
E extracta mathematicae Vol. 28, Núm. 2, 235 – 245 (2013)
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Abstract : We give an expression for the norm of the space constructed by Tsirelson. The
implicit equation satisfied by this norm is dual to the implicit equation for the norm of the
dual of Tsirelson space given by Figiel and Johnson. The expression can be modified to give
the norm of the dual of any mixed Tsirelson space. In particular, our results can be adapted
to give the norm for the dual of Schlumprecht space.
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1. Introduction

In the 1970s Tsirelson [7] constructed a space with no isomorphic copies
of c0 or ℓp, (1 ≤ p < ∞). The special properties of Tsirelson’s space T derive
from certain saturation properties of the unit ball. The original construction
of the space is geometric: one defines a subset V of ℓ∞ with certain properties
and takes T to be the linear span of V with the norm that makes V be the
unit ball. There is no expression for the norm of T , which makes it difficult
to study the space.

Later, Figiel and Johnson [4] gave the following implicit expression for the
norm of T ∗, the dual of T :

∥x∥ = max

{
∥x∥∞,

1

2
max

{
k∑

i=1

∥Eix∥ : k ∈ N, k ≤ E1 < · · · < Ek

}}
.

It is the dual of the original Tsirelson space that came to be known as
Tsirelson space and it is denoted in the literature by T . Since we are ana-
lyzing the original construction due to Tsirelson, we shall call the space he
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constructed T , the space F will be the completion of c00 with respect to the
norm given by Figiel and Johnson.

Many results about T ∗ followed and the properties of T ∗ were widely
studied (see [2]). Besides studying the properties of F , many Tsirelson-type
spaces were studied, that is, spaces whose norms are given by some variation of
the expression found by Figiel and Johnson. Schlumprecht space, constructed
in [6], is an example of such a space. In this paper we will give an expression
for the norm of the original Tsirelson space. We will prove that there is a
norm ∥ · ∥ on c00 that satisfies the following implicit equation

∥x∥ = min

{
2min

{
max
1≤i≤k

∥Eix∥ : k ≤ E1 < · · · < Ek, x =
k∑

i=1

Eix
}
,

inf
{
∥y∥ + ∥z∥ : x = y + z, supp(y) ⊆ supp(x)

}}
.

Or equivalently,

∥x∥ ≤ 2min

{
max
1≤i≤k

∥Eix∥ : k ≤ E1 < · · · < Ek, x =

k∑
i=1

Eix

}
.

In fact, we shall prove that the norm of the original Tsirelson space is maxi-
mum (in the point-wise sense) among the norms satisfying the implicit equa-
tion above and such that ∥ei∥ = 1 for every vector ei in the standard basis of
c00. Note that, as opposed to the implicit equation given by Fiegel and John-
son, this expression doesn’t allow us to calculate the norm of finitely supported
vectors inductively in the cardinality of the support.The expression for this
norm can be adapted for the dual of any mixed Tsirelson space. In particular
one can get an expression for the norm of the dual of Schlumprecht space.

In Section 2 we introduce the notation and the results from Banach space
theory we shall use. In Section 3 we define a norm on c00 and prove that
Tsirelson’s space T is the completion of c00 with respect to this norm. In
Section 4 we will give an expression for the norm of the dual of any mixed
Tsirelson space and show how our results from Section 3 can be adapted to
this case.

2. Notation and preliminaries

A standard reference on Schauder bases is [5], we follow the notation
therein. The space c00 is the space of finitely supported sequences of real num-
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bers with the sup norm, the sequence (en)n denotes the standard Schauder
basis for c00.

We shall denote the original Tsirelson space by T . Figiel and Johnson [4]
proved that there is a unique norm ∥ · ∥F on c00 that satisfies the implicit
equation

∥x∥ = max

{
∥x∥∞,

1

2
max

{
k∑

i=1

∥Eix∥ : k ∈ N, k ≤ E1 < · · · < Ek

}}
,

and such that ∥ei∥F = 1 for all i ∈ N. This follows from the fact that we can
calculate the norm of a given vector in c00 by calculating the norm of vectors with
strictly smaller supports. Let F be the completion of c00 with respect to this norm.
The sequence (en)n is a Schauder basis for F and F is isometrically isomorphic to
the dual of T . The norm ∥ · ∥F can be obtained as a limit of norms in the following
way: for x ∈ c00 define

∥x∥0 = ∥x∥∞

∥x∥n+1 = max

{
∥x∥n,

1

2
max

{
k∑

i=1

∥Eix∥n : k ∈ N, k ≤ E1 < · · · < Ek

}}
It can be proved that if we let ∥x∥F = limn→∞ ∥x∥n, then ∥ · ∥F satisfies the

implicit equation above.
In the course of our proof, we will use the Bipolar Theorem, its proof can be

found in [3, Section 3.4]. For this we need some additional notation.
Let X be a Banach space, and for A ⊂ X, B ⊂ X∗ we define

A◦ =
{
f ∈ X∗ : for all x ∈ A, |f(x)| ≤ 1

}
,

B◦ =
{
x ∈ X : for all f ∈ B, |f(x)| ≤ 1

}
.

We shall need the following instance of the Bipolar Theorem:

Theorem 2.1. (Alaouglu, Banach) Let X be a Banach space. For every A ⊂
X∗, A◦◦ is the weak*- closure of the convex hull of A ∪ −A.

Given a Banach space X with a shrinking basis (xn)n, we can identify f ∈ X∗

with the sequence of scalars (an)n such that f =
∑

anx
∗
n. It is clear that if (f

m)m is
a sequence in X∗ with fm =

∑
amn x∗

n and such that fm converges to f with respect
to the weak*-topology, then f =

∑
bnx

∗
n where limm→∞ amn = bn. The following

proposition shows that in fact, the weak*- topology and the topology of pointwise
convergence coincide in the unit ball of X∗.

Proposition 2.2. let X be a Banach space with a shrinking basis (xn)n. Let
(fm)m ⊂ BX∗ be such that fm =

∑
amn e∗n and for each n ∈ N, limm→∞ amn = bn. Let

f =
∑

bne
∗
n, then f ∈ X∗ and fm converges to f with respect to the weak*-topology.

We leave the verification of this proposition to the reader.
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3. Definition of the norm

As we saw in the previous section, the norm for T ∗ can be obtained by taking the
limit of a sequence of norms. To get an expression for the norm of T we shall take
the limit of a sequence of positive scalar functions on c00. In this case each scalar
function is not a norm but the sequence is defined in such a way that the pointwise
limit is a norm on c00.

Definition 3.1. For x ∈ c00 let

ρ0(x) = ∥x∥ℓ1 ,

ρn+1(x) = min

{
2min

{
max
1≤i≤k

ρn(Eix) : k ≤ E1 < · · · < Ek, x =
k∑

i=1

Eix
}
,

inf
{
ρn(w

1) + ρn(w
2) : x = w1 + w2

}}
,

∥x∥ = lim
n→∞

ρn(x).

Lemma 3.2. The function ∥ · ∥ defines a norm on c00 and whenever x = (xn),
y = (yn) ∈ c00 are such that |yn| ≤ |xn|, we have ∥y∥ ≤ ∥x∥.

Proof. Let x = (xn), y = (yn) ∈ c00 be such that |yn| ≤ |xn|. We prove by
induction on n that ρn(y) ≤ ρn(x). The base case is clear so suppose the in-
equality holds for n. Let k ≤ E1 < · · · < Ek be such that x =

∑
Eix. Note

that since supp(y) ⊆ supp(x), we have that y =
∑

Eiy. By induction hypothesis
max
1≤i≤n

ρn(Eiy) ≤ max
1≤i≤n

ρn(Eix) so

min

{
max
1≤i≤n

ρn(Eiy) : k ≤ E1 < · · · < Ek, y =
∑

Eiy

}
≤ max

1≤i≤n
ρn(Eix).

Since k ≤ E1 < · · · < Ek was arbitrary, we have that

ρn+1(y) ≤ 2min

{
max
1≤i≤n

ρn(Eix) : k ≤ E1 < · · · < Ek, x =
∑

Eix

}
.

Let x1, x2 be such that x = x1 + x2 , then we can find y1, y2 such that y = y1 + y2

and |yin| ≤ |xi
n|, hence

ρn+1(y) ≤ inf
{
ρn(w

1) + ρn(w
2) : x = w1 + w2

}
.

It follows that ρn+1(y) ≤ ρn+1(x). Therefore for all n ∈ N, ρn(y) ≤ ρn(x) and it
follows that ∥y∥ ≤ ∥x∥. This monotonicity implies that ∥ · ∥ is bounded below by the
sup norm. Now we prove that ∥ · ∥ defines a norm.

We summarize the properties of the sequence (ρn)n that will be used in the proof:
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(i) For all x ∈ c00, (ρn(x))n is monotone decreasing,

(ii) For x, y ∈ c00, ρn+1(x+ y) ≤ ρn(x) + ρn(y).

(iii) For any λ ∈ R and x ∈ c00, ρn(λx) = |λ|ρn(x).

The only non trivial property we must verify is the triangle inequality. Let x, y ∈ c00,
first we prove that for all m ∈ N,

∥x+ y∥ − ∥x∥ ≤ ρm(y). (1)

Let m ∈ N, let n > m then

∥x+ y∥ ≤ ρn+1(x+ y) ≤ ρn(x) + ρn(y) ≤ ρn(x) + ρm(y),

therefore ∥x+ y∥ − ρm(y) ≤ ρn(x), and this holds for all n > m, so

∥x+ y∥ − ρm(y) ≤ inf
n>m

ρn(x) = ∥x∥,

hence ∥x+ y∥ − ∥x∥ ≤ ρm(y).
Since (1) holds for all m ∈ N, we have that ∥x + y∥ − ∥x∥ ≤ infm ρm(y) = ∥y∥.

Hence ∥ · ∥ defines a norm on c00.

We will now see that the norm ∥ · ∥ satisfies an implicit expression, dual to that
found by Figiel and Johnson.

Proposition 3.3. For any x ∈ c00, we have that

∥x∥ = min

{
2min

{
max
1≤i≤k

∥Eix∥ : k ≤ E1 < · · · < Ek, x =
∑

Eix
}
,

inf
{
∥y∥ + ∥z∥ : x = y + z, supp(y) ⊆ supp(x)

}}
.

Furthermore, if ∥ · ∥′ is a norm satisfying the implicit equation above and such that
∥ei∥′ = 1 for every vector ei in the standard basis of c00, then for all x ∈ c00,
∥x∥′ ≤ ∥x∥.

Proof. Since ∥ · ∥ satisfies the triangle inequality, ∥x∥ = inf{∥y∥ + ∥z∥ : x =
y + z, supp(y) ⊆ supp(x)}. So we have to check that

∥x∥ ≤ 2min

{
max
1≤i≤k

∥Eix∥ : k ≤ E1 < · · · < Ek, x =
∑

Eix

}
.

Let k ≤ E1 < · · · < Ek be such that x =
∑

Eix, and define

J =
{
j ≤ k : max

1≤i≤k
∥Eix∥ = ∥Ejx∥

}
.



240 d. ojeda-aristizabal

Let j0 ∈ J be such that for some cofinal C ⊆ N we have that for n ∈ C,
max1≤i≤k ρn(Eix) = ρn(Ej0x). Then for n ∈ C

∥x∥ ≤ ρn+1(x) ≤ 2 max
1≤i≤k

ρn(Eix) = 2ρn(Ej0x).

So ∥x∥ ≤ 2∥Ej0x∥ = 2max1≤i≤k ∥Eix∥.
Now suppose ∥ · ∥′ is a norm on c00 that satisfies the implicit equation and such

that ∥ei∥′ = 1 for every vector ei in the standard basis of c00. It follows easily by
induction that for all n ∈ N and all x ∈ c00, ∥x∥′ ≤ ρn(x). Hence for all x ∈ c00,
∥x∥′ ≤ ∥x∥.

Unlike the expression given by Figiel and Johnson, this implicit expression does
not allow us to calculate the norm of a vector recursively on the cardinality of its
support. This is because of the infimum term in each ρn, this term is necessary in
order to have the triangle inequality hold in the limit.

Since T is reflexive and T ∗ = F , the space T is isometrically isomorphic to the
dual of F . We will prove that the norm ∥ · ∥ we defined and the norm of F ∗ coincide
in c00.

We observed before that the sequence (en)n is a Schauder basis for F , let (e∗n)n be
the corresponding coefficient functionals. We shall define a subset of F ∗ that contains
all the information needed to calculate the norm of a given vector x ∈ F . Let

V0 = {±e∗k : k ∈ N},

Vn+1 = Vn ∪
{
1

2
(f1 + · · ·+ fk) : k ∈ N, k ≤ f1 < · · · < fk, fi ∈ Vn

}
,

V =
∪
n

Vn.

Proposition 3.4. For every x ∈ F , ∥x∥F = sup{f(x) : f ∈ V }.

Proof. Let (∥ · ∥F,n)n be the sequence of norms defined by Figiel and Johnson.
For each n ∈ N and x ∈ c00 define τn(x) = sup{f(x) : f ∈ Vn}. It is easy to prove
by induction on n that τn(x) = ∥x∥F,n for every x ∈ c00. Therefore

∥x∥F = lim
n→∞

∥x∥F,n = lim
n→∞

τn(x) = sup{f(x) : x ∈ V }.

We are now ready to use the Bipolar Theorem to prove the following

Proposition 3.5. The unit ball of the dual of F is the weak*-closure of the
convex hull of V . Also, BF∗ ∩ c00 = conv(V ).

Proof. By Proposition 3.4, V ◦ = BF and V ◦◦ = (BF )
◦ = BF∗ . Hence by the

Bipolar Theorem, we have that BF∗ is the weak*- closure of the convex hull of V .
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For the second part, let x ∈ BF∗ ∩ c00, G = supp(x). Then VG = {f ∈ V :
supp(f) ⊆ G} is a compact subset of a finite dimensional subspace of F ∗, therefore
conv(VG) is compact. Let PG : F ∗ → ⟨{e∗i : i ∈ G}⟩ denote the projection map with
PGy = Gy. Note that PG is w∗-continuous. Then

x ∈ PG[BF∗ ] = PG[conv(V )
w∗

] ⊆ conv(PG[V ])
w∗

= conv(VG)
w∗

= conv(VG).

In order to prove that X is the dual of F , we need the following lemma:

Lemma 3.6. For x ∈ c00, if ρn(x) ≤ 1 then x ∈ BF∗ .

Proof. Note that BF∗ has the following properties:

(i) The sequence (e∗n) is contained in BF∗ ,

(ii) if f ∈ BF∗ and |α| ≤ 1, then αf ∈ BF∗ ,

(iii) if f1, . . . , fn ∈ BF∗ ∩ c00 are such that n ≤ f1 < · · · < fn, then 1/2(f1 + · · ·+
fn) ∈ BF∗ ∩ c00.

This follows from the original construction of T . We include the proof for complete-
ness, since we want to generalize our arguments to the dual of mixed Tsirelson spaces.
Property (i) is clear by the definition of V . Note that the set V has the closure prop-
erty described in property (iii). Let V ′ be the convex hull of V then V ′ has property
(ii). Let f1, . . . , fn ∈ V ′ be such that n ≤ f1 < · · · < fn and let f = 1/2(f1+· · ·+fn).
For each i = 1, . . . , n, fi can be written as

fi = α1
i g

1
i + · · ·+ αm

i gmi

for some m ∈ N, some gji ∈ V ∪ {0} and some non negative scalars αj
i such that∑

s α
s
i = 1 for all i ≤ n. We may assume that supp(gji ) ⊂ supp(fi) for each i, j.

Therefore for each choice of s1 < · · · < sn ≤ m we have that n ≤ gs11 < gs22 < · · · <
gsnn , so

1

2
(gs11 + · · ·+ gsnn ) ∈ V.

Since f can be written as a convex combination of vectors of this form, it follows that
f ∈ V ′. Hence V ′ has the closure property described in (iii).

We now prove by induction on n that for x ∈ c00, if ρn(x) ≤ 1 then x ∈ BF∗ . For

the base case, assume that ∥x∥ℓ1 ≤ 1 and x = (xi)
k
i for some k, then

∑k
1 |xi| ≤ 1 so

x ∈ BF∗ by convexity of BF∗ .
Now suppose that ρn+1(x) ≤ 1. If ρn+1(x) = 2max1≤i≤k ρn(Eix) for some

k ≤ E1 < · · · < Ek such that x =
∑

Eix, then ρn(2Eix) ≤ 1 for all 1 ≤ i ≤ k.
By induction hypothesis this implies that 2Eix ∈ BF∗ for all 1 ≤ i ≤ k. Hence
x = 1

2

∑
2Eix ∈ BF∗ by property (iii).
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Now suppose that ρn+1(x) = inf{ρn(y) + ρn(z) : x = y + z}. For each k ∈ N
let yk, zk ∈ c00 be such that x = yk + zk and ρn(yk) + ρn(zk) ≤ 1 + 1/k. Then
uk := yk/ρn(yk), vk := zk/ρn(zk) ∈ BF∗ , by induction hypothesis. Since

x

ρn(yk) + ρn(zk)
=

ρn(yk)

ρn(yk) + ρn(zk)
uk +

ρn(zk)

ρn(yk) + ρn(zk)
vk,

and BF∗ is convex, it follows that x/
(
ρn(yk) + ρn(zk)

)
∈ BF∗ , or in other words,

x ∈
(
ρn(yk) + ρn(zk)

)
BF∗ ⊂ (1 + 1/k)BF∗

for every k. Hence, x ∈ BF∗ .

Let X be the completion of c00 with respect to the norm ∥ · ∥ defined in 3.1.

Theorem 3.7. BF∗ ∩ c00 = BX ∩ c00. Hence X = F ∗.

Proof. It can be proved by induction using the implicit equation in 3.3 that
Vn ⊂ BX for all n ∈ N. Therefore the convex hull of V is contained in BX and by
3.5, this proves the first inclusion.

For the reverse inclusion, let x ∈ BX ∩ c00, we may assume that ∥x∥ = 1. Let
(nk)k be a sequence of natural numbers such that ρnk

(x) < 1+1/k. By the previous
lemma x

1+1/k ∈ BF∗ , hence x ∈ BF∗ .

So we have proved that the norm ∥ · ∥ coincides with ∥ · ∥F∗ on c00. Since c00
is dense in X and ⟨e∗n⟩ is dense in F ∗, it follows that X = F ∗, that is F ∗ is the
completion of c00 with respect to the norm ∥ · ∥.

4. A norm for the dual spaces of mixed Tsirelson spaces

Let M denote a compact family (in the topology of pointwise convergence) of
finite subsets of N which includes all singletons. We say that a family E1 < · · · < En

of subsets of N is M-admissible if there exists M = {mi}n1 in M such that m1 ≤
E1 < m2 ≤ E2 < · · · < mn ≤ En.

Definition 4.1. Let (Mn)n, (θn)n be two sequences with each Mn a compact
family of finite subsets of N, 0 < θn < 1 and limn θn = 0. The mixed Tsirelson space
T [(Mn, θn)n] is the completion of c00 with respect to the norm

∥x∥∗ = max

{
∥x∥∞, sup

n
sup θn

k∑
i=1

∥Eix∥∗
}
,

where the inside sup is taken over all choices E1 < E2 < · · · < Ek of Mn-admissible
families.
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In this notation, Schlumprecht space S is the mixed Tsirelson space

T
[(

An,
1

log2(n+ 1)

)
n

]
,

where An = {F ⊂ N : #F ≤ n}.
The definitions above and further properties of mixed Tsirelson spaces can be

found in [1, Part A, Chapter 1]. We shall present how our results can be adapted to
give an expression for the norm of the dual of any mixed Tsirelson space T [(Mn, θn)n].
As in Section 3, we have the following definition.

Definition 4.2. For x ∈ c00 let

ρ0(x) = ∥x∥ℓ1 ,

ρn+1(x) = min

{
min

{ 1

θl
max
1≤i≤k

ρn(Eix) : (Ei)
k
1 Ml-admissible, x =

k∑
i=1

Eix, l ∈ N
}
,

inf
{
ρn(w

1) + ρn(w
2) : x = w1 + w2

}}
,

∥x∥ = lim
n→∞

ρn(x).

This defines a norm ∥ · ∥ on c00, since the proof of Lemma 3.2 can be carried out for
this modified expression. Specifically, the argument for monotonicity is independent
of the Schreier condition and of the coefficient 2, and clearly the properties (i)-(iii)
used in the proof of the lemma are also satisfied.

The proof of Proposition 3.3 goes through as well, so the norm defined above
satisfies the following implicit equation

∥x∥ = min

{
min

{ 1

θl
max
1≤i≤k

∥Eix∥ : (Ei)
k
1 Ml-admissible, x =

k∑
i=1

Eix, l ∈ N
}
,

inf
{
∥y∥ + ∥z∥ : x = y + z, supp(y) ⊆ supp(x)

}}
,

the standard basis of c00 is normalized with respect to ∥ ·∥, and is the maximum such
norm.

To describe the unit ball of T [(Mn, θn)n]
∗, we use the following sequence of sets:

V0 = {±e∗k : k ∈ N},

Vn+1 = Vn ∪
{
θl(f1 + · · ·+ fk) : f1 < · · · < fk, fi ∈ Vn,

(supp(fi))
k
i , Ml-admissible, l ∈ N

}
,

V =
∪

Vn.
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It is easy to see, just as for F , that for any x ∈ T [(Mn, θn)n],

∥x∥∗ = sup{f(x) : f ∈ V }.

So by the Bipolar Theorem, the unit ball of the dual of T [(Mn, θn)n] is the weak*-
closure of the convex hull of V .

Let X be the completion of c00 with respect to the norm ∥ · ∥ defined in 4.2. We
restate Theorem 3.7 for T [(Mn, θn)n]

∗:

Theorem 4.3. BT [(Mn,θn)n]∗ ∩ c00 = BX ∩ c00. Hence X = T [(Mn, θn)n]
∗.

The inclusion BT [(Mn,θn)n]∗ ∩ c00 ⊆ BX ∩ c00 can be proved just as we did for
F ∗. For the reverse inclusion, one can prove that the unit ball of T [(Mn, θn)n]

∗ has
the following properties:

(i) The sequence (e∗n) is contained in BT [(Mn,θn)n]∗ ,

(ii) if f ∈ BT [(Mn,θn)n]∗ and |α| ≤ 1, then αf ∈ BT [(Mn,θn)n]∗ ,

(iii) for every k ∈ N, if f1, . . . , fn ∈ BT [(Mn,θn)n]∗ ∩ c00 are such that f1 < · · · < fn,
and (supp(fi))

n
i is Mk-admissible, then θk(f1+ · · ·+fn) ∈ BT [(Mn,θn)n]∗ ∩ c00.

So the norm defined in 4.2 is the norm of the dual of the mixed Tsirelson space
T [(Mn, θn)n].

Closing remarks

At this moment it is not clear whether the norm of T satisfies an implicit equation
that allows us to calculate the norm of finitely supported vectors inductively in the
cardinality of the support. A natural attempt is to replace the infimum term in
Proposition 3.3 by the ℓ1 norm and let

ρ(x) = min

{
∥x∥1, 2min

{
max
1≤i≤k

ρ(Eix) : k ≤ E1 < · · · < Ek, x =

k∑
i=1

Eix
}}

.

A few calculations show that ρ does not satisfy the triangle inequality. Nevertheless,
the vectors f ∈ BF∗ with the property ρ(f) = ∥f∥, actually produce the unit ball of
F ∗ in the sense stated below:

Proposition 4.4. BF∗ = conv{f ∈ BF∗ : ρ(f) = ∥f∥}.

Proof. By Proposition 3.5, it follows that BF∗ ∩ c00 = conv{f ∈ V : ∥f∥ = 1}.
Note that for f ∈ c00, we have that ∥f∥ ≤ ρ(f). Also one can prove by induction on
n that for every f ∈ Vn, ρ(f) ≤ 1. It follows that if f ∈ V is such that ∥f∥ = 1, then
we have that ∥f∥ = ρ(f). This finishes the proof.
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Using identical arguments, a similar result can be stated for mixed Tsirelson
spaces.
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