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Abstract: A result of Tam says that if a nonnegative matrix A has a nonnegative generalized
inverse X (that is, X satisfies the equation AXA = A) then, A(Rn

+) = R(A) ∩ Rm
+ and are

simplicial (the image of the nonnegative orthant under an invertible linear map). Although
in general, a simplicial cone need not be self-dual, there is another inner product with
respect to which it is self-dual. The aim of this note to bring out an analoge of this in
infinite dimensional separable Hilbert spaces, although there is no notion of simpliciality in
such spaces.
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1. Introduction

The geometry of a convex cone in a Banach space plays a crucial role
in understanding a linear operator that leaves it invariant. For instance, an
interesting result due to Lozanovsky says that if X1, X2 are partially ordered
Banach spaces with closed cones and if the cone of X1 is also generating,
then every positive operator A : X1 −→ X2 is continuous [1, Corollary 2.5].
Another interesting result is that, if H1 and H2 are Hilbert spaces equipped
with self-dual cones P1 and P2, respectively, and A is a bounded linear operator
such that A(P1) ⊆ P2, then A∗(P2) ⊆ P1 (See Lemma 3.8, Examples 3.10 and
3.11 in [9]). Thus, the effect of the topology of the underlying space on the
cone structure plays a crucial role in the theory of positive operators. Duality
of cones in Hilbert spaces, together with interesting examples can be found
in Section 2 of the article by Borwein and Yost [4]. Self-dual cones in Hilbert
spaces has also been studied by several authors; see for instance the articles
by Barker and Foran [2] and Penney [14], respectively. For a good reference
on various applications of positive operators in applied mathematics, one can
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refer the monograph by Berman and Plemmons [3] or Krasnoselskii et al [10].
The question we would like to address in this article is the following :

Question 1.1. Let H1 and H2 be Hilbert spaces equipped with pointed
self-dual cones P1 and P2, respectively. Let A be a bounded operator between
H1 and H2 with closed range and let T be a bounded reflexive generalized
inverse of A (that is, T is a bounded operator that satisfies the equations
ATA = A, TAT = T ). Assume that A(P1) ⊆ P2 and T (P2) ⊆ P1. Does there
exist an inner product on R(A), different from the one induced by H2, but
equivalent to it and with respect to which the cone A(P1) is self-dual ?

A motivation for this problem arose from an interesting problem in matrix
theory, namely, the nonnegative rank factorization problem and its infinite
dimensional version. Berman and Plemmons proved that if an (entrywise)
nonnegative m × n matrix A has a nonnegative generalized inverse X (that
is, A = AXA), then there exist matrices B and C of sizes m × r and r × n,
respectively, such that A = BC, where r = rank(A) = rank(B) = rank(C).

A notion of the above to infinite dimensional spaces was proposed by the
author and Sivakumar in connection with nonnegativity of various generalized
inverses (see Definitions 3.1 and 3.2 and Theorem 3.16 in [9] and Definitions
3.1 and 3.3, Theorems 3.20 and 3.21 in [8]) : A bounded operator A be-
tween Hilbert spaces H1 and H2, equipped with self-dual cones P1 and P2,
respectively, is said to admit a nonnegative rank factorization if there exists a
Hilbert space H and a self-dual cone P in H, and bounded operators B and
C from H to H2 and H1 to H, respectively, such that A = BC and such that
B(P ) ⊆ P2, C(P1) ⊆ P . We retain the word rank in the above definition,
although it is a little out of place.

Self-duality of the underlying cones are crucial in the above definition, for,
if A has a nonnegative rank factorization A = BC, then A∗ = C∗B∗ gives
a nonnegative rank factorization of A∗. Self-duality of the cones cannot be
dispensed with in deducing nonnegativity of the adjoint. Unlike Berman and
Plemmons’s result, where the cones are fixed (the nonnegative orthants), the
cone P in H in the above definition is arbitrary. Therefore, strictly speaking
the above definition is not a generalization of the usual definition of nonnega-
tive rank factorization for nonnegative matrices, but still is a worthy extension
to infinite dimensions and also in finite dimensional spaces, where the cones
are non-polyhedral. It is easy to see that if A is a bounded operator with closed
range, then A can always be factorized as A = BC, where C : H1 −→ R(A)
is defined by Cx = Ax and B is the inclusion operator from R(A) to H2.



self-dual cones 227

Moreover, any rank factorization is necessarily of this form. (We retain the
word rank, although it is a little out of place). Therefore, the most obvious
choice of the Hilbert space H is the range of A and the cones being A(P1) and
R(A) ∩ P2. There are now three possibilities.

(1) Embed A(P1) in some self-dual cone P in H = R(A).

(2) Prove self-duality of A(P1) directly.

(3) See if there is some other complete inner product on R(A) with respect
to which the cone A(P1) is self-dual.

If option (1) were true, then since any factorization is of the above form, a
simple duality argument will yield that P = A(P1). It was proved recently
by the author that if P1 and P2 are self-dual cones and if there exists another
bounded operator T : H2 → H1 such that ATA = A, TAT = T (such a T is
called a reflexive generalized inverse) with T (P2) ⊆ P1 then, the cone A(P1)
is self-dual in R(A) [8, Theorem 3.11]. In this note we present an affirmative
answer to Question 1.1, when the Hilbert spaces are separable. This will prove
that option (3) above also holds.

The paper is organized as follows. The main results are presented in
Section 2. The basic definitions in the theory of cones in Banach spaces,
such as normality, nonoblateness, acuteness, regularity and self-duality are
presented first. A result due to Khudalov [11, Theorem 1], that self-duality and
regularity are equivalent for a pointed cone in a Hilbert space is highlighted.
A result concerning Riesz bases is stated next (Theorem 2.1). This theorem
says that a Riesz basis (an isomorphic image of an orthonormal basis) induces
in a natural way a new inner product on the space that makes it into a Hilbert
space in such a way that the two induced norms are equivalent. An affirmative
answer to Question 1.1 is presented next (Theorem 2.6). This is then applied
to the nonnegative rank factorization problem (Theorem 2.7).

2. Main Results

A common source for various definitions presented below is the mono-
graph by Krasnoselskii et al [10]. However, individual references are also cited
wherever necessary.

A real vector space X is called a partially ordered vector space if there is
a partial order ≤ defined on it satisfying the following : For x, y ∈ X, x ≤
y =⇒ x + u ≤ y + u for all u ∈ X and αx ≤ αy for all α ≥ 0. The subset
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P := {x ∈ X : x ≥ 0} is called the positive cone of X. It is easy to verify
that the set P satisfies the usual definition of a cone : αP ⊆ P ∀ α ≥ 0
and P + P ⊆ P . We shall simply call the above set as a cone. Note that
P is a pointed cone i.e., P ∩ −P = {0}. P is said to be generating or re-
producing if X = P − P . It is well known that in finite dimensional spaces,
a cone is generating if and only if it has non-empty interior, which is not
true in infinite dimensional spaces. A Banach space X which is partially or-
dered is said to be a partially ordered Banach space. If X is also a Hilbert
space, then it is called a partially ordered Hilbert space. If P is a pointed
cone in a Banach space (X, ||.||), then the norm ||.|| is called monotone if
0 ≤ x ≤ y ⇒ ||x|| ≤ ||y|| and semi-monotone if 0 ≤ x ≤ y ⇒ ||x|| ≤ b||y|| for
some universal constant b. A cone P is called acute if the norm is monotone
and normal if it is semi-monotone. A cone P is said to be 1-normal if for any
two elements x, y ∈ X, ±x ≤ y implies ||x|| ≤ ||y|| (See [12, Definition 1(1)]).
It can be shown that every normal cone is acute with respect to some equiv-
alent norm (Refer Theorem 4.4, [10]). A cone P is said to be 1-nonoblate if
for any x ∈ P , there exists a unique y ≥ x such that ||x|| = ||y||. P is said
to be regular if it is both 1-normal and 1-nonoblate. Regularity can also be
defined in terms of convergence of a non-decreasing sequence from P . A cone
P in a Banach space X is called regular if every sequence 0 ≤ x1 ≤ x2 ≤
. . . ≤ xn ≤ . . . , which is bounded from above, converges in norm. P is said to
be completely regular if every sequence 0 ≤ x1 ≤ x2 ≤ . . . ≤ xn ≤ . . . , that
is norm bounded converges. Every regular cone is normal [10, Theorem 5.1]
and every completely regular cone is regular [10, Theorem 5.2]. For a cone
P in a Hilbert space H, the dual cone of P will be denoted by P ∗. A cone
P in a Hilbert space is acute if and only if it is 1-normal; equivalently, P is
acute if and only if P ⊆ P ∗ (Refer Assertions 1 and 2, [12]). A cone P in a
Hilbert space is said to be obtuse if P ∗ ∩ {span(P )} is acute [6]. A cone P in
a Hilbert space H is 1-nonoblate if and only if for every x ∈ H, ∃ u, v ∈ P
such that x = u − v and u ⊥ v. Moreover, if P is 1-nonoblate, then P ∗ ⊆ P
(Refer Assertions 3 and 4, [12]). Incidentally, Novikoff had also defined ob-
tuseness of a cone in a Hilbert space to be one for which P ∗ ⊆ P [13]. A cone
is self-dual if it is both acute and obtuse. It was proved by Khudalov [11,
Theorem 1] that for a cone H+ in a Hilbert space H, regularity is equivalent
to self-duality. It is also known and easy to prove that a normal cone P in a
weakly sequentially complete Banach space is completely regular, and hence
regular. The following theorem due to Holub proves quite useful.

Theorem 2.1. [7, Theorem 2.1] Let {xi, fi} be a normalized Riesz basis
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for a Hilbert space H. Then there is an equivalent inner product on H in
which {xi} is an orthonormal basis for H under the norm induced by this
inner product.

We now prove a result that will be used later on to answer the question
posed in the introduction.

Theorem 2.2. Let P be a pointed self-dual cone in a separable Hilbert
space H. Then there is an inner product ⟨., .⟩1 on H that makes it into a
Hilbert space and with respect to this new inner product, P is self-dual.

Proof. The existence of a new inner product ⟨., .⟩1, the norm induced (de-
noted by ||.||1) by which is equivalent to the one induced by the inner product
⟨., .⟩ (denoted by ||.||), follows from the proof of Theorem 2.1. Thus, there
exist positive constants α and β such that ||.||1 ≤ α||.|| ≤ β||.|1. Therefore
for 0 ≤ x ≤ y, we have ||x||1 ≤ α||x|| ≤ α||y|| ≤ αβ||y||1, which implies that
the norm ||.||1 is semi-monotone for P . The conclusion now follows from the
discussion preceeding Theorem 2.1.

We now apply the above result to answer Question 1.1. We shall denote the
set of all bounded operators between Hilbert spaces H1 and H2 by B(H1, H2).
Note that A(P1) is a pointed cone if P1 is pointed. For the image cone A(P ),
obtuseness is defined to be acuteness of (A(P ))∗ ∩ R(A) [6]. A linear operator
T : H2 → H1 is called a generalized inverse (or a {1}-inverse) of A if it
satisfies the equation ATA = A. T is called a reflexive generalized inverse (or
a {1,2}-inverse) of A if it satisfies the equations ATA = A and TAT = T .
Such a transformation exists as a bounded operator if and only if R(A) is
closed [5]. The terminology {1} and {1,2} come from the first two Penrose
equations in the definition of the (unique) Moore-Penrose inverse : ATA =
A, TAT = T, (AT )∗ = AT, (TA)∗ = TA. The following characterization
of nonnegativity of generalized inverses is due to Tam. Other similar results
concerning nonnegative generalized inverses can be found in [16] (For instance,
Lemma 2.7 and the discussion following it, Proposition 2.8, Theorems 4.1 and
4.2 and the discussions following them).

Theorem 2.3. [15, Theorem 3.1] Let A ∈ Rm×n be nonnegative with
respect to generating cones P1 and P2, respectively. Then, a necessary and
sufficient condition for the existence of a nonnegative generalized inverse (or a
{1}-inverse) is : There exists a subspace H of Rn such that span(H ∩P1) = H,
A takes H ∩ P1 isomorphically onto R(A) ∩ P2, and there is a projection P
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nonnegative with respect to P2 such that R(P ) = R(A). When this condition
is satisfied, there is also a projection Q that is nonnegative with respect to
P1, such that R(Q) = H, A = AQ.

The subspace H in Theorem 2.3 can actually be taken to be R(T ), where
T is a reflexive generalized inverse of A. It is also clear that one can work with
the cones T (P2) and A(P1) in R(T ) and R(A), respectively, in the place of
H ∩ P1 and R(A) ∩ P2, respectively. The following theorem is a consequence
of these.

Theorem 2.4. Let A ∈ B(H1, H2) have a reflexive generalized inverse
T ∈ B(H2, H1). Further, assume that A and T are (P1, P2)- and (P2, P1)-
nonnegative, respectively. Then the operator M := A|R(T ) is a surjective
isomorphism from R(T ) onto R(A) with inverse M−1 := T |R(A). Moreover,
the cones T (P2) and A(P1) are mapped one-to-one onto each other by M and
M−1, respectively; that is, T (P2) and A(P1) are linearly isomorphic.

Proof. The fact that M := A|R(T ) −→ R(A) is invertible needs no proof.
Let y = Tx, x ∈ P2. Then, My = Ay = ATx ∈ A(P1), as T (P2) ⊆ P1. Thus,
M(T (P2)) ⊆ A(P1). On the other hand, if y = Ax, x ∈ P1, then y ∈ P2.
Also, y = ATy = Av, v = Ty ∈ T (P2) ⊆ P1. Thus, A(P1) ⊆ M(T (P2)).
Consequently, M(T (P2)) = A(P1).

The following result, due to the author, says that when A has a nonnegative
reflexive generalized inverse (nonnegative with respect to two self-dual cones
P2 and P1), the image cone A(P1) is obtuse (and hence self-dual).

Theorem 2.5. [8, Theorem 3.11] Let A ∈ B(H1, H2) have closed range.
Let P1, P2 be self-dual cones in H1, H2, respectively. Further, assume that
T (P2) ⊆ P1, where T is a reflexive generalized inverse of A. Then A(P1) is
obtuse.

The following theorem gives an answer to Question 1.1.

Theorem 2.6. Let H1 and H2 be real separable Hilbert spaces equipped
with pointed self-dual cones P1 and P2, respectively. Let A ∈ B(H1, H2) be
(P1, P2)-nonnegative with a (P2, P1)-nonnegative reflexive generalized inverse
T ∈ B(H2, H1). Then, there is a complete inner product ⟨, ., ⟩3 on R(A) such
that the norm induced ||.||3 is equivalent to the one induced by the inner
product ⟨, ., ⟩2 and such that A(P1) is self-dual with respect to ⟨, ., ⟩3.
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Proof. Let us denote the inner product on R(A) induced by H2 by ⟨, ., ⟩2.
From Theorem 2.4, we infer that the operator N := (MM∗)−1 is a bounded
operator on R(A), which is also a linear isomorphism. Let {un} be an or-
thonormal basis for R(A) and let {wn, zn} be the normalized Riesz basis ob-
tained from {un} and the isomorphism N . Although the sequence {wn} need
not be an orthonormal basis for R(A), it induces a complete inner product on
it, say ⟨., .⟩3, such that the norm induced is equivalent to the one induced by
⟨., .⟩2 and such that {wn} will be an orthonormal basis for this new Hilbert
space. Since P1 is pointed, A(P1) is a pointed cone. By Theorem 2.5, we
know that A(P1) is self-dual with respect to the inner product ⟨., .⟩2. The
conclusion now follows from Theorem 2.2.

Theorem 2.6 can be thought of a possible analogue of Tam’s result to
infinite dimensions and also in finite dimensional spaces equipped with non-
polyhedral cones. Let us indicate how we can obtain a different nonnegative
rank factorization from a given one (Observe that any rank factorization of A
is necessarily of the form A = BR−1RC for some invertible operator R, where
A = BC is a rank factorization).

Theorem 2.7. Let A ∈ B(H1, H2) and T ∈ B(H2, H1) be nonnegative
with respect to self-dual cones P1, P2 and P2, P1, respectively, where T sat-
isfies the equations ATA = A, TAT = T (so that A has a nonnegative rank
factorization). Then, there exists a Hilbert space H3 and a self-dual cone P3 in
H3, a bounded operator S : R(A) −→ H3 that is nonnegative with respect to
A(P1) and P3 so that A has a nonnegative rank factorization A = BS−1SC.

Proof. The assumptions on A and T ensure that A has a nonnegative rank
factorization A = BC, where B ∈ B(H, H2) and C ∈ B(H1, H) are nonnega-
tive with respect to the self-dual cones A(P1), P2 and P1, A(P1), respectively,
where H = R(A). The existence of a Hilbert space H3 and a self-dual cone in
it are guaranteed by Theorem 2.6. It therefore suffices to prove the existence of
an operator with the required properties. For the sake of clarity, let us denote
by K1 and K2 the cone A(P1) in the Hilbert spaces H and H3 (= H). Define
S : H −→ H3 by un 7→ Nun, where {un} is an orthonormal basis for H and N
is as in Theorem 2.6. S can be extended to a well defined bounded linear oper-

ator from H into H3, which we again denote by S. Suppose y =
∞∑

n=1
⟨y, un⟩2un

is such that Sy =
∞∑

n=1
⟨y, un⟩2Nun = 0. Then, ||Sy||23 = 0 and hence,
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∞∑
n=1

|⟨y, un⟩2|2 = 0 from which it follows that y = 0. Thus, the operator S

is injective. Similarly, the operator S∗ is also injective. Consequently, S is
an invertible bounded linear operator from H onto H3. Let B̃ := BS−1 and
C̃ := SC. It is then easy to check that A = B̃C̃ is a rank factorization of A. It
only remains to prove that S(K1) ⊆ K2 and S−1(K2) ⊆ K1. Let x ∈ K1. For
any u ∈ K2, we have ⟨Sx, u⟩3 = (1/4)(||Sx+u||23 + ||Sx−u||23) ≥ 0. Therefore,
Sx ∈ K∗

2 (the dual is in the Hilbert space H3). Since K2 is a self-dual cone
in H3, we see that Sx ∈ K2, proving nonnegativity of S. A similar argument
shows that S−1 is also nonnegative. Therefore, A = B̃C̃ gives a nonnegative
rank factorization of A.
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