Corollary 2.1] that generalized Weyl’s theorem holds for dA,B. Since dA,B

is polaroid, then it is isoloid, i.e., every isolated point of the spectrum is an
eigenvalue of dA,B. From [24, Theorem 2.2] it follows that generalized Weyl’s
theorem holds for f(dA,B).

Since dA,B is polaroid, then d∗A,B is also polaroid, hence E(d∗A,B) =
Π(d∗A,B), and Browder’s theorem holds for d∗A,B, we argue as above we get
f(d∗A,B) satisfies generalized Weyl’s theorem for every f ∈ H(σ(dA,B)).
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