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1. Alternative rings and Jordan triple elementary maps

Let R be a ring not necessarily associative or commutative and consider
the following convention for its multiplication operation: that xy · z = (xy)z
and x · yz = x(yz) for x, y, z ∈ R, to the reduction in the number of necessary
parentheses. We denote the associator of R by (x, y, z) = xy · z − x · yz for
x, y, z ∈ R.

Let X = {xi}i∈N be an arbitrary set of variables. A non-associative mono-
mial of degree 1 is any element of X. Given a natural number n > 1, a non-
associative monomial of degree n is an expression of the form (u)(v), where
u is a non-associative monomial of some degree i and v a non-associative
monomial of degree n − i. A non-associative polynomial f over a ring R is
any formal linear combination of non-associative monomials with coefficients
in R. If f includes no variables except x1, x2, . . . , xn and a1, a2, . . . , an is a
set of elements of R, then f(a1, a2, . . . , an) is an element of R which results
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by applying the sequence of operations forming f to a1, a2, . . . , an in place of
x1, x2, . . . , xn.

Let R and R′ be two rings and let M : R → R′ and M∗ : R′ → R be two
maps. We call the ordered pair (M,M∗) a Jordan triple elementary map of
R×R′ if for all non-associative monomial f = f(x1, x2, x3) of degree 3

M
(
f
(
a,M∗(x), b

)
+ f

(
b,M∗(x), a

))
= f

(
M(a), x,M(b)

)
+ f

(
M(b), x,M(a)

)
,

M∗(f(x,M(a), y
)
+ f

(
y,M(a), x

))
= f

(
M∗(x), a,M∗(y)

)
+ f

(
M∗(y), a,M∗(x)

)
for all a, b ∈ R and x, y ∈ R′.

We say that a Jordan triple elementary map (M,M∗) of R×R′ is additive
(resp., injective, surjective, bijective) if both maps M and M∗ are additive
(resp., injective, surjective, bijective).

A ring R is said to be alternative if (x, x, y) = 0 = (y, x, x) for all x, y ∈ R.
One easily sees that any associative ring is an alternative ring.

An alternative ring R is called k-torsion free if k x = 0 implies x = 0, for
any x ∈ R, where k ∈ Z, k > 0, and prime if AB ̸= 0 for any two nonzero
ideals A,B ⊆ R.

Let us consider R an alternative ring and fix a nontrivial idempotent e1 ∈
R, i.e., e21 = e1, e1 ̸= 0 and e1 is not a unity element. Let e2 : R → R and
e′2 : R → R be linear operators given by e2(a) = a− e1a and e′2(a) = a− ae1.
Clearly e22 = e2, (e

′
2)

2 = e′2 and we denote e2(a) by e2a and e′2(a) by ae2. Let
us note that if R has a unity, then we can consider e2(= e′2) = 1 − e1 ∈ R.
It is easy to see that eia · ej = ei · aej (i, j = 1, 2) for all a ∈ R. Then R
has a Peirce decomposition R = R11 ⊕R12 ⊕R21 ⊕R22, where Rij = eiRej
(i, j = 1, 2), (see [3]) satisfying the multiplicative relations:

(i) RijRjl ⊆ Ril (i, j, l = 1, 2);

(ii) RijRij ⊆ Rji (i, j = 1, 2);

(iii) RijRkl = 0 if j ̸= k and (i, j) ̸= (k, l) (i, j, k, l = 1, 2);

(iv) x2ij = 0 for all xij ∈ Rij (i, j = 1, 2; i ̸= j).

For the case of alternative rings the notion of Jordan triple elementary
map takes the following equivalent form:
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Proposition 1.1. Let R and R′ be two alternative rings and let M :
R → R′ and M∗ : R′ → R be two maps. The following assertions are
equivalent:

(i) the ordered pair (M,M∗) is a Jordan triple elementary map of R×R′;

(ii) there is a non-associative monomial f = f(x1, x2, x3) of degree 3 such
that

M
(
f
(
a,M∗(x), b

)
+ f

(
b,M∗(x), a

))
= f

(
M(a), x,M(b)

)
+ f

(
M(b), x,M(a)

)
,

M∗(f(x,M(a), y
)
+ f

(
y,M(a), x

))
= f

(
M∗(x), a,M∗(y)

)
+ f

(
M∗(y), a,M∗(x)

)
for all a, b ∈ R and x, y ∈ R′.

According to [5], “The first result about the additivity of maps on rings was
given by Martindale III in an excellent paper [6]. He established a condition
on an associative ring R such that every multiplicative bijective map on R is
additive”. Jing [5] considered also the investigation of the additivity of maps
for the case of Jordan triple elementary maps on associative rings. He proved
the following theorem.

Theorem 1.1. (Jing [5]) Let R and R′ be two associative rings. Sup-
pose that R is a 2-torsion free unital ring containing a nontrivial idempotent
e1 and satisfies

eiaejRek = 0 or ekReiaej = 0 ⇒ eiaej = 0 (1 ≤ i, j, k ≤ 2) .

Then every surjective Jordan triple elementary map (M,M∗) of R × R′
is

additive.

The hypotheses of the Jing’s Theorem [5] allowed the author to make its
proof based on calculus using the Peirce decomposition notion for associative
rings.

The notion of Peirce decomposition for the alternative rings is similar to
the notion of Peirce decomposition for the associative rings. However, the
similarity of this notion is only in its written form, but not in its theoret-
ical structure because the Peirce decomposition for alternative rings is the
generalization of the Peirce decomposition for associative rings. Taking this



4 j.c.m. ferreira, b.l.m. ferreira, h. guzzo jr

fact into account, in the present paper we generalize the main Jing’s Theo-
rem [5] to the class of alternative rings. For this, we adopt and follow the
same structure of the demonstration presented in [5], in order: to preserve the
author’s ideas and to highlight the generalization of the associative results to
the alternative results. Therefore, our lemmas and the theorem that seem to
be equal in written form with the lemmas and the theorem proposed in Jing
[5], are distinguished by a fundamental item: the use of the non-associative
multiplications. The symbol “ · ”, as defined in the introduction section of our
article, is essential to elucidate how the non-associative multiplication should
be done, and also the symbol “ · ” is used to simplify the notation. Therefore,
the symbol “ · ” is crucial to the logic, characterization and generalization of
associative results to the alternative results.

2. The main result

Let’s state the main result of this paper.

Theorem 2.1. Let R and R′ be two alternative rings. Suppose that R is
a 2-torsion free unital ring containing a nontrivial idempotent e1 and satisfies:

(i) (eiaej) ·Rek = 0 or (eiaej)R · ek = 0 ⇒ eiaej = 0 (1 ≤ i, j, k ≤ 2);

(ii) ekR · (eiaej) = 0 or ek ·R(eiaej) = 0 ⇒ eiaej = 0 (1 ≤ i, j, k ≤ 2).

Then every surjective Jordan elementary map (M,M∗) of R×R′ is additive.

To prove Theorem 2.1 we introduced a set of lemmas, similar to introduced
by Jing [5]. The first one is:

Lemma 2.1. M(0) = 0 and M∗(0) = 0.

Proof. M(0) = M
(
0M∗(0) ·0+0M∗(0) ·0

)
= M(0)0 ·M(0)+M(0)0 ·M(0)

= 0. Similarly, we prove M∗(0) = 0.

The following lemma is verified by direct calculations, from the conditions
(i) and (ii) of Theorem 2.1.

Lemma 2.2. Let a = a11 + a12 + a21 + a22 ∈ R.

(i) If aijtjk = 0 for each tjk ∈ Rjk (1 ≤ i, j, k ≤ 2), then aij = 0. Dually, if
tkiaij = 0 for each tki ∈ Rki (1 ≤ i, j, k ≤ 2), then aij = 0.

(ii) If aijt+ taij ∈ Rij for every aij ∈ Rij (1 ≤ i, j ≤ 2), then tji = 0.
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(iii) If aiit+ taii = 0 for every aii ∈ Rii (i = 1, 2), then tii = 0.

(iv) If ajjt+ tajj ∈ Rij for every ajj ∈ Rjj (1 ≤ i ̸= j ≤ 2), then tji = 0 and
tjj = 0. Dually, if ajjt+ tajj ∈ Rji for every ajj ∈ Rjj (1 ≤ i ̸= j ≤ 2),
then tij = 0 and tjj = 0.

Lemma 2.3. M and M∗ are bijective.

Proof. Suppose that M(a) = M(b) for arbitrary elements a, b ∈ R and
let us write a = a11 + a12 + a21 + a22 and b = b11 + b12 + b21 + b22. For
arbitraries tij ∈ Rij and skl ∈ Rkl (1 ≤ i, j, k, l ≤ 2), there are x(i, j) ∈ R′

and y(k, l) ∈ R′ such that M∗(x(i, j)) = tij and M∗(y(k, l)) = skl since M∗

is surjective. It follows that

skla · tij + tija · skl = M∗(y(k, l))a ·M∗(x(i, j))+M∗(x(i, j))a ·M∗(y(k, l))
= M∗(y(k, l)M(a) · x(i, j) + x(i, j)M(a) · y(k, l)

)
= M∗(y(k, l)M(b) · x(i, j) + x(i, j)M(b) · y(k, l)

)
= M∗(y(k, l))b ·M∗(x(i, j))+M∗(x(i, j))b ·M∗(y(k, l))
= sklb · tij + tijb · skl .

Taking i = j = k = 1 and l = 2 we have s12a · t11 + t11a · s12 = s12b · t11 +
t11b · s12, which implies that a11 = b11 and a21 = b21, by directness of the
Peirce decomposition and Lemma 2.2-(i). Now, if we take i = k = l = 2 and
j = 1, we obtain a12 = b12 and a22 = b22. This implies that a = b and hence
M is injective. Next, let x, y ∈ R′ such that M∗(x) = M∗(y). For arbitrary
elements tij ∈ Rij and skl ∈ Rkl, there are c(i, j) ∈ R and d(k, l) ∈ R such
thatM∗M

(
c(i, j)

)
= tij andM∗M

(
d(k, l)

)
= skl, by the surjectivity ofM∗M .

It follows that

tijM
−1(x) · skl + sklM

−1(x) · tij

= M∗M
(
c(i, j)

)
M−1(x) ·M∗M

(
d(k, l)

)
+M∗M

(
d(k, l)

)
M−1(x) ·M∗M

(
c(i, j)

)
= M∗

(
M

(
c(i, j)

)
x ·M

(
d(k, l)

)
+M

(
d(k, l)

)
x ·M

(
c(i, j)

))
= M∗M

(
c(i, j)M∗(x) · d(k, l) + d(k, l)M∗(x) · c(i, j)

)
= M∗M

(
c(i, j)M∗(y) · d(k, l) + d(k, l)M∗(y) · c(i, j)

)
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= M∗
(
M

(
c(i, j)

)
y ·M

(
d(k, l)

)
+M

(
d(k, l)

)
y ·M

(
c(i, j)

))
= M∗M

(
c(i, j)

)
M−1(y) ·M∗M

(
d(k, l)

)
+M∗M

(
d(k, l)

)
M−1(y) ·M∗M

(
c(i, j)

)
= tijM

−1(y) · skl + sklM
−1(y) · tij .

Taking a same argument as in the first case, we can conclude that M−1(x) =
M−1(y). It follows that x = y and hence M∗ is injective.

Since M and M∗ are also surjective, then both are bijective.

Lemma 2.4. The pair (M∗−1
,M−1) is a Jordan triple elementary map on

R×R′.

Proof. For arbitrary elements a, b ∈ R and x, y ∈ R′, we have

M∗(M∗−1
(a)x ·M∗−1

(b) +M∗−1
(b)x ·M∗−1

(a)
)

= M∗(M∗−1
(a)MM−1(x) ·M∗−1

(b)

+M∗−1
(b)MM−1(x) ·M∗−1

(a)
)

= M∗M∗−1
(a)M−1(x) ·M∗M∗−1

(b)

+M∗M∗−1
(b)M−1(x) ·M∗M∗−1

(a)

= aM−1(x) · b+ bM−1(x) · a .

Thus,

M∗−1(
aM−1(x) · b+ bM−1(x) · a

)
= M∗−1

(a)x ·M∗−1
(b) +M∗−1

(b)x ·M∗−1
(a) ,

by Lemma 2.3. Similarly, we prove that

M−1
(
xM∗−1

(a) · y+ yM∗−1
(a) · x

)
= M−1(x)a ·M−1(y) +M−1(y)a ·M−1(x) .

By Proposition 1.1, we infer that the pair (M∗−1
,M−1) is a Jordan triple

elementary map on R×R′.
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Lemma 2.5. Let a, b, c ∈ R such that M(c) = M(a) +M(b). Then

M∗−1
(tc · s+ sc · t) = M∗−1

(ta · s+ sa · t) +M∗−1
(tb · s+ sb · t)

for all t, s ∈ R.

Proof. For arbitrary elements t, s ∈ R, by Lemma 2.4, we have

M∗−1
(tc · s+ sc · t) = M∗−1(

tM−1M(c) · s+ sM−1M(c) · t
)

= M∗−1
(t)M(c) ·M∗−1

(s) +M∗−1
(s)M(c) ·M∗−1

(t)

= M∗−1
(t)

(
M(a) +M(b)

)
·M∗−1

(s)

+M∗−1
(s)

(
M(a) +M(b)

)
·M∗−1

(t)

= M∗−1
(t)M(a) ·M∗−1

(s) +M∗−1
(s)M(a) ·M∗−1

(t)

+M∗−1
(t)M(b) ·M∗−1

(s) +M∗−1
(s)M(b) ·M∗−1

(t)

= M∗−1
(ta · s+ sa · t) +M∗−1

(tb · s+ sb · t) ,

and the lemma is proved.

Lemma 2.6. For arbitraries a11 ∈ R11 and b22 ∈ R22, we have:

(i) M(a11 + b22) = M(a11) +M(b22);

(ii) M∗−1
(a11 + b22) = M∗−1

(a11) +M∗−1
(b22) .

Proof. Suppose that M(c) = M(a11) +M(a22) for some c ∈ R and let us
write c = c11+c12+c21+c22. For arbitrary elements t21 ∈ R21 and s11 ∈ R11,
by Lemma 2.5 we have

M∗−1
(t21c · s11 + s11c · t21) = M∗−1

(t21a11 · s11 + s11a11 · t21)

+M∗−1
(t21b22 · s11 + s11b22 · t21)

= M∗−1
(t21a11 · s11) .

This implies that t21c · s11 + s11c · t21 = t21a11 · s11. It follows that t21c11 ·
s11 + s11c12 · t21 = t21a11 · s11, and so c11 = a11 and c12 = 0, by directness of
the Peirce decomposition and Lemma 2.2-(i).
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Now, for arbitrary elements t12 ∈ R12 and s22 ∈ R22, by Lemma 2.5, we
obtain

M∗−1
(t12c · s22 + s22c · t12) = M∗−1

(t12a11 · s22 + s22a11 · t12)

+M∗−1
(t12b22 · s22 + s22b22 · t12)

= M∗−1
(t12b22 · s22) .

It follows that t12c · s22 + s22c · t12 = t12b22 · s22, which implies t12c22 · s22 +
s22c21 · t12 = t12b22 ·s22, and so c21 = 0 and c22 = b22. Therefore, c = a11+b22.

By Lemma 2.4 we can infer that (ii) holds.

Lemma 2.7. For arbitrary elements a12 ∈ R12 and b21 ∈ R21, we have:

(i) M(a12 + b21) = M(a12) +M(b21);

(ii) M∗−1
(a12 + b21) = M∗−1

(a12) +M∗−1
(b21).

Proof. Suppose that M(c) = M(a12) +M(b21) for some c ∈ R and let us
write c = c11+c12+c21+c22. For arbitrary elements t21 ∈ R21 and s11 ∈ R11,
by Lemma 2.5 we have

M∗−1
(t21c · s11 + s11c · t21) = M∗−1

(t21a12 · s11 + s11a12 · t21)

+M∗−1
(t21b21 · s11 + s11b21 · t21)

= M∗−1
(s11a12 · t21) ,

which implies that t21c · s11 + s11c · t21 = s11a12 · t21 resulting in t21c11 · s11 +
s11c12 · t21 = s11a12 · t21. It follows that c11 = 0 and c12 = a12, by directness
of the Peirce decomposition and Lemma 2.2-(i).

Now, for arbitrary elements t12 ∈ R12 and s22 ∈ R22, by Lemma 2.5, we
obtain

M∗−1
(t12c · s22 + s22c · t12) = M∗−1

(t12a12 · s22 + s22a12 · t12)

+M∗−1
(t12b21 · s22 + s22b21 · t12)

= M∗−1
(s22b21 · t12) ,

which implies t12c·s22+s22c·t12 = s22b21·t12 resulting in t12c22·s22+s22c21·t12 =
s22b21 · t12. It follows that c21 = b21 and c22 = 0.

By Lemma 2.4 we can infer that (ii) holds.
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Lemma 2.8. Let aii ∈ Rii and bij ∈ Rij (1 ≤ i ̸= j ≤ 2). Then

(i) M(aii + bij) = M(aii) +M(bij);

(ii) M∗−1
(aii + bij) = M∗−1

(aii) +M∗−1
(bij) .

Proof. Let us consider c ∈ R such that M(c) = M(aii)+M(bij) and let us
write c = c11 + c12 + c21 + c22. For arbitrary elements tii ∈ Rii and dij ∈ Rij ,
by Lemma 2.5 and Lemma 2.7-(ii) we have

M∗−1
(tiic · dij + dijc · tii) = M∗−1

(tiiaii · dij + dijaii · tii)

+M∗−1
(tiibij · dij + dijbij · tii)

= M∗−1
(tiiaii · dij + tiibij · dij + dijbij · tii) .

It follows that tiic · dij + dijc · tii = tiiaii · dij + tiibij · dij + dijbij · tii which
yields

tiicii ·dij + tiicij ·dij +dijcij · tii+dijcji · tii = tiiaii ·dij + tiibij ·dij +dijbij · tii .

By directness of the Peirce decomposition and Lemma 2.2-(i), we have cii = aii
and cji = 0.

Now for arbitrary elements tji ∈ Rji and djj ∈ Rjj , by Lemma 2.5 and
Lemma 2.7 we have

M∗−1
(tjic · djj + djjc · tji) = M∗−1

(tjiaii · djj + djjaii · tji)

+M∗−1
(tjibij · djj + djjbij · tji)

= M∗−1
(tjibij · djj) ,

which implies tjic ·djj+djjc · tji = tjibij ·djj . It follows that tjicij ·djj+djjcjj ·
tji = tjibij ·djj which results cij = bij and cjj = 0. Consequently, c = aii+ bij .

By Lemma 2.4 we can infer that (ii) holds.

The following lemma can be proved similarly as in the Lemma 2.8. There-
fore we omit its proof.

Lemma 2.9. Let aii ∈ Rii and bji ∈ Rji (1 ≤ i ̸= j ≤ 2). Then

(i) M(aii + bji) = M(aii) +M(bji);

(ii) M∗−1
(aii + bji) = M∗−1

(aii) +M∗−1
(bji).
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Lemma 2.10. The following hold:

(i) M(a12s22 + b12c22 · s22) = M(a12s22) +M(b12c22 · s22);
(ii) M∗−1

(a12s22 + b12c22 · s22) = M∗−1
(a12s22) +M∗−1

(b12c22 · s22);
(iii) M(a21s11 + c22b21 · s11) = M(a21s11) +M(c22b21 · s11);
(iv) M∗−1

(a21s11 + c22b21 · s11) = M∗−1
(a21s11) +M∗−1

(c22b21 · s11) .

Proof. First at all, let us note that

a12s22 + b12c22 · s22 = (e1 + b12)(a12 + c22) · s22 + s22(a12 + c22) · (e1 + b12) .

Hence

M(a12s22 + b12c22 · s22) = M
(
(e1 + b12)(a12 + c22) · s22
+ s22(a12 + c22) · (e1 + b12)

)
= M

(
(e1 + b12)M

∗M∗−1
(a12 + c22) · s22

+ s22M
∗M∗−1

(a12 + c22) · (e1 + b12)
)

= M(e1 + b12)M
∗−1

(a12) ·M(s22)

+M(e1 + b12)M
∗−1

(c22) ·M(s22)

+M(s22)M
∗−1

(a12) ·M(e1 + b12)

+M(s22)M
∗−1

(c22) ·M(e1 + b12)

= M
(
(e1 + b12)a12 · s22 + s22a12 · (e1 + b12)

)
+M

(
(e1 + b12)c22 · s22 + s22c22 · (e1 + b12)

)
= M(a12s22) +M(b12c22 · s22) .

Similarly, we obtain M(a21s11 + c22b21 · s11) = M(a21s11) + M(b22c21 · s11)
from the identity

a21s11 + c22b21 · s11 = (a21 + c22)(e1 + b21) · s11 + s11(e1 + b21) · (a21 + c22) .

By Lemma 2.4, we can conclude that (ii) and (iv) follow from (i) and (iii),
respectively.

Lemma 2.11. (i) M(a12 + b12c22) = M(a12) +M(b12c22);
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(ii) M∗−1
(a12 + b12c22) = M∗−1

(a12) +M∗−1
(b12c22);

(iii) M(a21 + c22b21) = M(a21) +M(c22b21);

(iv) M∗−1
(a21 + c22b21) = M∗−1

(a21) +M∗−1
(c22b21).

Proof. Suppose that M(d) = M(a12) +M(b12c22) for some d ∈ R and let
us write d = d11 + d12 + d21 + d22. For arbitrary elements t11 ∈ R11 and
s22 ∈ R22, by Lemma 2.5 and Lemma 2.10-(ii), we have

M∗−1
(t11d · s22 + s22d · t11) = M∗−1

(t11a12 · s22 + s22a12 · t11)

+M∗−1(
t11(b12c22) · s22 + s22(b12c22) · t11

)
= M∗−1

(t11a12 · s22) +M∗−1(
t11(b12c22) · s22

)
= M∗−1

(t11a12 · s22) +M∗−1(
(t11b12)c22 · s22

)
= M∗−1(

t11a12 · s22 + t11(b12c22) · s22
)
.

Therefore t11d · s22 + s22d · t11 = t11a12 · s22 + t11(b12c22) · s22 which implies
t11d12 · s22 + s22d21 · t11 = t11a12 · s22 + t11(b12c22) · s22. It follows that d12 =
a12+b12c22 and d21 = 0, by directness of the Peirce decomposition and Lemma
2.2-(i).

Now, for arbitrary elements tii, sii ∈ Rii (i = 1, 2), by Lemma 2.5 again,
we obtain

M∗−1
(tiid · sii + siid · tii) = M∗−1

(tiia12 · sii + siia12 · tii)

+M∗−1(
tii(b12c22) · sii + sii(b12c22) · tii

)
= 0 .

It follows that tiid ·sii+siid ·tii = 0 which implies 2dii = 0 resulting in dii = 0.
Therefore, d = a12 + b12c22.

Similarly, we prove (iii).
By Lemma 2.4, (ii) and (iv) follow from (i) and (iii), respectively.

Lemma 2.12. For any a12, b12 ∈ R12, we have:

(i) M(a12 + b12) = M(a12) +M(b12);

(ii) M∗−1
(a12 + b12) = M∗−1

(a12) +M∗−1
(b12).

Proof. Suppose that M(c) = M(a12) + M(b12), for some c ∈ R, and let
us write c = c11 + c12 + c21 + c22 ∈ R. For arbitrary elements t11 ∈ R11 and



12 j.c.m. ferreira, b.l.m. ferreira, h. guzzo jr

s22 ∈ R22, by Lemma 2.5 and Lemma 2.11-(ii) we have

M∗−1
(t11c · s22 + s22c · t11) = M∗−1

(t11a12 · s22 + s22a12 · t11)

+M∗−1
(t11b12 · s22 + s22b12 · t11)

= M∗−1
(t11a12 · s22) +M∗−1

(t11b12 · s22)

= M∗−1
(t11a12 · s22 + t11b12 · s22) .

It follows that t11c · s22 + s22c · t11 = t11a12 · s22 + t11b12 · s22 which implies
t11c12 · s22 + s22c21 · t11 = t11a12 · s22 + t11b12 · s22 resulting in c12 = a12 + b12
and c21 = 0.

Now, taking a similar argument in the demonstration of the previous
lemma, we can show that cii = 0 (i = 1, 2). Therefore, c = a12 + b12.

By Lemma 2.4, we can infer that (ii) holds.

Similarly, we have the following result.

Lemma 2.13. For any a21, b21 ∈ R21, we have:

(i) M(a21 + b21) = M(a21) +M(b21);

(ii) M∗−1
(a21 + b21) = M∗−1

(a21) +M∗−1
(b21).

Lemma 2.14. For any a11, b11 ∈ R11, we have:

(i) M(a11 + b11) = M(a11) +M(b11);

(ii) M∗−1
(a11 + b11) = M∗−1

(a11) +M∗−1
(b11).

Proof. Suppose that M(c) = M(a11) + M(b11), for some c ∈ R, and let
us write c = c11 + c12 + c21 + c22 ∈ R. For arbitrary elements t22 ∈ R22 and
sij ∈ Rij , we have

M∗−1
(t22c · sij + sijc · t22) = M∗−1

(t22a11 · sij + sija11 · t22)

+M∗−1
(t22b11 · sij + sijb11 · t22) = 0 ,

by Lemma 2.5, which implies that t22c · sij +sijc · t22 = 0. Taking i = j = 1 in
the last identity, we have t22c21 ·s11+s11c12 ·t22 = 0 resulting in c12 = c21 = 0.
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If we take i = 2 and j = 1, then we have t22c22 ·s21 = 0 which implies c22 = 0.
Now, for arbitrary elements t12 ∈ R12 and s11 ∈ R11, we have

M∗−1
(t12c · s11 + s11c · t12) = M∗−1

(t12a11 · s11 + s11a11 · t12)

+M∗−1
(t12b11 · s11 + s11b11 · t12)

= M∗−1
(s11a11 · t12) +M∗−1

(s11b11 · t12)

= M∗−1
(s11a11 · t12 + s11b11 · t12) ,

by Lemma 2.12-(ii). It follows that t12c·s11+s11c ·t12 = s11a11 ·t12+s11b11 ·t12
which yields s11c11 · t12 = s11a11 · t12+ s11b11 · t12. By Lemma 2.2-(i), we have
c11 = a11 + b11.

By Lemma 2.4, we can conclude that (ii) holds.

Similarly, we have

Lemma 2.15. For arbitrary a22, b22 ∈ R22, we have:

(i) M(a22 + b22) = M(a22) +M(b22);

(ii) M∗−1
(a22 + b22) = M∗−1

(a22) +M∗−1
(b22).

Lemma 2.16. For any a11 ∈ R11, b12 ∈ R12, and c21 ∈ R21, we have:

(i) M(a11 + b12 + c21) = M(a11) +M(b12) +M(c21);

(ii) M∗−1
(a11 + b12 + c21) = M∗−1

(a11) +M∗−1
(b12) +M∗−1

(c21).

Proof. Suppose that M(d) = M(a11) +M(b12) +M(c21) for some c ∈ R
and let us write d = d11 + d12 + d21 + d22. By Lemma 2.8 and Lemma 2.9,
M(d) can be represented in the following two forms:

M(d) = M(a11 + b12) +M(c21) (1)

and
M(d) = M(a11 + c21) +M(b12) . (2)

Hence, for arbitrary elements t22 ∈ R22 and s12 ∈ R12, by Lemma 2.5 and
identity (1) we have

M∗−1
(t22d · s12 + s12d · t22) = M∗−1(

(t22(a11 + b12) · s12 + s12(a11 + b12) · t22
)

+M∗−1(
t22c21 · s12 + s12c21 · t22

)
= M∗−1

(t22c21 · s12) ,
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which implies that t22d · s12 + s12d · t22 = t22c21 · s12. It follows that t22d21 ·
s12 + s12d22 · t22 = t22c21 · s12 which yields d21 = c21 and d22 = 0. Now, for
arbitrary elements t11 ∈ R11 and s21 ∈ R21, using Lemma 2.5 and Lemma
2.9-(ii) and identity (2) we have

M∗−1
(t11d · s21 + s21d · t11) = M∗−1(

t11(a11 + c21) · s21 + s21(a11 + c21) · t11
)

+M∗−1(
t11b12 · s21 + s21b12 · t11

)
= M∗−1

(s21a11 · t11 + t11b12 · s21) ,

which implies that t11d · s21 + s21d · t11 = s21a11 · t11 + t11b12 · s21. It follows
that t11d12 · s21 + s21d11 · t11 = s21a11 · t11 + t11b12 · s21 which yields d11 = a11
and d12 = b12, by directness of the Peirce decomposition and Lemma 2.2-(i).
Therefore, d = a11 + b12 + c21.

By Lemma 2.4, we can conclude that (ii) holds.

Similarly, we can prove the following result.

Lemma 2.17. For any a12 ∈ R12, b21 ∈ R21, and c22 ∈ R22, we have:

(i) M(a12 + b21 + c22) = M(a12) +M(b21) +M(c22);

(ii) M∗−1
(a12 + b21 + c22) = M∗−1

(a12) +M∗−1
(b21) +M∗−1

(c22).

Lemma 2.18. For any a11 ∈ R11, b12 ∈ R12, c21 ∈ R21, and d22 ∈ R22,
we have:

(i) M(a11 + b12 + c21 + d22) = M(a11) +M(b12) +M(c21) +M(d22);

(ii) M∗−1
(a11 + b12 + c21 + d22) = M∗−1

(a11) + M∗−1
(b12) + M∗−1

(c21) +
M∗−1

(d22).

Proof. Suppose that

M(f) = M(a11) +M(b12) +M(c21) +M(d22)

= M(a11 + d22) +M(b12 + c21)

for some f ∈ R and let us write f = f11 + f12 + f21 + f22 ∈ R. For arbitrary
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elements t11 ∈ R11 and s12 ∈ R12, we have

M∗−1
(t11f · s12 + s12f · t11)

= M∗−1(
t11(a11 + d22) · s12 + s12(a11 + d22) · t11

)
+M∗−1(

t11(b12 + c21) · s12 + s12(b12 + c21) · t11
)

= M∗−1
(t11a11 · s12)

+M∗−1
(t11b12 · s12 + s12b12 · t11 + s12c21 · t11)

= M∗−1
(t11a11 · s12 + t11b12 · s12 + s12b12 · t11 + s12c21 · t11) ,

by Lemma 2.16-(ii). It follows that

t11f · s12 + s12f · t11 = t11a11 · s12 + t11b12 · s12 + s12b12 · t11 + s12c21 · t11 ,

which implies

t11f11 · s12+ t11f12 · s12 + s12f12 · t11 + s12f21 · t11
= t11a11 · s12 + t11b12 · s12 + s12b12 · t11 + s12c21 · t11 .

This results in f11 = a11 and f21 = c21, by directness of the Peirce decomposi-
tion and Lemma 2.2-(i). Now, for arbitrary elements t22 ∈ R22 and s21 ∈ R21,
we have

M∗−1
(t22f · s21 + s21f · t22)

= M∗−1(
t22(a11 + d22) · s21 + s21(a11 + d22) · t22

)
+M∗−1(

t22(b12 + c21) · s21 + s21(b12 + c21) · t22
)

= M∗−1
(t22d22 · s21)

+M∗−1
(t22c21 · s21 + s21b12 · t22 + s21c21 · t22)

= M∗−1
(t22d22 · s21 + t22c21 · s21 + s21b12 · t22 + s21c21 · t22) .

which implies that

t22f · s21 + s21f · t22 = t22d22 · s21 + t22c21 · s21 + s21b12 · t22 + s21c21 · t22
resulting in

t22f21 · s21+ t22f22 · s21 + s21f12 · t22 + s21f21 · t22
= t22d22 · s21 + t22c21 · s21 + s21b12 · t22 + s21c21 · t22 .

Thus f12 = b12 and f22 = d22. Thus, we have f = a11 + b12 + c21 + d22.
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Proof of Theorem 2.1. Let us consider arbitrary elements a, b ∈ R and
let us write a = a11 + a12 + a21 + a22 and b = b11 + b12 + b21 + b22. Then

M(a+ b) = M
(
(a11 + b11) + (a12 + b12) + (a21 + b21) + (a22 + b22)

)
= M(a11 + b11) +M(a12 + b12) +M(a21 + b21) +M(a22 + b22)

= M(a11) +M(b11) +M(a12) +M(b12)

+M(a21) +M(b21) +M(a22) +M(b22)

= M(a11 + a12 + a21 + a22) +M(b11 + b12 + b21 + b22)

= M(a) +M(b).

Thus, M is an additive map. Now, for arbitrary elements x, y ∈ R′, there are
elements c = c11 + c12 + c21 + c22 and d = d11 + d12 + d21 + d22 in R such
that c = M∗(x) +M∗(y) and d = M∗(x+ y), by Lema 2.3. It follows that for
arbitrary elements tij ∈ Rij and skl ∈ Rkl (1 ≤ i, j, k, l ≤ 2), we have

M(tijc · skl + sklc · tij) = M
(
tij

(
M∗(x) +M∗(y)

)
· skl

+ skl
(
M∗(x) +M∗(y)

)
· tij

)
= M

(
tijM

∗(x) · skl
)
+M

(
tijM

∗(y) · skl
)

+M
(
sklM

∗(x) · tij
)
+M

(
sklM

∗(y) · tij
)

= M
(
tijM

∗(x) · skl + sklM
∗(x) · tij

)
+M

(
tijM

∗(y) · skl + sklM
∗(y) · tij

)
= M(tij)x ·M(skl) +M(skl)x ·M(tij)

+M(tij)y ·M(skl) +M(skl)y ·M(tij)

= M(tij)(x+ y) ·M(skl) +M(skl)(x+ y) ·M(tij)

= M
(
tijM

∗(x+ y) · skl + sklM
∗(x+ y) · tij

)
= M(tijd · skl + skld · tij) ,

which implies that

tijc · skl + sklc · tij = tijd · skl + skld · tij . (3)

Taking i = j = k = 1 and l = 2 in the last equality, we obtain

t11c11 · s12+ t11c12 · s12 + s12c12 · t11 + s12c21 · t11
= t11d11 · s12 + t11d12 · s12 + s12d12 · t11 + s12d21 · t11 ,
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which implies that c11 = d11 and c21 = d21. Now, if we take i = j = k = 2
and l = 1 in the identity (3), then we obtain

t22c21 · s21+ t22c22 · s21 + s21c12 · t22 + s21c21 · t22
= t22d21 · s21 + t22d22 · s21 + s21d12 · t22 + s21d21 · t22 .

By directness of the Peirce decomposition and Lemma 2.2-(i), we have c12 =
d12 and c22 = d22. It follows that c = d and so M∗(x+ y) = M∗(x) +M∗(y).

The prove is complete.

For the case of Jordan triple elementary maps on prime alternative rings
we have the following result.

Corollary 2.1. Let R be a 2 and 3-torsion free unital prime alternative
ring containing a nontrivial idempotent and let R′ be an arbitrary alternative
ring. Then every surjective Jordan triple elementary map (M,M∗) of R×R′

is additive.

Proof. Since R is prime, it is easy to check that the conditions (i) and
(ii) of Theorem 2.1 hold true, by [2, Theorem 2.2]. Now the proof goes
directly.

References

[1] K.I. Beidar, A.V. Mikhalev, A.M. Slinko, A criterion for non-
degenerate alternative and Jordan algebras to be prime (Russian), Tr. Mosk.
Mat. O.-va 50 (1987), 130 – 137.

[2] J.C.M. Ferreira, H. Guzzo, Jr., Jordan elementary maps on alternative
rings, Comm. Algebra 42 (2014), 779 – 794.

[3] I.R. Hentzel, E. Kleinfeld, H.F. Smith, Alternative rings with idem-
potent, J. Algebra 64 (1980), 325 – 335.

[4] P. Ji, Additivity of Jordan maps on Jordan algebras, Linear Algebra Appl. 431
(2009), 179 – 188.

[5] W. Jing, Jordan triple elementary maps on rings, arXiv:0706.0464v3, 2007
(http:/arxiv.org/pdf/0706.0464).

[6] W.S. Martindale, III When are multiplicative mappings additive?, Proc.
Amer. Math. Soc. 21 (1969), 695 – 698.

[7] R.D. Schafer, “An introduction to Nonassociative Algebras ”, Pure and Ap-
plied Mathematics, Vol. 22, Academic Press, New York-London, 1966.

[8] M. Slater, Prime alternative rings I, J. Algebra 15 (1970), 229 – 243.



18 j.c.m. ferreira, b.l.m. ferreira, h. guzzo jr

[9] K.A. Zhevlakov, A.M. Slin’Ko, I.P. Shestakov, A.I. Shirshov,
“Rings that are Nearly Associative ” (translated from the Russian by Harry
F. Smith), Pure and Applied Mathematics, 104, Academic Press, Inc., New
York-London, 1982.


