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Abstract : In this paper, we study the descent spectrum and the essential descent spectrum
of linear relations everywhere defined on Banach spaces. We prove that the corresponding
spectra are closed and we obtain that a Banach space X is finite dimensional if and only
if the descent and the essential descent of every closed linear relation acting in X is finite.
We give characterizations of the descent and the essential descent of linear relations and as
applications, some perturbation results are presented.
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1. Introduction

The notion of descent and essential descent of linear operators was studied
in several articles, for instance, we cite [5],[6], [11], [13] and [22]. In [3],
[10] and [18], this concept is extended to the case of linear relations. Many
properties of descent for the case of linear operators remain be valid in the
context of linear relations, sometimes under supplementary conditions. M.
Burgos, A. Kaidi, M. Mbekhta and M. Oudghiri in [6] and O. Bel Hadj Fredj
in [5] studied the descent spectrum and the essential descent spectrum of an
operator acting in Banach spaces. They show that the corresponding spectra
are compact subsets of the spectrum, and that for T a bounded operator
in X, σdes(T ) (respectively σe

des(T )) is empty precisely when T is algebraic.
Furthermore, they establish that the descent (respectively essential descent)
of every operator acting in X is finite if and only if X has finite dimension.
The purpose of this paper is to extend the results of the type mentioned above
to multivalued linear relations in Banach spaces.

To make the paper easily accessible some results from the theory of linear
relations in normed spaces due to R.W. Cross [9] and A. Sandovici, H. de Snoo,
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H. Winkler [18] are recalled in Section 2. In particular, results concerning
the descent of a linear relation are presented. Section 3 is devoted to the
study of the descent spectrum and the essential descent spectrum of a closed
linear relation T everywhere defined in a Banach space X. We show that the
corresponding spectra are two closed subsets of σ(T ), and that they are empty
precisely when the essential descent resolvent contains the boundary of the
spectrum of T .

Throughout this paper, X will be, unless otherwise stated, an infinite
dimensional complex Banach space. A multivalued linear operator in X or
simply a linear relation in X, T : X → X is a mapping from a subspace
D(T ) ⊂ X, called the domain of T , into the collection of nonempty subsets
of X such that T (α1x1 + α2x2) = α1Tx1 + α2Tx2 for all nonzero α1, α2

scalars and x1, x2 ∈ D(T ). We denote the class of linear relations in X by
LR(X). If T maps the points of its domain to singletons, then T is said to
be single-valued or simply operator. A linear relation T ∈ LR(X) is uniquely
determined by its graph, G(T), which is defined by G(T ) := {(x, y) ∈ X×X :
x ∈ D(T ) and y ∈ Tx}. We say that T is closed if its graph is a closed
subspace of X × X, furthermore the class of all closed linear relations in X
will be denoted by CR(X). The inverse of T is the linear relation T−1 given by
G(T−1) := {(y, x) : (x, y) ∈ G(T )}. The subspace T−1(0), denoted by N(T ),
is called the null space of T and we say that T is injective if N(T ) = {0}. The
range of T is the subspace R(T ) := T (X) and T is said to be surjective if its
range coincides with X. We have the following identities

D(T−1) = R(T ), R(T−1) = D(T ), N(T−1) = T (0).

Furthermore, we define the nullity and the defect of T by

α(T ) := dim(N(T )) and β(T ) := codim(R(T )),

respectively.
Let M be a subspace of X such that M ∩D(T ) ̸= ∅. Then the restriction

of T to M , denoted by T/M , is given by G(T/M ) := {(m, y) ∈ G(T ) : m ∈
M ∩ D(T )}. For linear relations S and T such that D(T ) ∩ D(S) ̸= ∅, the
sum S + T is the linear relation given by G(S + T ) := {(x, y + z) : (x, y) ∈
G(S), (x, z) ∈ G(T )} and the relation λT , for λ ∈ C, is defined by G(λT ) :=
{(x, λy) : (x, y) ∈ G(T )}. While T − λ stands for T − λI, where I is the
identity operator on X. Let S, T ∈ LR(X), the product ST is defined as the
relation G(ST ) := {(x, z) : (x, y) ∈ G(T ), (y, z) ∈ G(S) for some y ∈ X}.
The product of relations is clearly associative. Hence for T ∈ LR(X) and
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n ∈ Z, Tn is defined as usual with T 0 = I and T 1 = T . It is easily seen that
(T−1)n = (Tn)−1, n ∈ Z.

We define the singular chain manifold of T ∈ LR(X) (see [18, (3.3)]) by

Rc(T ) :=

(
+∞∪
n=0

N(Tn)

)
∩

(
+∞∪
n=0

Tn(0)

)
.

We say that T has trivial singular chain if Rc(T ) = {0}. Let M and N be
subspaces of X and X ′ (the dual space of X) respectively. Then M⊥ := {x′ ∈
X ′ : x′(M) = 0} and N⊤ := {x ∈ X : x′x = 0,∀x′ ∈ N}. The adjoint T ′ of T
is defined by

G(T ′) := G(−T−1)⊥ ⊂ X ′ ×X ′.

We let QT : X → X/
T (0)

be the natural quotient map on X with kernel T (0).

Clearly QTT is a linear operator and that T ∈ LR(X) is closed if and only if
QTT is closed and T (0) is closed in R(T ) (see [9, II.5.3]). For x ∈ X we define
∥Tx∥ := ∥QTTx∥ and thus ∥T∥ = sup∥x∥≤1 ∥Tx∥ = ∥QTT∥. We note that
this quantity is not a true norm since ∥T∥ = 0 does not imply T = 0. T is said
to be continuous if for each open set V in R(T ), T−1(V ) is an open set in D(T )
equivalently ∥T∥ < ∞, open if its inverse is continuous equivalently γ(T ) > 0,
where γ(T ) := sup{λ ≥ 0 : λd(x,N(T )) ≤ ∥Tx∥, x ∈ D(T )}. Continuous
everywhere defined linear relations are referred to as bounded relations. Let
T ∈ CR(X), we say that T is lower semi-Fredholm, if R(T ) is closed and
codimR(T ) is finite.

For T ∈ LR(X), the kernels and the ranges of the iterates Tn, n ∈ N, form
two increasing and decreasing chains, respectively, i.e the chain of kernels

N(T 0) = {0} ⊂ N(T ) ⊂ N(T 2) ⊂ · · · ,

and the chain of ranges

R(T 0) = X ⊃ R(T ) ⊃ R(T 2) ⊃ · · · .

Furthermore, (see [18, Lemma 3.4]), ifN(T k) = N(T k+1) for some k ∈ N, then
N(Tn) = N(T k) for all nonnegative integers n ≥ k and if R(T k) = R(T k+1)
for some k ∈ N, then R(Tn) = R(T k) for all nonnegative integers n ≥ k. This
statement leads to define the ascent of T by
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a(T ) := inf
{
n ∈ N : N(Tn) = N(Tn+1)

}
,

whenever these minima exist. If no such numbers exist the ascent of T is
defined to be ∞. Likewise, this statement leads to the introduction of the
descent of T by

d(T ) := inf
{
n ∈ N : R(Tn) = R(Tn+1)

}
,

the infimum over the empty set is taken to be ∞. For T ∈ LR(X), we consider
the decreasing sequence βn(T ) := dimR(Tn)/R(Tn+1), n ∈ N (see Lemma 2.3
below). We shall say that T has finite essential descent if

de(T ) := inf
{
n ∈ N : βn(T ) < ∞

}
,

where the infimum over the empty set is taken to be infinite, is finite. Clearly
d(T ) = inf{n ∈ N : βn(T ) = 0} and if T ∈ CR(X) is lower semi-Fredholm
then T has finite essential descent precisely we have de(T ) = 0. Evidently, a
linear relation with finite descent has a finite essential descent. In the case
when de(T ) < ∞ we denote q(T ) := inf{q ∈ N : βn(T ) = βq(T ), ∀n ≥ q}.

Let T ∈ CR(X). The resolvent set of T is the set

ρ(T ) :=
{
λ ∈ C : T − λ is injective and surjective

}
.

The spectrum of T is the set σ(T ) : C\ρ(T ). Recall (see [9, VI.1.3]), that ρ(T )
is an open set and hence σ(T ) is a closed subset of C. The ascent resolvent, the
descent resolvent and the essential descent resolvent sets of a linear relation
T ∈ LR(X) are respectively defined by

ρasc(T ) :=
{
λ ∈ C : a(T − λ) < ∞ and R((T − λ)a(T−λ)+1) is closed

}
,

ρdes(T ) :=
{
λ ∈ C : d(T − λ) < ∞

}
,

ρedes(T ) :=
{
λ ∈ C : de(T − λ) < ∞

}
.

The complementary sets σasc(T ) := C\ρasc(T ), σdes(T ) := C\ρdes(T ) and
σe
des(T ) := C\ρedes(T ) are the ascent spectrum, the descent spectrum and the

essential descent spectrum of T , respectively.
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2. Preliminary and auxiliary results

In this section we collect some results of the theory of multivalued linear
operators which are used to prove the main results in Section 3. The proof of
the next lemma can be found in [9].

Lemma 2.1. ([9, I.3.1]) Let T ∈ LR(X,Y ). Then

(i) TT−1(M) = M ∩R(T ) + T (0), for all M ⊂ Y ,

(ii) T−1T (M) = M ∩D(T ) +N(T ), for all M ⊂ X,

(iii) T (M +N) = T (M) + T (N), for all M ⊂ X and N ⊂ D(T ).

The next lemma is elementary but it is essential to prove Lemma 2.3.

Lemma 2.2. ([18, Lemma 2.1 and Lemma 2.3]) LetM andN be subspaces
of a vector space X. Then

(i) dimM/M ∩N = dim(M +N)/N .

(ii) Assume that N ⊂ M then dimX/N = dimX/M + dimM/N.

Let T be a linear relation acting on X. The sequence βn(T ) :=
dimR(Tn)/R(Tn+1) play the fundamental role in the definition of the essen-
tial descent of T . In the next lemma we show that this sequence is decreasing.

Lemma 2.3. Let T ∈ LR(X). Then

(i) dimR(Tn)/R(Tn+1) ≤ dimR(Tn−1)/R(Tn) for all n ≥ 1.

(ii) If there exists n ∈ N such that dimR(Tn)/R(Tn+1) is finite, then
dimR(Tm)/R(Tm+1) is finite for all m ≥ n.

(iii) dimR(Tn)/R(Tn+1) < ∞ if and only if dimR(Tn)/R(Tn+k) < ∞ for
all k ≥ 1.

Proof. (i) Let y1, y2, . . . , yk ∈ R(Tn) such that y1, y2, . . . , yk are linearly
independent in Mn+1 = R(Tn)/R(Tn+1). Then there exist x1, x2, . . . , xk ∈
R(Tn−1) such that yi ∈ Txi for all 1 ≤ i ≤ k. Let α1, α2, . . . , αk be scalars
such that

0 =
k∑

i=1

αixi =
k∑

i=1

αixi in Mn.
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Then
∑k

i=1 αixi ∈ R(Tn). It follows that
∑k

i=1 αiyi ∈ R(Tn+1), and hence∑k
i=1 αiyi = 0. Thus αi = 0 for all 1 ≤ i ≤ k, which implies that x1, x2, . . . xk

are linearly independent in Mn. Now for any k linearly independent vectors
in Mn+1 there exist k linearly independent vectors in Mn. This implies that
dimMn+1 ≤ dimMn.

(ii) By induction, suppose dimR(Tm)/R(Tm+1) < ∞ for some m ≥ n. Then,
by (i), dimR(Tm+1)/R(Tm+2) ≤ dimR(Tm)/R(Tm+1) < ∞.

(iii) Assume that dimR(Tn)/R(Tn+1) < ∞ then by Lemma 2.2,

dimR(Tn)/R(Tn+k) =
k−1∑
i=0

dimR(Tn+i)/R(Tn+i+1) < ∞.

We shall make frequent use of the following result which is the multivalued
version of the corresponding result for operators. It is used essentially to prove
Theorem 3.1.

Lemma 2.4. ([18, Lemma 4.1 and Lemma 4.4]) Let T ∈ LR(X) be every-
where defined and let n,m ∈ N. Then

(i) R(Tm)/R(Tm+n) ∼= X/R(Tn) +N(Tm).

(ii) If, moreover, Rc(T ) = {0}, then N(Tm+n)/N(Tn) ∼= N(Tm) ∩R(Tn).

There exist closed linear relations S and T such that S + T is not closed.
We shall use the following result which gives sufficient conditions for the sum
of two closed linear relations to be closed.

Lemma 2.5. ([4, Lemma 14]) Let X be a Banach space and let S, T ∈
CR(X) be continuous with S(0) ⊂ T (0) and D(T ) ⊂ D(S). Then S + T is
closed.

The proof of the next result can be found in [18].

Lemma 2.6. ([18, Lemma 7.2]) Let T ∈LR(X). Then N(T −λ)n⊂R(Tm)
for all n,m ∈ N and for each λ ̸= 0.

An important role is played by certain root manifolds of a relation T in
X. We have the following results which are sometimes useful.
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Lemma 2.7. Let T ∈ LR(X). Then

(i) If Rc(T ) = {0}, then Rc(T/M ) = {0} for all subspaces M of X.

(ii) Rc(T ) = {0} if and only if Rc(T − λ) = {0}, for all λ ∈ C.
(iii) ρ(T ) ̸= ∅ if and only if ρ(T − λ) ̸= ∅, for all λ ∈ C.
(iv) If ρ(T ) ̸= ∅, then Rc(T ) = {0}.

Proof. (i) and (ii) are proved in [20, Lemma 3.1 and Lemma 7.1]. (iii) is
trivial and (iv) is a direct consequence of [18, Lemma 6.1] .

It is very well known that for a bounded operator in X, T−1(M) is closed
whenever M is a closed subspace of X. In the following we give conditions
for T−1(M) to be closed if T is a multivalued linear operator.

Lemma 2.8. Let T ∈ CR(X) be everywhere defined and letM be a closed
subspace of X such that T (0) ⊂ M . Then T−1(M) is closed.

Proof. Since T is closed and everywhere defined then T is bounded
(see [9, III.4.2]), and hence QTT is a bounded operator. On the other hand
QT (M) = (M + T (0))/T (0) = M/T (0) is closed (as M and T (0) are both
closed, see [4, Lemma 13]). Hence (QTT )

−1QT (M) is closed. But trivially we
have that (QTT )

−1QT (M) = T−1(M+N(QT )) = T−1(M+T (0)) = T−1(M).

The next lemma is used in order to show Lemma 3.8.

Lemma 2.9. Let T ∈ CR(X) be everywhere defined and let M be a closed
subspace of Y such that T (0) ∩M = {0} or T (0) ⊂ M . Suppose M + R(T )
and M ∩ R(T ) are closed. If either T (0) or M ∩ R(T ) has finite dimension
then, R(T ) is closed.

Proof. Write for short N = (M+T (0))∩R(T ) = M∩R(T )+T (0) if T (0)∩
M = {0} and N = M ∩R(T ) if T (0) ⊂ M . Clearly N is a closed subspace of
X such that T (0) ⊂ M and hence T−1(N) is closed (by Lemma 2.8). Now we
define the linear relation

T̂ : (X/T−1(N))⊕ (M/N) → (R(T ) +M)/N

by
T̂ (x+m) := {y +m : y ∈ Tx}.
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It is easy to check that T̂ is correctly defined and moreover T̂ is single valued.
In fact, for all y ∈ T (0), y = 0 (as T (0) ⊂ N), so that T̂ (0) = 0. On
the other hand clearly T̂ is surjective and injective. Indeed injective, let
x ∈ X and m ∈ M such that T̂ (x + m) = 0 then Tx + m ⊂ N and hence
Tx ⊂ (M +N) ∩R(T ) = N . It follows that m ∈ N and x ∈ T−1(N), so that
x +m = 0. Since TT−1(N) = N then for all x ∈ X,m ∈ M and y ∈ Tx we
have

∥T̂ (x+m)∥ = ∥y +m∥ = d(y +m,N)

≤ d(y,N) + d(m,N)

= d(y, TT−1(N)) + d(m,N) = inf
x′∈T−1(N)

d(y, Tx′) + d(m,N).

Which implies that

∥T̂ (x+m)∥ ≤ inf
x′∈T−1(N)

d(Tx, Tx′) + d(m,N)

= inf
x′∈T−1(N)

∥Tx− Tx′∥+ d(m,N)

≤ ∥T∥ inf
x′∈T−1(N)

∥x− x′∥+ d(m,N)

= ∥T∥d(x, T−1(N)) + d(m,N)

≤ (1 + ∥T∥)
(
d(x, T−1(N)) + d(m,N)

)
= (1 + ∥T∥)∥x+m∥.

Thus T̂ is bounded and since T̂ is bijective then, by the Mapping Theorem
of linear operators, T̂ (X/(T−1(N))) is closed. Now let P : R(T ) + M →
(R(T ) +M)/N be the canonical projection. Then R(T ) = P−1(R(T )/N) =
P−1(T̂ (X/T−1(N)). Thus R(T ) is closed.

Lemma 2.10. Let X,Y be two Banach spaces and T ∈ CR(X). Then
D(T ) endowed with the norm | · | defined by

|x| := ∥x∥+ inf{∥y∥ : y ∈ Tx} = ∥x∥+ ∥Tx∥,

is a Banach space.

Proof. Since T is closed then QT is closed (see [9, Proposition II.5.3]),
which implies that G(QT ) is closed. On the other hand, T (0) is closed (as
T is closed) so that Y/T (0) is a Banach space. It follows that G(QT ) is
complete. Now, clearly (D(T ), | · |) and G(QT ) are isomorphic. This prove
that (D(T ), | · |) is complete.
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3. Characterization of the descent and
the essential descent spectrum

In this section we give characterization and some properties of the descent
spectrum and the essential descent spectrum of linear relations everywhere de-
fined in Banach spaces. We investigate that the corresponding spectrums are
closed and that the descent (respectively essential descent) of every multival-
ued linear operator acting in X is finite if and only if X has finite dimension.
For this end, we first prove some technical lemmas.

Definition 3.1. Let T ∈ LR(X), let k and mi, 1 ≤ i ≤ n be some
positive integers, and let λi ∈ C, 1 ≤ i ≤ k be some distinct constants. Let
P (X) =

∏k
i=1(X − λi)

mi . Then the polynomial P in T is the linear relation

P (T ) :=
k∏

i=1

(T − λi)
mi .

The behaviour of the domain, the range, the null space and the multivalued
part of P (T ) is described in the following lemma which is due to Sandovici
[19].

Lemma 3.1. ([19, 3.2, 3.3, 3.4, 3.5 and 3.6]) Let T be a linear relation
in a vector space X, let n ∈ N, λi ∈ K,mi ∈ N, 1 ≤ i ≤ k. Assume that λi,
1 ≤ i ≤ k are distinct and let P (T ) be as in Definition 3.1. Then

(i) D(P (T )) = D(T
∑k

i=1 mi).

(ii) R(P (T )) =

k∩
i=1

R(T − λi)
mi .

(iii) N(P (T )) =

k∑
i=1

N(T − λi)
mi .

(iv) (T − λ)k(0) = T k(0), if λ ∈ K.

(v) P (T )(0) = T
∑k

i=1 mi(0).

As consequence of the above lemma we have the next result which will be
used in the sequel.



126 e. chafai, m. mnif

Lemma 3.2. Let T be a linear relation on X everywhere defined. Let

P (X) =
k∏

i=1

(X − λi) = Xk +
k−1∑
j=0

ajX
j

and

Q(X) =
k∏

i=1

(X − µi) = Xk +
k−1∑
j=0

bjX
j .

Then

(i) P (T ) = T k +

k−1∑
j=0

ajT
j .

(ii) P (T )−Q(T ) = (P −Q)(T ) + T k − T k.

(iii) P (T )Q(T ) = (PQ)(T ).

The following purely algebraic lemma helps to read Definition 3.2 below.
There exhibits some useful connections between the kernels and the ranges of
the iterates Tn of a linear relation T on X.

Lemma 3.3. ([14, Lemma 3.7]) Let T ∈ LR(X). Then the following state-
ments are equivalent

(i) N(T ) ⊂ R(Tn) for each n ∈ N.

(ii) N(Tm) ⊂ R(T ) for each m ∈ N.

(iii) N(Tm) ⊂ R(Tn) for each m ∈ N and n ∈ N.

Definition 3.2. We say that a linear relation T ∈ LR(X) is regular if
R(T ) is closed and T verifies one of the equivalent conditions of Lemma 3.3.

Trivial examples of regular linear relations are surjective multivalued op-
erators as well as injective multivalued operators with closed range.

Lemma 3.4. Let T ∈ CR(X) be regular and everywhere defined with
finite codimensional range. Then

codimR(Tn) = n codimR(T )

for all positive integers n.
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Proof. Let n ≥ 1. Since T is regular then, X/R(T ) = X/R(T ) +N(Tn−1)
and according to Lemma 2.4(i), it follows that X/R(T ) ∼= R(Tn−1)/R(Tn).
On the other hand, using Lemma 2.2, we obtain that dim[(X/R(Tn−1)) ×
(R(Tn−1)/R(Tn))] = dim(X/R(Tn)), which implies that

codimR(Tn) = dim(X/R(Tn)) = dim[(X/R(Tn−1))× (R(Tn−1)/R(Tn))]

= dim(X/R(Tn−1)) + dim(R(Tn−1)/R(Tn))

= codimR(Tn−1) + codimR(T )

Thus, a successive repetition of this argument leads to codimR(Tn) =
n codimR(T ).

As consequence of [8, Theorem 3.1] we have that

Lemma 3.5. Let T ∈ LR(X) be everywhere defined and with trivial sin-
gular chain. Then

ind(Tn) = n ind(T ) (3.1)

The next lemma is elementary but essential to prove Theorem 3.1.

Lemma 3.6. Let T ∈ LR(X) be such that de(T ) is finite. Then

N(T ) ∩R(T q) = N(T ) ∩R(T q+n)

for some q ∈ N and for all n ∈ N.

Proof. It is very well known (see [16, Lemma 22.2]) that if U, V and W
are subspaces of a Banach space X such that U ⊂ W then,

(U + V ) ∩W = U + (V ∩W ). (3.2)

Let q = q(T ), and let T̂ : R(T q)/R(T q+1) → R(T q+1)/R(T q+2) be the quo-
tient map defined by T̂ x := {ỹ : y ∈ Tx}. Then T̂0 = 0̃ since T (0) ⊂ R(T q+2).
It follows that T̂ is single valued and hence T̂ x = ỹ for any (then for all)
y ∈ Tx. According to (3.2), Lemma 2.2 and Lemma 2.1, we obtain that

dimN(T̂ ) = dim[(T−1(R(T q+2)) ∩R(T q))/R(T q+1)]

= dim[(N(T ) +R(T q+1)) ∩R(T q)/R(T q+1)]

= dim[((N(T ) ∩R(T q)) +R(T q+1))/R(T q+1)]

= dim[(N(T ) ∩R(T q))/(N(T ) ∩R(T q+1))].
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On the other hand it is easy to see that T̂ is surjective. Furthermore, since
dimR(T q)/R(T q+1) = dimR(T q+1/R(T q+2), then T̂ is injective, which im-
plies that dimN(T̂ ) = 0. Therefore, N(T ) ∩R(T q) = N(T ) ∩R(T q+1).

The next lemma investigates the stability of certain Fredholm type prop-
erties of a linear relation under small perturbation. It is used to prove Theo-
rem 3.1.

Lemma 3.7. ([2, Theorem 23, Theorem 25 and Theorem 27]) Let T ∈
CR(X) be lower semi-Fredholm and regular. Then there exists δ > 0 such
that T − λ is both lower semi-Fredholm and regular for all |λ| < δ. Moreover
β(T − λ) = β(T ) for 0 < |λ| < δ.

In [6], M. Burgos, A. Kaidi, M. Mbekhta and M. Oudghiri prove that
ρdes(T ) is an open set for every bounded operator in X. In the following we
show that both ρdes(T ) and ρedes(T ) are open for each T ∈ CR(X) everywhere
defined, and if moreover T is regular then σdes\σe

des(T ) is also open.

Theorem 3.1. Let T ∈ CR(X) be everywhere defined for which de(T ) is
finite and suppose ρ(T ) ̸= ∅. Then there exists δ > 0 such that for 0 < |λ| < δ
and q = q(T ), we have the following assertions:

(i) T − λ is regular.

(ii) codimR(T − λ)n = n codimR(T ) = n dim(R(T q)/R(T q+1)) for all
n ∈ N.

(iii) dimN(T − λ)n = n dim(N(T q+1)/N(T q)) for all n ∈ N.

Proof. Since T is closed and ρ(T ) ̸= ∅ then T q is closed [10, Lemma 3.1].
It follows that T−q is closed and hence, from Lemma 2.10, R(T q) = D(T−q)
equipped with the norm | · | defined by

|y| := ∥y∥+ inf
{
∥x∥ : x ∈ X and y ∈ T qx

}
= ∥y∥+ ∥T−qy∥,

is a Banach space. Let T0 := T/R(T q). Then T0 is closed and lower semi-
Fredholm and hence by [1, Corollary 1.8] R(T0) is closed. Indeed T0 is closed,

let (xn, yn)n be a sequence of G(T0) converging to (x, y). Then xn
|·|→x and

yn
|·|→ y so that x, y ∈ R(T q). Moreover xn

∥·∥→x and yn
∥·∥→ y which implies

that (x, y) ∈ G(T ). Thus (x, y) ∈ G(T0). Further, since R(T0) = R(T q+1) is
of finite codimension in R(T q) then T0 is lower semi-Fredholm. According to
Lemma 3.6, N(T0) = N(T )∩R(T q) = N(T )∩R(T q+n) ⊂ R(T q+n) = R(Tn

0 ).
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Thus T0 is regular. On the other hand let α ∈ ρ(T ) then {0} = N(T − α) ⊃
N(T − α) ∩R(T q) = N(T0 − α) and R(T0 − α) = (T − α)(R(T q)) = T q[(T −
α)(X)] = T q(X) = R(T q) (as T q and T − α commute). This implies that
α ∈ ρ(T0) and thus ρ(T0) ̸= ∅. Furthermore, by Lemma 3.7 there exists δ > 0
such that T0 − λ is regular, lower semi-Fredholm and β(T0 − λ) = β(T0), for
all 0 < |λ| < δ. Now, for n ≥ 1 and λ ̸= 0, we consider the polynomials
P, Q defined by P (z) = (z − λ)n and Q(z) = zq, for all z ∈ C. Clearly that
P and Q have no common divisors, then there exist two polynomials u and
v such that 1 = P (z)u(z) + Q(z)v(z) for all z ∈ C. Hence by Lemma 3.2,
I + Tm − Tm = (T − λ)nu(T ) + T qv(T ) for some m ≥ max(n, q) and thus
X = R(T − λ)n + R(T q). Since T0 is closed then by Lemma 2.5, T0 − λ is
closed. It follows by Lemma 3.4, Lemma 2.2 and Lemma 3.7 that

codimR(T − λ)n = dimX/R(T − λ)n

= dim[(R(T q) +R(T − λ)n)/R(T − λ)n]

= dim[R(T q)/R(T q) ∩R(T − λ)n]

= codimR(T0 − λ)n

= n codimR(T0 − λ)

= n codimR(T0)

= n dimR(T q)/R(T q+1).

This implies that T − λ is semi-Fredholm. Moreover, by Lemma 2.6, N(T −
λ) = N(T − λ) ∩ R(T q) = N(T0 − λ) ⊆ R(T0 − λ)n ⊆ R(T − λ)n, which
implies that T − λ is regular. For the statement (iii), since ρ(T ) ̸= ∅ then
ρ(T0) ̸= ∅ and hence ρ(T0 − λ) ̸= ∅, which implies that Rc(T0 − λ) = {0} (see
Lemma 2.7). Therefore, using (3.1), Lemma 3.7 and Lemma 3.4, we have that

dimN(T − λ)n = dimN(T − λ)n ∩R(T q)

= dimN(T0 − λ)n

= ind(T0 − λ)n + codimR(T0 − λ)n

= n[ind(T0 − λ) + codimR(T0 − λ)]

= n[ind(T0) + codimR(T0)]

= n dimN(T0) = n dimN(T ) ∩R(T q)

Since, by Lemma 2.4, N(T q+1)/N(T q) ∼= N(T ) ∩R(T q) then

dimN(T − λ)n = n dim(N(T ) ∩R(T q)) = n dim(N(T q+1)/N(T q)).
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As a direct consequence of Theorem 3.1 we obtain the following result for
closed multivalued linear operators everywhere defined and with finite ascent.

Corollary 3.1. Let T ∈ CR(X) be everywhere defined with finite de-
scent. Suppose ρ(T ) ̸= ∅. Then there exists δ > 0 such that for all 0 < |λ| < δ,

(i) T − λ is surjective.

(ii) dimN(T − λ) = dimN(T q+1)/N(T q) = dim(N(T ) ∩ R(T q)) for some
q ∈ N.

(iii) If, moreover, a(T ) < ∞, then T − λ is bijective.

Corollary 3.2. Let T ∈ CR(X) be everywhere defined with ρ(T ) ̸= ∅.
Let λ0 ∈ σ(T ) such that T − λ0 has finite ascent and descent. Then λ0 is an
isolated point of σ(T ) and it is in the boundary of the spectrum of T .

Proof. Let λ0 ∈ σ(T ) such that T − λ0 has finite ascent and descent.
Clearly by Lemma 2.5 and Lemma 2.7 that T −λ0 is closed and ρ(T −λ0) ̸= ∅.
Hence there exists by Corollary 3.1, δ > 0 such that T − µ is injective and
surjective for all 0 < |µ − λ0| < δ. This implies that D(λ0, δ)\{λ0} ⊂ ρ(T ).
Thus λ0 is isolated and it is in the boundary of the spectrum of T .

Also as a consequence of Theorem 3.1, we have

Corollary 3.3. Let T ∈ CR(X) be everywhere defined and suppose
ρ(T ) ̸= ∅. Then ρdes(T ) and ρedes(T ) are open subsets and hence σdes(T ) and
σe
des(T ) are closed subsets of σ(T ). Moreover, if T is regular then

σdes(T )\σe
des(T ) is an open set.

Proof. The openness of ρedes(T ) and ρdes(T ) follows directly from Theo-
rem 3.1 and Corollary 3.1, respectively. Now let λ ∈ σdes(T )\σe

des(T ) and let
q := q(T − λ). We see easily, by Lemmas 2.5 and 2.7, that T − λ is closed
and ρ(T − λ) ̸= ∅. Therefore, Theorem 3.1 ensures that there exists an open
neighborhood U of λ such that U ∩ σe

des(T ) = ∅ and codimR(T − α)n =
n dim(R(T − λ)q/R(T − λ)q+1), for all α ∈ U and n ∈ N. Since T − λ has
infinite descent, dim(R(T − λ)q/R(T − λ)q+1) is nonzero, and consequently
(codimR(T − α)n)n is a strictly increasing sequence for each α ∈ U . Thus
U ⊂ σdes(T ), as desired.

For T ∈ LR(X) we define E(T ) := ρdes(T ) ∩ ρasc(T )\ρ(T ) = ρdes(T ) ∩
ρasc(T ) ∩ σ(T ). The descent spectrum, and therefore the essential descent
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spectrum, of a linear relation can be empty. In the next theorem we show
that this occurs precisely when ∂σ(T ) ⊆ ρedes(T ).

Theorem 3.2. Let T ∈ CR(X) be everywhere defined with ρ(T ) ̸= ∅.
Then

ρedes(T ) ∩ ∂σ(T ) = ρdes(T ) ∩ ∂σ(T ) = E(T ). (3.3)

Moreover, the following assertions are equivalent:

(i) σdes(T ) = ∅.
(ii) σe

des(T ) = ∅.
(iii) ∂σ(T ) ⊆ ρdes(T ).

(iv) ∂σ(T ) ⊆ ρedes(T ).

The proof of this theorem requires the following lemma.

Lemma 3.8. Let T ∈ CR(X) be everywhere defined such that ρ(T ) ̸= ∅.
Suppose a(T ) and d(T ) are both finite. Then R(Tn) is closed, for all n ≥ a(T ).

Proof. First observe, since T is closed and ρ(T ) ̸= ∅ then Tn is closed for
all n ∈ N (by [10, Lemma 3.1 ]) and hence N(Tn) is closed. On the other hand
D(T ) = X leads to D(Tn) = X and since T has finite ascent and descent, it
follows by ([18, Theorem 5.7]) that a(T ) = d(T ). Let a := a(T ), d := d(T )
and fix n ≥ a. Lemma 5.5 of [18] leads to N(Tn) ∩R(Tn) = {0}. Now, since
T is everywhere defined, Lemma 5.6 of [18] ensures that N(Tn)∩R(Tn) = X.
According to Lemma 2.9, it follows that R(Tn) is closed.

Proof of Theorem 3.2. According to Corollary 3.2, the inclusions ρedes(T )∩
∂σ(T ) ⊃ ρdes(T )∩∂σ(T ) ⊃ E(T ) are trivial. Now, let λ in the boundary of the
spectrum of T such that T−λ has finite essential descent. By Lemma 2.5, T−λ
is closed and Lemma 2.7 leads to ρ(T − λ) ̸= ∅. Then by Theorem 3.1, there
exists a punctured neighborhood V of λ such that dimN(T−α) = dim(N(T−
λ)p)/(N(T−λ)q) and codimR(T−α) = dim(R(T−λ)q/R(T−λ)q+1) for some
q ∈ N and for all α ∈ V . Moreover T − α is closed for all α (see Lemma 2.5)
and, since λ ∈ ∂σ(T ) and ρ(T ) ̸= ∅, then there exists α0 ∈ V \σ(T ) ̸= ∅.
Therefore

0 = dimN(T − α0) = codimR(T − α0)

= dim(N(T − λ)q+1)/N((T − λ)q)

= dim(R((T − λ)q)/R((T − λ)q+1)).
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This means that T − λ is of finite ascent and descent. Lemma 3.8 leads to
R(T a(T )+1) is closed and therefore λ ∈ E(T ).

All the desired implications (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) are clear from (3.3).
For (iv) ⇒ (i), assume that ∂σ(T ) ⊆ ρedes(T ) then ∂σ(T ) = E(T ). Accord-
ing to Lemma 3.2, it follows that all points of ∂σ(T ) are isolated and hence
∂σ(T ) = σ(T ). By (3.3) we conclude that σ(T ) ⊂ ρdes(T ) ∩ ρasc(T ). Which
means that C = σ(T ) ∪ ρ(T ) ⊂ ρdes(T ) ∩ ρasc(T ). Hence ρdes(T ) = C, which
means that σdes(T ) = ∅.

Corollary 3.4. LetX be a Banach space and letK(X) := {T ∈ CR(X) :
D(T ) = X, and ρ(T ) ̸= ∅}. The following assertions are equivalent:

(i) X is finite dimensional.

(ii) T is of finite descent for every T ∈ K(X).

(iii) T is of finite essential descent for every T ∈ K(X).

(iv) σdes(T ) is empty for every T ∈ K(X).

(v) σe
des(T ) is empty for every T ∈ K(X).

Proof. The implications (i)⇒ (ii)⇒ (iii) and (ii)⇒ (iv)⇒ (v) are obvious.
Using Lemma 2.7 and Lemma 2.5, it is easy to see that T ∈ K(X) if and only
if T −λ ∈ K(X) for all λ ∈ C. It follows by Theorem 3.2, that (iii) entails (ii).
For (v) ⇒ (i), suppose σe

des(T ) is empty for every T ∈ K(X). Then σe
des(T )

is empty for every T ∈ L(X) (the space of all bounded operators on X). It
follows by [6, Corollary 1.10)] that X is finite dimensional.

Theorem 3.3. Let T ∈ CR(X) be everywhere defined such that ρ(T ) ̸= ∅
and let Ω be a connected component of ρedes(T ). Suppose ρ(T ) ̸= ∅. Then

Ω ⊂ σ(T ) or Ω\E(T ) ⊆ ρ(T ).

Proof. Let Ωr :={λ ∈ Ω : T−λ is both regular and lower semi-Fredholm}.
According to Theorem 3.1, Ω\Ωr is at most countable, and hence Ωr is
connected. Suppose Ω ∩ ρ(T ) is non-empty, then so is Ωr ∩ ρ(T ). Using
[4, Corollary 17] and Lemma 3.7 we obtain that codimR(T − λ) = 0 and by
the continuity of the index (see [4, Theorem 15]), we get that N(T−λ) = 0 for
all λ ∈ Ωr. Thus Ωr ⊆ ρ(T ). Consequently, Ω\Ωr consists of isolated points
of the spectrum with finite essential descent. That is,

Ω\Ωr ⊆ ρedes(T ) ∩ ∂σ(T ) = E(T ).

Therefore, Ω\E(T ) ⊆ Ωr ⊆ ρ(T ).
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Corollary 3.5. Let T ∈ CR(X) be everywhere defined such that ρ(T ) ̸=
∅. The following assertions are equivalent:

(i) σ(T ) is at most countable.

(ii) σdes(T ) is at most countable.

(iii) σe
des(T ) is at most countable.

In this case, σe
des(T ) = σdes(T ) and σ(T ) = σdes(T ) ∪ E(T ).

Proof. Since the implications (i) ⇒ (ii) ⇒ (iii) are obvious, to finish the
proof it suffices to show that (iii) ⇒ (i). Suppose σe

des(T ) is at most countable,
then ρedes(T ) is connected. Since ρ(T ) ̸= ∅ it follows, by Theorem 3.3, that
ρedes(T )\E(T ) ⊆ ρ(T ). Which implies that σ(T ) = σe

des(T ) ∪ E(T ) is at
most countable. Finally, for the last assertion, assume that σ(T ) is at most
countable. Then by Corollary 3.3, we obtain that σdes(T )\σe

des(T ) is at most
countable and open. Therefore it is empty. Thus σe

des(T ) = σdes(T ).

Remark 3.1. An immediate consequence of the previous corollary that if
T ∈ CR(X) be everywhere defined with ρ(T ) ̸= ∅, then σ(T )\{0} ⊂ E(T ) if
and only if σdes(T ) ⊂ {0} if and only if σe

des(T ) ⊂ {0}.

4. Descent, essential descent spectrum and perturbations

We start this section by the next lemma which are used in the sequel.

Lemma 4.1. Let T ∈ LR(Y,Z) and S,R ∈ LR(X). If T (0) ⊂ N(S) or
T (0) ⊂ N(R) then

(R+ S)T = RT + ST.

Proof. Suppose T (0) ⊂ N(R), the case T (0) ⊂ N(S) is similar. The
inclusion (R + S)T ⊂ RT + ST is proved in [9, I.4.2 (d)]. For the reverse
inclusion, let x ∈ D(RT +ST ) = D(RT )∩D(ST ) = T−1(D(R))∩T−1(D(S)).
Then there exist y1 ∈ Tx∩D(R) and y2 ∈ Tx∩D(S), so that y1−y2 ∈ T (0) ⊂
N(R) ⊂ D(R). Hence y2 = (y2 − y1) + y1 ∈ D(R) ∩ D(S) = D(R + S). It
follows that Tx∩D(R+S) ̸= ∅. Thus x ∈ T−1(D(R+S)) = D(R+S)T and
hence

D(RT + ST ) ⊂ D((R+ S)T ). (4.1)
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Now we show that (RT + ST )x ⊂ (R + S)Tx, for x ∈ D(RT + ST ). Let
y ∈ (RT + ST )x = RTx + STx. Then y ∈ Ry1 + Sy2 for some y1, y2 ∈ Tx.
Hence y1 − y2 ∈ T (0) ⊂ N(R). It follows that y ∈ R(y1 − y2 + y2) + S(y2) =
R(y1 − y2) + R(y2) + S(y2) = R(0) + Ry2 + Sy2 = Ry2 + Sy2 = (R + S)y2.
Hence y ∈ (R+ S)Tx. Thus

(RT + ST )x ⊂ (R+ S)Tx (4.2)

(4.1) and (4.2) implies that RT + ST ⊂ (R + S)T . The reverse inclusion is
proved in [9, I.4.2].

Lemma 4.2. Let T ∈ CR(X) be everywhere defined and F be a bounded
operator such that TF = TF . Suppose T (0) ⊂ N(T ) or T (0) ⊂ N(F ). Then,
for every n ∈ N,

(i) (T + F )n =

n∑
i=0

(
n

i

)
Tn−iF i, for all n ∈ N,

(ii) Tn − Fn = (

n−1∑
i=0

(−1)iTn−1−iF i)(T − F ).

Proof. (i) For n = 0 and n = 1 the result is trivial. Let n ≥ 1 and suppose
(T + F )n =

∑n
i=0(

n
i )T

n−iF i. Using [9, I.4.2 (d) and (e)] and Lemma 4.1, it
follows that

(T + F )n+1 = (T + F )n(T + F ) = (T + F )nT + (T + F )nF

=

( n∑
i=0

(
n

i

)
Tn−iF i

)
T +

( n∑
i=0

(
n

i

)
Tn−iF i

)
F

=
n∑

i=0

(
n

i

)
Tn−i+1F i +

n∑
i=0

(
n

i

)
Tn−iF i+1

=

n∑
i=0

(
n

i

)
Tn−i+1F i +

n+1∑
i=1

(
n

i

)
Tn−i+1F i

= Tn+1 +
n∑

i=1

(
n+ 1

i

)
Tn−i+1F i + Fn+1

=
n∑

i=0

(
n+ 1

i

)
Tn+1−iF i.
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(ii) First observe that Tn +T kF j −T kF j = Tn for all 0 ≤ k ≤ n and j ∈ N.
It follows that( n−1∑

i=0

Tn−1−iF i

)
(T − F )

=
(
Tn−1 + Tn−2F + · · ·+ Fn−1

)
T −

(
Tn−1 + Tn−2F + · · ·+ Fn−1

)
F

=
(
Tn + Tn−1F + · · ·+ TFn−1

)
−
(
Tn−1F + Tn−2F 2 + · · ·+ Fn

)
= Tn − Fn +

(
Tn−1F − Tn−1F + Tn−2F 2 − Tn−2F 2+

· · ·+ TFn−1 − TFn−1
)

= Tn − Fn.

Lemma 4.3. Let F be an operator and T ∈ LR(X) be everywhere defined
such that T (0) ⊂ N(T ). Suppose that F commutes with T . Then

dimR(Tn+k−1)/R(T + F )n ∩R(Tn+k−1) ≤ dimR(F k), for all n, k ≥ 1.

Proof. Let y1, y2, . . . , ym be in R(Tn+k−1) such that y1, y2, . . . , ym are lin-
early independent inR(Tn+k−1)/R(Tn+k−1)∩R(T+F )n. There exist elements
x1, x2, . . . , xm such that yi ∈ Tn+k−1xi for 1 ≤ i ≤ m. Since F is single-valued
and everywhere defined then (T + F ) and (−F ) commute. We replace T by
T + F and F by −F in Lemma 4.2, it follows that yi ∈ (T + F )nzi + F kti,
for suitable zi and ti. Suppose m > dimR(F k), then there exist constants
α1, α2, . . . , αm, not all zero such that

∑m
i=1 αiF

kti = 0. Thus

m∑
i=1

αiyi ∈
m∑
i=1

(T + F )nzi ⊂ R(T + F )n.

Furthermore, since the αi are not all zero, y1, y2, . . . , ym are not linearly in-
dependent in R(Tn+k−1)/R(Tn+k−1) ∩ R(T + F )n, a contradiction. Thus
m ≤ dimR(F k).

Now, we are in the position to give the main theorem of this section.

Theorem 4.1. Let F be a bounded operator acting in X such that F k is
of finite rank for some nonnegative integer k and let T ∈ LR(X) be everywhere
defined which commutes with F . Suppose T (0) ⊂ N(T ) then

(i) de(T ) is finite if and only if de(T + F ) is finite.
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(ii) d(T ) is finite if and only if d(T + F ) is finite.

Proof. (i) Since F k has finite-dimensional rank then, by Lemma 4.3,

dimR(Tn+k−1)/R(T + F )n ∩R(Tn+k−1) ≤ dimR(F k) < ∞, (4.3)

for all positive integer n. Let d := de(T ) < ∞, then by Lemma 2.3,

dimR(T d)/R(Tn+k−1) < ∞, for all n ≥ d. (4.4)

A combination of (4.3) and (4.4) leads to, dimR(T d)/R(T +F )n∩R(Tn+k−1)
is finite for n ≥ d. On the other hand R(T +F )n∩R(Tn+k−1) ⊂ R(T +F )n∩
R(T d) ⊂ R(T d). Which implies that dimR(T d)/R(T + F )n ∩ R(T d) is finite
and as dimR(F k) is finite we obtain that,

dim
(
(R(T d) +R(F k))/R(T + F )n ∩R(T d)

)
< ∞, for all n ≥ d. (4.5)

If we replace T by T + F and F by −F in (4.3), we get that

dimR(T + F )n+k−1/R(Tn) ∩R(T + F )n+k−1 < ∞.

It follows that

dimR(T + F )n+k−1/R(T d) ∩R(T + F )n+k−1 < ∞, for all n ≥ d. (4.6)

Combining (4.5) and (4.6) we obtain that

dim
(
(R(T d) +R(F k))/R(T + F )n

)
< ∞, for all n ≥ d+ k.

Therefore

dim[R(T + F )n/R(T + F )n+1] = dim[(R(T d) +R(F k))/R(T + F )n+1]

− dim[(R(T d) +R(F k))/R(T + F )n] < ∞,

for all n ≥ d+ k. Thus de(T +F ) < ∞. For the reverse implication it suffices
to replace T by T + F and F by −F .

(ii) Let d = d(T ) < ∞, and for n ≥ d, let

an(T ) : = dimR(Tn+k−1)/R(T + F )n ∩R(Tn+k−1)

= dimR(T d)/R(T + F )n ∩R(T d),

bn(T ) : = dimR(T + F )n+k−1/R(T + F )n+k−1 ∩R(Tn)

= dimR(T + F )n+k−1/R(T + F )n+k−1 ∩R(T d).
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By Lemma 4.3, an(T ) ≤ dimR(F k) < ∞. Furthermore clearly (an(T ))n is
an increasing sequence and hence there exists an integer p such that an(T ) =
ap(T ), for n ≥ p. It follows that

R(T + F )p ∩R(T d) = R(T + F )i ∩R(T d), for i ≥ p. (4.7)

By interchanging T by T + F and F by −F in Lemma 4.3, we obtain that
bn(T ) ≤ dimR(F k) < ∞. Furthermore it is easy to see that (bn(T ))n is an
increasing sequence and consequently there exists q ≥ p such that bn(T ) =
bq(T ) for n ≥ q. Now using (4.7) it follows that, for n ≥ q ≥ p,

dimR(Tn+k−1)/R(T + F )p ∩R(T d)

= dimR(Tn+k−1)/R(T + F )n+k−1 ∩R(T d)

= dimR(T q+k−1)/R(T + F )q+k−1 ∩R(T d)

= dimR(T q+k−1)/R(T + F )p ∩R(T d).

This implies thatR(T+F )n+k−1 = R(T+F )q+k−1, for n ≥ q. Thus d(T+F ) <
q + k < ∞.

Corollary 4.1. Let F ∈ LR(X) be single valued and bounded and let
KF :=

{
T ∈ LR(X) : D(T ) = X, TF = FT and T (0) ⊂ N(T )

}
. Then the

following assertions are equivalent:

(i) F k is of finite rank for some integer k.

(ii) σdes(T + F ) = σdes(T ) for every T ∈ KF .

(iii) σe
des(T + F ) = σe

des(T ) for every T ∈ KF .

The proof of this corollary requires the following lemma.

Lemma 4.4. ([5, Theorem 3.1] and [6, Theorem 3.1]) Let F ∈ LR(X) be
a bounded operator. Then the following assertions are equivalent:

(i) There exists a positive integer k for which F k is of finite rank.

(ii) σdes(T +F ) = σdes(T ) for every bounded operator T ∈ LR(X) commut-
ing with F.

(iii) σe
des(T +F ) = σe

des(T ) for every bounded operator T ∈ LR(X) commut-
ing with F.
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Proof of Corollary 4.1. (i) ⇒ (ii) and (i) ⇒ (iii) are an immediate conse-
quences of Theorem 4.1. For the implications (ii) ⇒ (i) it suffices to see that
σdes(T+F ) = σdes(T ) for every T ∈ KF implies that σdes(T+F ) = σdes(T ) for
every bounded operator T ∈ LR(X) commuting with F and using Lemma 4.4
it follows that (i) holds. Similarly Lemma 4.4 leads to (iii) ⇒ (i). This com-
pletes the proof.

Also as an immediate consequence of Theorem 4.1 we have that

Corollary 4.2. Let T ∈ LR(X) be everywhere defined. Then

σe
des(T ) ⊂

∩
F∈FT (X)

σdes(T + F ),

where FT (X) denotes the set of all bounded finite-rank operators F on X
commuting with T and such that T (0) ⊂ N(T ).
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