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1. Introduction

Given a real Lie algebra g of dimension n a well known theorem due to
Ado asserts that g has a faithful representation as a subalgebra of gl(p,R)
for some p. The theorem does not give much information about the value
of p but leads one to believe that p may be very large in relation to the
size of n and consequently it seems to be of limited practical value. We
define the invariant µ(g) to be the minimum value of p. A little care must be
exercised because there may well be inequivalent representations for which this
minimum value is attained. Of course if g has a trivial center then the adjoint
representation furnishes a faithful representation of g and in the notation used
above µ(g) ≤ n. Nonetheless many algebras have non-trivial centers, nilpotent
algebras for example, and then the adjoint representation is not faithful. Even
if the center is trivial it could well be the case that µ(g) < n.

Of course it is interesting to ascertain the value of µ from a theoretical
point of view. However, an important practical reason is that calculations
involving symbolic programs such as Maple and Mathematica use up lots of

95



96 r. ghanam, g. thompson

memory when storing matrices; accordingly, calculations are likely to be faster
if one can represent matrix Lie algebras using matrices of a small size.

In two recent papers [1, 5], the problem of finding such a minimal repre-
sentation is considered for the four-dimensional Lie algebras. In [5], the main
technique is somewhat indirect and depends on a construction known as a left
symmetric structure. In [1], the minimal representation has been calculated
directly without the need for considering left symmetric structures.

In this paper, we consider all indecomposable five-dimensional Lie algebras
listed in [7]. It forms part of a series in which we hope to find minimal dimen-
sional representations for all the low-dimensional algebras. Partial classifica-
tions of Lie algebras are known up to dimension nine. The five-dimensional
problem is of a completely magnitude from the four-dimensional case since
there are, up to isomorphism, forty classes of algebra. It has already been
shown in [2] that µ(g) ≤ 5 for each five-dimensional Lie algebra in the list.
In this paper we obtain sharper results and for the cases where µ(g) < 5
we give an explicit representation for the Lie algebra. This representation
is given by means of a matrix Lie group, denoted by S, in local coordinates
(w, x, y, z, q). We also explain for those cases where µ(g) = 5 why we cannot
have µ(g) < 5. The matrix S can be modified by adding quadratic and higher
order terms to the entries without affecting the matrix Lie algebra, obtained
by differentiating and evaluating at the identity. Accordingly, as a check, we
supply the corresponding right-invariant vector fields. We also adopt the con-
vention that when referring to an “abstract” Lie algebra five-dimensional we
use {e1, e2, e3, e4, e5} as a basis but when we construct a matrix representation
we use {E1, E2, E3, E4, E5} for the corresponding generators.

An outline of the paper is as follows. In Section 2 we give a brief overview
of the indecomposable five-dimensional Lie algebras. In Section 3 we give two
results about representations that are needed in the sequel. We shall also have
occasion to use a version of Lie’s Theorem for Lie algebras over R. In Section
4 we determine the few algebras where µ = 4 as result of the representing
matrices having some partial complex structure. In Section 5 we are able to
determine all algebras for which µ = 3. In Section 6 we consider algebras that
have a four-dimensional abelian nilradical and in Section 7 the six-dimensional
nilpotent algebras. In Section 8 we give a group matrix S for each of the five-
dimensional Lie algebras. In fact for the convenience of the reader we provide
also an S-matrix for all indecomposable Lie algebras of dimension and less.
We are able to reduce the problem to the consideration of five difficult cases,
namely, A5,21, A5,22, A5,23(b ̸=1), A5,31, A5,38. These five cases are relegated to
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an appendix which consists of a lot of technical details. For the casual reader
Section 8 is likely to be of most interest. Nonetheless, for the sake of the
integrity of the results, we feel that it is essential to supply these details so
that they can be verified independently. Following [7] we denote each of the
five-dimensional algebras as A5,k where 1 ≤ k ≤ 40.

We close this Introduction by stating several conclusions. First of all one
might imagine that many algebras could have representations with µ = 4
where the representing matrices having some partial complex structure as
necessitated by applying Lie’s Theorem for Lie algebras over R rather than
over C. However, relatively few such representations actually occur. Secondly,
and despite the first remark, for many of the five-dimensional indecomposable
Lie algebras we do have µ = 4. Some of the algebras for which µ = 5 are
CR-Lie algebras and over C we would have µ = 4, for example A5,25 and
A5,26 which are equivalent over C to A5,19 and A5,20, respectively. Also, there
are some classes of algebra depending on parameters where µ(g) < 5 but only
for certain values of the parameters. In fact, as a crude count, 21 of the
40 algebras have µ = 5, although µ(g) < 5 for several of those 21 algebras
for special values of the parameters. In a separate paper we shall construct
minimal dimension matrix representations for decomposable five-dimensional
Lie algebras. Finally, in this paper the many calculations were performed with
the help of the symbolic manipulation program Maple.

2. Real and complex five-dimensional Lie algebras

The real five-dimensional indecomposable Lie algebras were classified by
G. Mubarakzyanov [6]. They can be found easily in [7] and we list them
in Section 4. The first six algebras are nilpotent. These six algebras are
distinguished by their index of nilpotence and the dimension of the derived
algebra except for the filiforms A5,2 and A5.6. However, A5.2 has a codimension
one abelian ideal, whereas A5,6 does not so the six algebras are mutually non-
isomorphic.

We remark that the algebras A5,7 −A5,18 have a four-dimensional abelian
nilradical; A5,19−A5,29 have a four-dimensional non-abelian nilradical isomor-
phic to H

⊕
R, where H denotes the three-dimensional Heisenberg algebra;

A5,30−A5,32 have a nilradical that is isomorphic to the unique four-dimensional
indecomposable nilpotent algebra; A5,33 − A5,35, A5,38, A5,39 have an abelian
three-dimensional nilradical and A5,36, A5,37 have a three-dimensional nil-
radical that is isomorphic to H; A5,40 is the only algebra that is not solvable,
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that is, has a non-trivial Levi decomposition, being a semi-direct product
of sl(2,R) and the abelian algebra R2. In particular, all of these algebras,
with the exception of A5,36, A5,37 and A5,40 have a three-dimensional abelian
subalgebra.

Given a Lie algebra g we denote its derived algebra by [g, g]. If now g
is an indecomposable five-dimensional Lie algebra the dimension of [g, g] is
precisely one only for the Heisenberg algebra A5,4 and is two in just A5,1 and
A5,5 which are both nilpotent. Apart from the non-solvable A5,40, for all other
indecomposable five-dimensional indecomposable algebras the dimension of
[g, g] is either three or four. In fact in precisely the following algebras the
dimension of [g, g] is three: A5,2, A5,3, A5,6, A5,8, A5,10, A5,14, A5,15(a=0),
A5,19(a=1), A5,20(a=0,1), A5,22, A5,26(p=0), A5,27, A5,28(a=1), A5,29, A5,30(a=1),
A5,32 −A5,39.

3. Two representation results

3.1. Transposition about the anti-diagonal.

Proposition 3.1. Suppose that the Lie algebra g has a representation as
a subalgebra of gl(p,R). Suppose that L : gl(p,R) → gl(p,R) is a (linear)
involution, that is, has period two. Then mapping a representing matrix M
to −LM tL gives a second inequivalent representation of g.

Proof. Given M ∈ gl(p,R) a representing matrix for g, map it to ϕ(M) =
−LM tL. For a second such matrix N we have

[ϕ(M), ϕ(N)] = [−LM tL,−LN tL] = [LM tLLN tL− LN tLLM tL]

= [LM tN tL− LN tM tL] = L[N,M ]tL = ϕ([M,N ]) .

Corollary 3.2. Suppose that the Lie algebra g has a representation as
a subalgebra of gl(p,R). Then transposing the representing matrices about
the anti-diagonal (and taking negatives) gives a second inequivalent (that is
not necessarily equivalent) representation of g.

Proof. Take for L in the Proposition the matrix whose only non-zero en-
tries are 1’s down the anti-diagonal. Then the map ϕ consists of taking a
negative and transposing about the anti-diagonal.
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We use the preceding Corollary in the sequel to reduce some of the subcases
that are needed to investigate whether a particular type of representation
exists.

3.2. The following Theorem [8] explains how to find a low-dimensional
representation for a solvable algebra that has an abelian nilradical with abelian
complement.

Theorem 3.1. Suppose that the n-dimensional Lie algebra g has a basis
{e1, e2, . . . , en} and only the following non-zero brackets: [ea, ei] = Cj

aiej ,
where (1 ≤ i, j ≤ r, r + 1 ≤ a, b, c ≤ n). Suppose that g has an abelian
nilradical for which a basis is {e1, e2, . . . , er} and {er+1, . . . , en} is a basis for
an abelian subalgebra complementary to the nilradical. Then g has a faithful
representation as a subalgebra of gl(r + 1,R).

As result of Theorem 3.1 we can find representations for algebras A5,33,34,35

in gl(4,R).

4. Extension of Lie’s theorem over R.

In this paper we are concerned with real Lie algebras. Lie’s Theorem is
usually stated for complex Lie algebras; in adapting Lie’s Theorem to R one
has to allow for 2×2 complex blocks along the diagonal. As such, if a solvable
Lie algebra has a representation in gl(4,R) the matrices may be assumed to
be one of the following five forms:

(i)


a b c d

−b a e f

0 0 g h

0 0 −h g

 , (ii)


a b c d

−b a e f

0 0 g h

0 0 0 i

 , (iii)


a b c d

0 e f g

0 0 h i

0 0 −i h

 ,

(iv)


a b c d

0 e f g

0 −f e h

0 0 0 i

 , (v)


a b c d

0 e f g

0 0 h i

0 0 0 j

 .
(1)

We can exclude the third case in view of Corollary 3.2. In order to simplify
a given representation it makes sense to use only a non-singular matrix of
the same type as one of these five. It appears as though we have to consider
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many cases for representing five-dimensional algebras in gl(4,R). However, it
is remarkable that cases (i-iv) correspond to representations for only a very
limited number of and, in some cases, unexpected algebras. In the interests
of concision we shall be content merely to sketch the results.

Notice first of all that it follows from Section 3.3 that if a five-dimensional
algebra g has a representation of type (i)-(iv) then at least one of its adjoint
matrices must have non-real eigenvalues. Actually this remark is not obvious
but is nonetheless true as we shall explain. In any case given the last remark,
we can proceed as follows. First of all, the nilpotent algebras A5,1 − A5,6

cannot have representations of types (i)-(iv). Secondly, in Section 6 we give
a systematic analysis of algebras A5,7 − A5,18 so we leave them to one side
for the moment. Thirdly, of algebras A5,19 − A5,39 only A5,25, A5,26, A5,35,
A5,37 and A5,39 have adjoint matrices with non-real eigenvalues. As regards
A5,35 we know that µ = 4 in view of Theorem 3.1. Similarly we will show
that µ = 4 for A5,37 in Section 5. As for A5,39 it is equivalent as a complex
algebra to A5,38 and the latter will be be shown to have µ = 5 so that µ = 5
for A5,39 also. Hence of algebras A5,19 − A5,39 whose adjoint matrices have
non-real eigenvalues, µ is in doubt only for A5,25 and A5,26.

Proposition 4.1. For A5,25 and A5,26 we have µ = 5.

Proof. Assuming that µ = 4 we shall obtain a contradiction for each of
cases (i-v). First of all case (v) is excluded because all of the adjoint matrices
would have real eigenvalues which is not true for A5,25 and A5,26. As regards
case (i) for a Lie algebra g, the derived algebra [g, g] must consist of matrices
of the form 

0 0 ∗ ∗
0 0 ∗ ∗
0 0 0 0

0 0 0 0

 ,
where only the asterisks can be non-zero. It must be abelian and hence g
cannot be A5,25 or A5,26. Case (iii) can be excluded in view of Proposition 3.1
once we have ruled out case (ii) which we look at next. The derived algebra
must consist of matrices of the form

0 0 ∗ ∗
0 0 ∗ ∗
0 0 0 ∗
0 0 0 0

 ,
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where only the asterisks can be non-zero. Let us suppose first of all that
we have one non-nilpotent matrix E of type (ii). Then we obtain a six-
dimensional solvable algebra that has the nilpotent algebra A5,1 as its nilrad-
ical and E spans a complement to it. In this six-dimensional algebra we find
that adE has eigenvalues

{
0, g− i, a− i± b

√
−1, a− g± b

√
−1

}
. The restric-

tion of adE to the five-dimensional subalgebra must have eigenvalues that are
a subset of these six and of course 0 must be one of them. The only possibility
is to remove g−i which leaves the eigenvalues

{
0, a−i±b

√
−1, a−g±b

√
−1

}
and we can only have A5,17prs or A5,18. In fact A5,17prs(s=1) and A5,18 do occur
and examples of each are listed in Section 10. However, A5,25 and A5,26 are
excluded because their ad-matrices have at most a pair of complex eigenvalues
and not two pairs.

If there are two non-nilpotent matrices of type (ii), E6 and E7 say, then
[g, g] is three-dimensional which as regards A5,25 and A5,26 would only allow
A5,26, p = 0. We shall obtain together with the representation of A5,1 a seven-
dimensional codimension two nilradical solvable algebra and the question now
is whether there exists a five-dimensional subalgebra besides A5,1. Such an
algebra g must have [g, g] of dimension three. Again letting E6 be the given
matrix of type (ii) in 1 we find that the eigenvalues of adE are

{
0, 0, i−g, a−g±

b
√
−1, a−i±b

√
−1

}
. Now comparing with the adjoint matrices of A5,26, p = 0

we deduce that a = g = i, b = 1. In fact arbitrary multiples of the identity
can be added to E6 and E7 without affecting the putative representation that
we are looking for. However the same argument that applies to E6 applies
equally to E7 which would imply that a linear combination of E6 and E7 is
nilpotent, a contradiction.

Case (iv) is similar to case (ii). Now [g, g] consist of matrices of the form
0 ∗ ∗ ∗
0 0 0 ∗
0 0 0 ∗
0 0 0 0

 ,
where only the asterisks can be non-zero. Let us suppose first of all that
we have one non-nilpotent matrix E of type (iv). Then we obtain a six-
dimensional solvable algebra that has the nilpotent algebra A5,4 as its nil-
radical and E spans a complement to it. However, in the latter algebra we
find that adE has eigenvalues

{
0, a− i, a− e± f

√
−1, e− i± f

√
−1

}
. The

restriction of adE to g must have eigenvalues that are a subset of these six
and again we find two pairs of non-real complex conjugates.
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If there are two non-nilpotent matrices E6 and E7 of type (iv) we shall ob-
tain together with the representation of A5,4 a seven-dimensional codimension
two nilradical solvable algebra. Such an algebra g must have [g, g] of dimen-
sion three. Once again we find that, matching adjoint matrices to A5,26, p = 0,
a linear combination of E6 and E7 is nilpotent, a contradiction.

5. Representations in gl(3,R)

Let g be an indecomposable real solvable five-dimensional algebra. Clearly
g cannot have a representation as a subalgebra of gl(2,R) so the smallest value
of n for which g can be represented in gl(n,R) is n = 3.

Lemma 5.1. Any three-dimensional abelian subalgebra of gl(3,R) con-
tains a multiple of the identity.

Proof. Consider an element of such an abelian subalgebra. We can put it
into one of the following four forms by a real change of basis:

(a)

λ 0 0

0 µ 0

0 0 ν

 , (b)

λ 1 0

0 λ 1

0 0 λ

 , (c)

λ 0 1

0 µ 0

0 0 λ

 , (d)

 α β 0

−β α 0

0 0 γ

 (β ̸= 0) .

The proof follows easily now by considering the centralizer in each of these
four cases.

Corollary 5.2. The only solvable five-dimensional indecomposable al-
gebras that could be represented as a subalgebra of gl(3,R) are A5,36 or A5,37.

Proof. If a subalgebra of gl(3,R) contains I it will be decomposable. How-
ever, the only algebras that have do not have an abelian three-dimensional
subalgebra are A5,36 and A5,37.

As regards A5,37 let us note that it is equivalent over C to A5,36 which
means that both are equivalent considered as algebras over C. To see how,
make a change of basis according to

e1 = −e1
2
, e2 =

e2 + e3
2

, e3 =

√
−1(e2 − e3)

2
,

e4 = 2e4 + e5 , e5 = −
√
−1e5 .
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We obtain the following brackets, which are formally identical to A5,36 except
for the factor of

√
−1 which can then be removed by scaling e1:

[e2, e3] =
√
−1e1 , [e1, e4] = e1 , [e2, e4] = e2 ,

[e2, e5] = −e2 , [e3, e5] = e3 .

The Lie algebra A5,36 does have a representation in gl(3,R): it is isomor-
phic to the space of trace-free upper triangular matrices.

Since A5,37 is equivalent over C to A5,36 it certainly has a a representation
in gl(3,C). However, we claim that A5,37 does not have a representation in
gl(3,R). Indeed if it did by Lie’s Theorem it would have a representation by
matrices of the form a b c

−b a d

0 0 e

 or

c d e

0 a b

0 −b a

 .
However, in either case the derived algebra is at most two-dimensional whereas
for A5,37 it is three-dimensional so A5,37 cannot be represented in gl(3,R).

We remark finally that algebra A5,40 is the Lie algebra of the special affine
group and so by its very definition has a representation in gl(3,R) but not an
upper triangular triangular representation. Thus we have determined those
algebras that can be represented in gl(3,R) and gl(3,C).

6. Four-dimensional abelian nilradical algebras

Now we consider algebras g A5,7 − A5,18 for which the algebra is solvable
but not nilpotent and for which nil(g) is abelian. We quote next a result of
Schur-Jacobson [4].

Proposition 6.1. (Schur-Jacobson) The maximal commutative sub-

algebra of gl(n,R) is of dimension 1 + [n
2

4 ] where [ ] denotes the integer part
of a real number. Up to change of basis if n is even the subalgebra consists
of the upper left hand block with row entries running from 1 + n

2 to n and
column entries from 1 to n

2 together with multiples of the identity; if n is odd
the subalgebra consists of the upper left hand blocks with row entries running
from either n+1

2 to n and column entries from 1 to n−1
2 or n+3

2 to n and 1 to
n+1
2 , respectively, together with multiples of the identity.
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We apply the Proposition in the case n = 4. We shall not want to in-
clude multiples of the identity because it will lead to a decomposable algebra.
Accordingly we assume that we have a basis for nil(g) of the following form:

E1 =


0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

 , E2 =


0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0

 ,

E3 =


0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

 , E4 =


0 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0

 .
To obtain a full basis for g we add a generator E5 of the form

E5 =


a b 0 0

c d 0 0

0 0 e f

0 0 g h

 .
This form of E5 is dictated by the requirement that adE5 map nil(g) spanned
by E1, E2, E3, E4 to itself. Then the Jacobi identity is satisfied and we have
the following brackets:

[E1, E5] = (h− a)E1 + gE2 − cE3 , [E2, E5] = fE1 + (e− a)E2 − cE4 ,

[E3, E5] = −bE1 + (h− d)E3 + gE4 , [E4, E5] = −bE2 + fE3 + (e− d)E4 .

Now consider adE5. Its bottom row and last column are zero. We look at
the upper right 4× 4 block given by

M =


h− a f −b 0

g e− a 0 −b
−c 0 h− d f

0 −c g e− d

 ,
and consider its possible Jordan normal form: for Lie algebras with abelian
codimension one nilradical the Jordan normal form is a complete invariant
apart from an overall scaling. The matrix M enjoys a particular property.
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Lemma 6.2. If λ1, λ2, λ3, λ4 are the eigenvalues ofM there is an ordering
of them so that λ1 + λ2 = λ3 + λ4.

Proof. In fact solving explicitly we find that the eigenvalues are of the

form A ±
√
B ±

√
C where A, B, C are determined in terms of a, b, c, d, e,

f , g, h.

We compare with algebras A5,7−A5,18 and obtain various of these algebras
sometimes for special values of the parameters. It is too much to be able to
find the Jordan normal forms for the matrix in the form above. However,
going back to the the original form of the algebra we can make a change of
basis of the form

S =

[
P 0

0 Q

]
,

where P and Q are arbitrary non-singular matrices. More precisely we mul-
tiply each of the matrices Ei (1 ≤ i ≤ 5) on the left by S−1 and on the
right by S; although each of the Ei (1 ≤ i ≤ 4) are changed we can in effect
use the original Ei as part of the basis since the Ei’s are transformed into
linear combinations of themselves. As regards the matrix E5, its two blocks
are conjugated separately by P and Q. As such we may assume that each
of these blocks are in Jordan normal form. There are three Jordan normal
forms for a 2× 2 matrix giving nine cases in toto. We summarize these cases
as follows in which we give first of all the conditions on a, b, c, d, e, f, g, h to
be in one of the nine cases, then the eigenvalues λ of the matrix ad(E5) and
finally conditions on the parameters of the algebras A5,7 −A5,18 so that they
can have a representation in gl(4,R):

(1) c = −b, d = a, g = −f , h = e (bf ̸= 0): λ = e− a± ib± if ,

A5,13apr g = a = p = 1, f = b = r
2 ,

A5,17 e− a = p = r, b+ f = 1, b− f = s;

(2) c = −b, d = a, f = 0, g = 0 (b ̸= 0): λ = e− a± ib, h− a± ib,

A5,17prs e− a = p, h− a = q, b = s = 1;

(3) c = −b, d = a, h = e, f = 1, g = 0 (b ̸= 0): λ = e− a± ib, e− a± ib,

A5,18p e− a = p, b = 1;

(4) c = 0, b = 0, g = −f , h = e (f ̸= 0): λ = e− a± if , e− d± if ,

A5,17prs e− a = p, e− d = q, f = s = 1;
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(5) c = 0, b = 0, f = 0, g = 0: λ = e− a, e− d, h− a, h− d,

A5,7abc e− a = 1, e− d = a, h− a = b, h− d = a so a+ b− c = 1;

(6) c = 0, b = 0, h = e, f = 1, g = 0: λ = e− a, e− a, e− d, e− d,

A5,15a e− a = 1, e− d = a;

(7) d = a, c = 0, b = 1, g = −f , h = e (f ̸= 0): λ = e− a± if , e− a± if ,

A5,18p e− a = p, f = 1;

(8) d = a, c = 0, b = 1, f = 0, g = 0: λ = e− a, e− a, h− a, h− a,

A5,15a e− a = 1, h− a = a;

(9) d = a, c = 0, b = 1, h = e, f = 1, g = 0: λ = e− a, e− a, e− a, e− a,

A5,11c e− a = 1 so c = 1.

To summarize: in A5,7−A5,18, the algebras A5,8c, A5,9bc, A5,10, A5,12, A5,14p

and A5,16pq do not occur at all as subalgebras of gl(4,R). Algebras A5,15a and
A5,18p do occur and A5,7abc occurs but only for the case a+ b− c = 1, A5,11c

for c = 1, A5,13apr for a = p = 1 and A5,17 for p = r or s = 1.

7. Five-dimensional nilpotent algebras

Now suppose that g is nilpotent and can be represented in gl(4,C). We
note that both the algebras A5,1 and A5,2 have a four-dimensional abelian
subalgebra indeed ideal. For these algebras we can proceed much as we did
for the abelian nilradical case except now we must have that adE5 is nilpotent.
We note first of all that we can add a multiple of the identity to E5 and it is
does not change adE5 so we may assume that E5 has trace zero and so we
put h = −(a+ d+ e). Next we shall demand that adE5 has trace zero which
gives that d = −a and then we find that the trace of (adE5)

3 is zero. In order
to make adE5 nilpotent it is sufficient to have that the trace of (adE5)

2 and
the determinant of adE5 zero for then adE5 will have all eigenvalues zero.
These conditions give us a2 + bc = 0 and e2 + fg = 0. In order for E5 not to
vanish entirely and using the block change of basis we can reduce to the cases
where only b = 1 or f = 1 are the only non-zero entries or else b = f = 1.
The first two of these cases correspond to A5,1 whereas the third after making
a change of basis

e′1 =
e1 − e2

2
, e′2 = e2 , e′3 = −e3

2
,

e′4 = e1 + e4 , e′5 = e5
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becomes [e1, e5] = e2, [e3, e5] = e1. This algebra is decomposable being a
direct sum of A4,1 and R. In particular for A5,2 we cannot have µ = 4.

Now we consider algebras A5,3 and A5,6. For A5,3 we have non-zero brack-
ets [e3, e4] = e2, [e3, e5] = e1, [e4, e5] = e3. The first two brackets give us a
copy of A5,1; indeed if we permute e3 and e5 and then change the sign of e5 we
obtain [e3, e5] = e1, [e4, e5] = e2, [e3, e4] = e5. Now the argument above gave
us, up to change of basis, a unique representation of A5,1 in gl(4,R). Since
[e3, e4] ̸= e5 we conclude that there is no representation of A5,3 in gl(4,R).
Similarly for A5.6 [e3, e4] = e1, [e2, e5] = e1, [e3, e5] = e2, [e4, e5] = e3 the
latter three brackets produce a copy of A5.2. However, we have shown that
there is no representation of A5,2 in gl(4,R) and therefore not for A5,6, either.

8. Group representations corresponding to
Lie algebras in dimension ≤ 5

• A2.1 [e1, e2] = e2:

S =

[
ex y

0 1

]
.

Right-invariant vector fields: −(Dx + yDy), Dy.

• A3.1 [e2, e3] = e1:

S =

1 x z

0 1 y

0 0 1

 .
Right-invariant vector fields: Dz, Dy, Dx + yDz.

• A3.2 [e1, e3] = e1, [e2, e3] = e1 + e2:

S =

e
z zez x

0 ez y

0 0 1

 .
Right-invariant vector fields: Dx, Dy, Dz + (x+ y)Dx + yDy.
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• A3.3 (a = 1), A3.4 (a = −1), A3.5a (0 < |a| < 1) [e1, e3] = e1, [e2, e3] = ae2:

S =

e
z 0 x

0 eaz y

0 0 1

 .
Right-invariant vector fields: Dx, Dy, Dz + xDx + ayDy.

• A3.6 (a = 0), A3.7a (a > 0) [e1, e3] = ae1 − e2, [e2, e3] = e1 + ae2:

S =

 eaz cos z eaz sin z x

−eaz sin z eaz cos z y

0 0 1

 .
Right-invariant vector fields: Dx, Dy, Dz + (ax+ y)Dx + (ay − x)Dy.

• A3.8 [e1, e3] = −2e2, [e1, e2] = e1, [e2, e3] = e3:

S =

[
coshx+ sinhx cosh y −e−z sinhx sinh y

ez sinhx sinh y coshx− sinhx cosh y

]

Right-invariant vector fields:

ez

2

(
sinh yDx−

(coshx cosh y − sinhx)

sinhx
Dy −

(sinhx cosh y − coshx)

(sinh y sinhx)
Dz

)
,

1

2

(
cosh yDx −

coshx sinh y

sinhx
Dy −Dz

)
,

e−z

2

(
− sinh yDx +

(coshx cosh y + sinhx)

sinhx
Dy +

(sinhx cosh y + coshx)

(sinh y sinhx)
Dz

)
.

• A3.9 [e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2:

S =

 cosx cos y cos z − sinx sin z sinx cos y cos z + cosx sin z − sin y cos z

− cosx cos y sin z − sinx cos z − sinx sin z cos y + cosx cos z sin y sin z

cosx sin y sinx sin y cos y

 .

Right-invariant vector fields: Dz,
sin z
sin yDx + cos zDy − cos y sin z

sin y Dz,
cos z
sin yDx −

sin zDy − cos y cos z
sin y Dz.
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• A4.1 [e2, e4] = e1, [e3, e4] = e2:

S =


1 w w2

2 x

0 1 w y
0 0 1 z

0 0 0 1

 .
Right-invariant vector fields: Dx, Dy, Dz, Dw + yDx + zDy.

• A4.2a (a ̸= 0) [e1, e4] = ae1, [e2, e4] = e2, [e3, e4] = e2 + e3:

S =


eaw 0 0 x

0 ew wew y

0 0 ew z

0 0 0 1

 .

Right-invariant vector fields: Dx, Dy, Dz, Dw + axDx + (y + z)Dy + zDz.

• A4.3 [e1, e4] = e1, [e3, e4] = e2:

S =


ew 0 0 x

0 1 w y

0 0 1 z

0 0 0 1

 .

Right-invariant vector fields: Dx, Dy, Dz, Dw + xDx + zDy.

• A4.4 [e1, e4] = e1, [e2, e4] = e1 + e2, [e3, e4] = e2 + e3:

S =


ew wew w2

2 ew x

0 ew wew y

0 0 ew z

0 0 0 1

 .

Right-invariant vector fields: Dx, Dy, Dz, Dw +(x+ y)Dx+(y+ z)Dy + zDz.
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• A4.5ab (0 ≤ ab, −1 ≤ a ≤ b ≤ 1) [e1, e4] = e1, [e2, e4] = ae2, [e3, e4] = be3:

S =


ew 0 0 x

0 eaw 0 y

0 0 ebw z

0 0 0 1

 .

Right-invariant vector fields: Dx, Dy, Dz, Dw + xDx + ayDy + bzDz.

• A4.6ab (a ̸= 0, b ≥ 0) [e1, e4] = ae1, [e2, e4] = be2 − e3, [e3, e4] = e2 + be3:

S =


eaw 0 0 x

0 ebw cosw ebw sinw y

0 −ebw sinw ebw cosw z

0 0 0 1

 .

Right-invariant vector fields: Dx, Dy, Dz, Dw+axDx+(by+z)Dy+(bz−y)Dz.

• A4.7 [e2, e3] = e1, [e1, e4] = 2e1, [e2, e4] = e2, [e3, e4] = e2 + e3:

S =


e2w −zew (y − zw)ew x

0 ew wew y

0 0 ew z

0 0 0 1

 .

Right-invariant vector fields: −1
2Dx, zDx + Dy, Dz − yDx, Dw + 2xDx+

(y + z)Dy + zDz.

• A4.8, A4.9b (−1 ≤ b ≤ 1) [e2, e3] = e1, [e1, e4] = (b + 1)e1, [e2, e4] = e2,
[e3, e4] = be3:

S =

e
(b+1)w yebw x

0 ebw z

0 0 1

 .
Right-invariant vector fields: Dx, zDx + Dy, −Dz, Dw + (xb + x)Dx+
yDy + bzDz.
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• A4.10, A4.11 (a ≥ 0) [e2, e3] = e1, [e1, e4] = 2ae1, [e2, e4] = ae2 − e3,
[e3, e4] = e2 + ae3:

S =


e2aw −eaw(x sinw + y cosw) eaw(x cosw − y sinw) z

0 eaw cosw eaw sinw x

0 −eaw sinw eaw cosw y

0 0 0 1

 .

Right-invariant vector fields: −2Dz, Dx+yDz, Dy−xDz, Dw+(ax+y)Dx+
(ay − x)Dy + 2azDz.

• A4.12 [e1, e3] = e1, [e2, e3] = e2, [e1, e4] = −e2, [e2, e4] = e1:

S =

 ez cosw ez sinw x

−ez sinw ez cosw y

0 0 1

 .
Right-invariant vector fields: Dx, Dy, Dz + xDx + yDy, Dw + yDx − xDy.

• A5.1 [e3, e5] = e1, [e4, e5] = e2:

S =


1 q x z

0 1 w y

0 0 1 0

0 0 0 1

 .
Right-invariant vector fields: −Dq, −Dx, Dy, Dz, Dw − yDq − zDx.

• A5.2 [e2, e5] = e1, [e3, e5] = e2, [e4, e5] = e3:

S =



1 w w2

2
w3

6 q

0 1 w w2

2 x

0 0 1 w y

0 0 0 1 z

0 0 0 0 1


.

Right-invariant vector fields: Dq, Dx, Dy, Dz, Dw + xDq + yDx + zDy.
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• A5.3 [e3, e4] = e2 , [e3, e5] = e1, [e4, e5] = e3:

S =



1 0 −z y − zw q

0 1 w w2

2 x

0 0 1 w 2y

0 0 0 1 2z

0 0 0 0 1

 .

Right-invariant vector fields: 2Dx, −4Dq, Dy+2zDq, Dz−2yDq, Dw+2yDx+
zDy.

• A5.4 [e2, e4] = e1, [e3, e5] = e1:

S =


1 x y q

0 1 0 z

0 0 1 w

0 0 0 1

 .
Right-invariant vector fields: Dq, Dz, Dw, Dx + zDq, Dy + wDq.

• A5.5 [e3, e4] = e1, [e2, e5] = e1, [e3, e5] = e2:

S =


1 q w + q2

2 x

0 1 q y

0 0 1 z

0 0 0 1

 .

Right-invariant vector fields: Dx, Dy, Dz, Dw + zDx, Dq + yDx + zDy.

• A5.6 [e3, e4] = e1, [e2, e5] = e1, [e3, e5] = e2, [e4, e5] = e3:

S =



1 2w w2 − z y − zw + w3

3 q

0 1 w w2

2 x

0 0 1 w y

0 0 0 1 z

0 0 0 0 1


.



five-dimensional lie algebras 113

Right-invariant vector fields: 2Dq, −Dx, Dy + zDq, −Dz + yDq, −(Dw +
2xDq + yDx + zDy).

• A5.7abc (abc ̸= 0, −1 ≤ c ≤ b ≤ a ≤ 1) [e1, e5] = e1, [e2, e5] = ae2,
[e3, e5] = be3, [e4, e5] = ce4:

S =


ew 0 0 0 q

0 eaw 0 0 x

0 0 ebw 0 y

0 0 0 ecw z

0 0 0 0 1

 .

Right-invariant vector fields: Dq, Dx, Dy, Dz, Dw+qDq+axDx+byDy+czDz.

S =


eaq 0 we(a−1)q x

0 ebq ye(a−1)q z

0 0 e(a−1)q 0

0 0 0 1

 (c = b− a+ 1) .

Right-invariant vector fields: Dw, Dx, Dz, Dy, Dq + axDx +(b+1− a)yDy +
bzDz + wDw.

• A5.8c (0 < c ≤ 1) [e2, e5] = e1, [e3, e5] = e3, [e4, e5] = ce4:

S =


ecw 0 0 0 q

0 ew 0 0 x

0 0 1 w y

0 0 0 1 z

0 0 0 0 1

 .

Right-invariant vector fields: Dx, Dy, Dz, Dq, Dw + cqDq + yDx + zDz.

• A5.9bc (0 ̸= c ≤ b) [e1, e5] = e1, [e2, e5] = e1 + e2, [e3, e5] = be3,
[e4, e5] = ce4.

S =


ecw 0 0 0 q

0 ebw 0 0 x

0 0 ew wew y

0 0 0 ew z

0 0 0 0 1

 .
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Right-invariant vector fields: Dy, Dz, Dx, Dq, Dw + bxDx + cqDq+
(y + z)Dy + zDz.

• A5.10 [e2, e5] = e1, [e3, e5] = e2, [e4, e5] = e4:

S =



ew 0 0 0 q

0 1 w w2

2 x

0 0 1 w y

0 0 0 1 z

0 0 0 0 1

 .

Right invariant vector fields: Dx, Dy, Dz, Dq, Dw + qDq + yDx + zDy.

• A5.11c (c ̸= 0) [e1, e5] = e1, [e2, e5] = e1+e2, [e3, e5] = e2+e3, [e4, e5] = ce4:

S =



ecw 0 0 0 q

0 ew wew w2ew

2 x

0 0 ew wew y

0 0 0 ew z

0 0 0 0 1

 .

Right-invariant vector fields: Dx, Dy, Dz, Dq, Dw + (x+ y)Dx + (y+ z)Dy +
zDz + cqDq.

S =


eq qeq w x

0 eq y z

0 0 1 q

0 0 0 1

 (c = 1) .

Right invariant vector fields: Dx,
1
2(Dz − Dw − qDx), −1

2(Dy + qDz),
1
2(Dw +Dz + qDx), Dq + (z + x)Dx + yDy + zDz + (y + w)Dw.

• A5.12 [e1, e5] = e1, [e2, e5] = e1 + e2, [e3, e5] = e2 + e3, [e4, e5] = e3 + e4.

S =


ew wew w2ew

2
w3ew

6 q

0 ew wew w2ew

2 x

0 0 ew wew y

0 0 0 ew z

0 0 0 0 1

 .
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Right-invariant vector fields: Dq, Dx, Dy, Dz, Dw + (q+ x)Dq + (x+ y)Dx +
(y + z)Dy + zDz + qDq.

• A5.13apr (r ̸= 0, 0 < |a| ≤ 1) [e1, e5] = e1, [e2, e5] = ae2, [e3, e5] = pe3−re4,
[e4, e5] = re3 + pe4:

S =


ew 0 0 0 q

0 eaw 0 0 x

0 0 epw cos rw epw sin rw y

0 0 −epw sin rw epw cos rw z

0 0 0 0 1

 .

Right-invariant vector fields: Dq, Dx, Dy, Dz, Dw + qDq + axDx + (py +
rz)Dy + (pz − ry)Dz.

S =


e−q cos rq

2 e−q sin rq
2 w x

−e−q sin rq
2 e−q cos rq

2 y z

0 0 cos rq
2 sin rq

2

0 0 − sin rq
2 cos rq

2

 (a = p = 1) .

Right-invariant vector fields:

1
2

(
cos rq

2 Dx − cos rq
2 Dy − sin rq

2 Dz − sin rq
2 Dw

)
,

1
2

((
cos rq

2 − sin rq
2

)
Dw +

(
cos rq

2 + sin rq
2

)
Dx

−
(
cos rq

2 + sin rq
2

)
Dy +

(
cos rq

2 − sin rq
2

)
Dz

))
,

1
2

(
cos rq

2 Dw + sin rq
2 Dx + sin rq

2 Dy − cos rq
2 Dz

)
,

1
2

(
sin rq

2 Dw − cos rq
2 Dy − sin rq

2 Dz − cos rq
2 Dx

)
,(

x− rz
2

)
Dx +

(
rw
2 + y

)
Dy +

(
rx
2 + z

)
Dz +

(
w − ry

2

)
Dw −Dq .

• A5.14p [e2, e5] = e1, [e3, e5] = pe3 − e4, [e4, e5] = e3 + pe4:

S =


1 x 0 0 q

0 1 0 0 w

0 0 epw cosw epw sinw y

0 0 −epw sinw epw cosw z

0 0 0 0 1

 .
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Right-invariant vector fields: Dq, Dx, Dy, Dz, Dw + xDq + (py + z)Dy+
(pz − y)Dz.

• A5.15a [e1, e5] = e1, [e2, e5] = e1 + e2, [e3, e5] = ae3, [e4, e5] = e3 + ae4:

S =


eaq qeaq we(a−1)q x

0 eaq ye(a−1)q z

0 0 e(a−1)q 0

0 0 0 1

 .

Right-invariant vector fields: Dw, Dy, Dx, Dz, Dq + (z + ax)Dx + yDy +
azDz + (w + y)Dw.

• A5.16pr (r > 0) [e1, e5] = e1, [e2, e5] = e1 + e2, [e3, e5] = pe3 − re4,
[e4, e5] = re3 + pe4:

S =


ew wew 0 0 q

0 ew 0 0 x

0 0 epw cos rw epw sin rw y

0 0 −epw sin rw epw cos rw z

0 0 0 0 1

 .

Right-invariant vector fields: Dq, Dx, Dy, Dz, Dw + (q + x)Dq + xDx+
(py + rz)Dy + (pz − ry)Dz.

• A5.17prs (s > 0) [e1, e5] = pe1 − e2, [e2, e5] = e1 + pe2, [e3, e5] = re3 − se4,
[e4, e5] = se3 + re4:

S =


epw cosw epw sinw 0 0 x

−epw sinw epw cosw 0 0 y

0 0 erw cos sw erw sin sw z

0 0 −erw sin sw erw cos sw q

0 0 0 0 1

 .

Right-invariant vector fields: Dx, Dy, Dz, Dq, Dw+(px+y)Dx+(py−x)Dy+
(rz + sq)Dz + (rq − sz)Dq.
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S =


epq cos (s+1)q

2 epq sin (s+1)q
2 w x

−epq sin (s+1)q
2 epq cos (s+1)q

2 y z

0 0 cos (s−1)q
2 sin (s−1)q

2

0 0 − sin (s−1)q
2 cos (s−1)q

2

 (r = p) .

Right-invariant vector fields:

cos (s−1)q
2 Dz − sin (s−1)q

2 Dy − sin (s−1)q
2 Dx − cos (s−1)q

2 Dw ,

cos (s−1)q
2 Dy + cos (s−1)q

2 Dx − sin (s−1)q
2 Dw + sin (s−1)q

2 Dz ,

sin (s−1)q
2 Dx − sin (s−1)q

2 Dy + cos (s−1)q
2 Dw + cos (s−1)q

2 Dz ,

− cos (s−1)q
2 Dy + cos (s−1)q

2 Dx − sin (s−1)q
2 Dw − sin (s−1)q

2 Dz ,

Dq +
(s+1)z+2py

2 Dy − (s+1)z−2px
2 Dx − (s+1)y−2pw

2 Dw + (s+1)x+2pz
2 Dz .

S =


cos q sin q w x

− sin q cos q y z

0 0 epq 0

0 0 0 erq

 (s = 1).

Right-invariant vector fields: epqDw, e
pqDy, e

rqDx, e
rq, −Dq − zDx + wDy +

xDz − yDw.

• A5.18p (p ≥ 0) [e1, e5] = pe1−e2, [e2, e5] = e1+pe2, [e3, e5] = e1+pe3−e4,
[e4, e5] = e2 + e3 + pe4

S =


cos q sin q w x

− sin q cos q y z

0 0 epq qepq

0 0 0 epq

 .
Right-invariant vector fields: epqDx,−epqDz, e

pq(Dw+qDx), −epq(Dy+qDz),
−Dq − zDx + wDy + xDz − yDw.
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• A5.19ab (b ̸= 0) [e2, e3] = e1, [e1, e5] = ae1, [e2, e5] = e2, [e3, e5] = (a−1)e3,
[e4, e5] = be4:

S =


eaw ewx 0 z

0 ew 0 y

0 0 ebw q

0 0 0 1

 .
Right-invariant vector fields: Dz, Dy, Dx+yDz, Dq, Dw+bqDq+(a−1)xDx+
yDy + azDz.

• A5.20a [e2, e3] = e1, [e1, e5] = ae1, [e2, e5] = e2, [e3, e5] = (a − 1)e3,
[e4, e5] = e1 + ae4:

S =


eaw ewx weaw z

0 ew 0 y

0 0 eaw q

0 0 0 1

 .
Right-invariant vector fields: Dz, Dy, Dx+yDz, Dq, Dw+aqDq+(a−1)xDx+
yDy + (q + az)Dz.

• A5.21 [e2, e3] = e1, [e1, e5] = 2e1, [e2, e5] = e2 + e3, [e3, e5] = e3 + e4,
[e4, e5] = e4:

S =



e2w 0 zew (z − y + zw)ew q

0 ew wew w2ew

2 x

0 0 ew wew y

0 0 0 ew z

0 0 0 0 1

 .

Right-invariant vector fields: −2Dq, (y + z)Dq + Dz, Dy − zDq, Dx, Dw +
2qDq + (x+ y)Dx + (y + z)Dy + zDz.

• A5.22 [e2, e3] = e1, [e2, e5] = e3, [e4, e5] = e4:

S =



ew 0 0 0 q

0 1 z z2

2 x

0 0 1 z y

0 0 0 1 w

0 0 0 0 1

 .
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Right-invariant vector fields: Dx, Dz + yDx + wDy, −Dy, Dq, Dw + qDq.

• A5.23b (b ̸= 0) [e2, e3] = e1, [e1, e5] = 2e1, [e2, e5] = e2 + e3, [e3, e5] = e3,
[e4, e5] = be4:

S =


ebw 0 0 0 q

0 e2w −zew yew x

0 0 ew wew y + zw

0 0 0 ew z

0 0 0 0 1

 .

Right-invariant vector fields: −1
2Dx, zDx +Dy, Dz − (y+ zw)Dx −wDy, Dq,

Dw + qDq + 2xDx + yDy + zDz.

S =


1 yew (q − yw − 2 zew xe2w

0 ew −wew qe2w

0 0 ew ye2w

0 0 0 e2w

 (b = 1) .

Right-invariant vector fields: −2Dx, Dy + qDx, Dz +Dq − yDx,
1
2(Dq + yDx),

−Dw + (q + y)Dq + 2xDx + yDy + (y + z)Dz.

• A5.24ϵ (ϵ = ±1) [e2, e3] = e1, [e1, e5] = 2e1, [e2, e5] = e2 + e3, [e3, e5] = e3,
[e4, e5] = ϵe1 + 2e4:

S =


1 q zeq xe2 q

0 1 yeq
(
y2

2 − ϵw
)
e2 q

0 0 eq ye2 q

0 0 0 e2 q

 .

Right-invariant vector fields: Dx, Dy, −Dz − yDx, Dw, −Dq + (2x − y2

2 +
ϵw)Dx + yDy + (z − y)Dz + 2wDw.

• A5.25bp (b ̸= 0) [e2, e3] = e1, [e1, e5] = 2pe1, [e2, e5] = pe2 + e3, [e3, e5] =
pe3 − e2, [e4, e5] = be4:
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S =



e2 pw −epw(y cosw + x sinw) epw(x cosw − y sinw) 0 z

0 epw cosw epw sinw 0 x

0 −epw sinw epw cosw 0 y

0 0 0 ebw q

0 0 0 0 1

 .

Right-invariant vector fields: 2Dz, Dx + yDz, −Dy + xDz, Dq, Dw + bqDq +
(px+ y)Dx + (py − x)Dy + 2pzDz.

• A5.26ϵp (ϵ = ±1) [e2, e3] = e1, [e1, e5] = 2pe1, [e2, e5] = pe2 + e3, [e3, e5] =
pe3 − e2, [e4, e5] = ϵe1 + 2pe4:

S =


e2 pw −epw(y cosw + x sinw) epw(x cosw − y sinw) 2 ϵwe2 pw z

0 epw cosw epw sinw 0 x

0 −epw sinw epw cosw 0 y

0 0 0 e2 pw q

0 0 0 0 1

 .

Right-invariant vector fields: 2Dz, Dx + yDz, −Dy + xDz, Dq, Dw+
(px+ y)Dx + (py − x)Dy + 2(ϵq + pz)Dz + 2pqDq.

• A5.27 [e2, e3] = e1, [e1, e5] = e1, [e3, e5] = e3 + e4, [e4, e5] = e1 + e4:

S =


ew wew

(
q + w2

2

)
ew z

0 ew wew x

0 0 ew y

0 0 0 1

 .
Right-invariant vector fields: Dz, −Dq − yDz, Dy, Dx, Dw + (x + y)Dx +
yDy + (x+ z)Dz.

• A5.28a [e2, e3] = e1, [e1, e5] = ae1, [e2, e5] = (a − 1)e2, [e3, e5] = e3 + e4,
[e4, e5] = e4:

S =


e−w z xe−(a−1w) q

0 1 ye(a−1)w w

0 0 e(a−1)w 0

0 0 0 1

 .
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Right-invariant vector fields: e2(a−1)wDx, Dy, ye
(2(a−1)wDx +Dz + wDq, Dq,

−Dw − (a− 2)xDx + (a− 1)yDy + zDz + qDq.

• A5.29 [e2, e4] = e1, [e1, e5] = e1, [e2, e5] = e2, [e4, e5] = e3:

S =


1 q xew z

0 1 yew w

0 0 ew 0

0 0 0 1

 .
Right-invariant vector fields: Dx, Dy, Dz, Dq+yDx+wDz, −Dw+xDx+yDy.

• A5.30a [e2, e4] = e1, [e3, e4] = e2, [e1, e5] = (a + 1)e1, [e2, e5] = ae2,
[e3, e5] = (a− 1)e3, [e4, e5] = e4:

S =


1 q q2

2 x

0 ew ewq ewy

0 0 e2w e2wz

0 0 0 e(a+1)w

 .

Right-invariant vector fields: e(a+1)wDx, e
awDy, e

(a−1)wDz, e
w(Dq + yDx +

zDy), −Dw.

• A5.31 [e2, e4] = e1, [e3, e4] = e2, [e1, e5] = 3e1, [e2, e5] = 2e2, [e3, e5] = e3,
[e4, e5] = e3 + e4:

S =


e3w −ze2w 1

2z
2ew 1

2e
w(z2w + x− yz + 3z2

2 ) q

0 e2w −zew ew(y − z − zw) x

0 0 ew wew y

0 0 0 ew z

0 0 0 0 1

 .

Right-invariant vector fields: 3Dq, −(2Dx + zDq), Dy + zDx, Dz − xDq−
(y + z)Dx, Dw + 3qDq + 2xDx + (y + z)Dy ++zDz.

• A5.32a [e2, e4] = e1, [e3, e4] = e2, [e1, e5] = e1, [e2, e5] = e2, [e3, e5] =
ae1 + e3:
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S =


1 q q2

2 − aw x

0 1 q y

0 0 1 z

0 0 0 ew

 .
Right-invariant vector fields: ewDx, ewDy, ewDz, Dq + yDx + zDy,
−Dw + azDx.

• A5.33ab (a
2+b2 ̸= 0) [e1, e4] = e1, [e3, e4] = be3, [e2, e5] = e2, [e3, e5] = ae3:

S =


ez 0 0 q

0 ew 0 x

0 0 eaw+bz y

0 0 0 1

 .
Right-invariant vector fields: Dq, Dx, Dy, −(Dz + qDq + byDy), −(Dw+
xDx + ayDy).

• A5.34a [e1, e4] = ae1, [e2, e4] = e2, [e3, e4] = e3, [e1, e5] = e1, [e3, e5] = e2.

S =


eαz+w 0 0 q

0 ez w x

0 0 ez y

0 0 0 1

 .
Right-invariant vector fields: Dq, Dx, Dy, Dz + xDx + yDy + aqDq, Dw +
yDx + qDq.

• A5.35ab (a
2+b2 ̸= 0) [e1, e4] = be1, [e2, e4] = e2, [e3, e4] = e3, [e1, e5] = ae1,

[e2, e5] = −e3, [e3, e5] = e2:

S =


eaw+bz 0 0 q

0 ez cosw ez sinw x

0 −ez sinw ez cosw y

0 0 0 1

 .
Right-invariant vector fields: Dq, Dx, Dy, Dz+xDx+yDy+bqDq, DwyDx−
xDy + aqDq.
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• A5.36 [e2, e3] = e1, [e1, e4] = e1, [e2, e4] = e2, [e2, e5] = −e2, [e3, e5] = e3:

S =

e
w eqx z

0 eq y

0 0 1

 .
Right-invariant vector fields: Dz, −Dx − yDz, Dy, Dw + xDx + zDz, Dq −
xDx + yDy.

• A5.37 [e2, e3] = e1, [e1, e4] = 2e1, [e2, e4] = e2, [e3, e4] = e3, [e2, e5] = −e3,
[e3, e5] = e2:

S =


e2 q (y cosw + x sinw)eq (y sinw − x cosw)eq z

0 eq cosw eq sinw x

0 −eq sinw eq cosw y

0 0 0 1

 .
Right-invariant vector fields: 2Dz,Dx−yDz,Dy+xDz,Dq+xDx+yDy+2zDz,
Dw + yDx − xDy.

• A5.38 [e1, e4] = e1, [e2, e5] = e2, [e4, e5] = e3:

S =


ez 0 0 0 q

0 ew 0 0 x

0 0 1 w y

0 0 0 1 z

0 0 0 0 1

 .

Right-invariant vector fields: Dq, Dx, Dy, qDq +Dz, Dw + xDx + zDy.

• A5.39 [e1, e4] = e1, [e2, e4] = e2, [e1, e5] = −e2, [e2, e5] = e1, [e4, e5] = e3:

S =



1 z 0 0 q

0 1 0 0 w

0 0 e−w cos z e−w sin z x

0 0 −e−w sin z e−w cos z y

0 0 0 0 1

 .
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Right-invariant vector fields: Dy, Dx, Dq, −Dw + yDy + xDx, −Dz + xDy −
yDx − wDq.

• A5.40 [e1, e2] = 2e1, [e3, e1] = e2, [e2, e3] = 2e3, [e1, e4] = e5, [e2, e4] = e4,
[e2, e5] = −e5, [e3, e5] = e4:

S =

e
x y w

z (1 + yz)e−x q

0 0 1

 .
Right-invariant vector fields: ze−xDx + (yz + 1)e−xDy + qDw, −qDq +Dx +
yDy − zDz + wDw, wDq + exDz, Dq, Dw.

9. Appendix

Proposition 9.1. Algebra A5,21 has no representation in gl(4,R).

Proof. First of all assume that there is a upper triangular representation.
Since each of e1, e2, e3, e4 is a sum of commutators we may assume that each
of E1, E2, E3, E4 are strictly upper triangular. Now put

E2 =


0 t u v

0 0 p q

0 0 0 r

0 0 0 0

 , E5 =


a b c d

0 e f g

0 0 h i

0 0 0 j

 ,
and define E3 = [E2, E5]− E2, E4 = [E3, E5]− E3, E1 = [E2, E3]. Then

E1 =


0 0 tp(h− 2 e+ a) tpi+ tqj − 2 teq − 2 tfr + urj − 2urh+ tqa+ rau+ rbp

0 0 0 pr(j − 2h+ e)

0 0 0 0

0 0 0 0

 ,

E3 =


0 t(e− a− 1) tf + uh− au− bp− u tg + ui+ vj − av − bq − cr − v

0 0 p(h− e− 1) pi+ qj − eq − fr − q

0 0 0 r(j − h− 1)
0 0 0 0

 ,
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E4 =


0 t(a− e+ 1)2 ∗ ∗
0 0 p(−h+ e+ 1)2 ∗
0 0 0 r(−j + h+ 1)2

0 0 0 0

 .
It turns out that [E1, E5] = [E2, E4], the equality of commutators. Fur-

thermore we have that [E2, E5] = E2 +E3, [E3, E5] = E3 +E4, [E2, E3] = E1

by construction. The remaining brackets are given by

[E1, E2] =


0 0 0 tpr(3h− 3 e+ a− j)

0 0 0 0

0 0 0 0

0 0 0 0

 ,

[E1, E3] =


0 0 0 tpr(jh− h2 − 3h− 3je+ 4he+ 3e+ 2ja− 3ha− a− e2 + ea+ j)

0 0 0 0

0 0 0 0

0 0 0 0

 ,

[E1, E4] =


0 0 0 ∗
0 0 0 0

0 0 0 0

0 0 0 0

 ,

[E1, E5]− 2E5 =


0 0 tp(h− a− 2)(h− 2 e+ a) ∗
0 0 0 pr(j − e− 2)(j − 2h+ e)

0 0 0 0

0 0 0 0

 ,

[E1, E4] =


0 0 0 ∗
0 0 0 0

0 0 0 0

0 0 0 0

 ,
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[E3, E4] =


0 0 tp(h− e− 1)(e− a− 1)(h− 2 e+ a) ∗
0 0 0 pr(j − h− 1)(h− e− 1)(j − 2h+ e)

0 0 0 0

0 0 0 0

 ,

[E4, E5]− E4 =


0 t(e− a− 1)3 ∗ ∗
0 0 p(h− e− 1)3 ∗
0 0 0 r(j − h− 1)3

0 0 0 0

 .
Looking at the [E1, E2] bracket we see that prt(3h − 3e + a − j) = 0.

Suppose first of all that r = 0. Then t ̸= 0 or else E1 = 0. From the (1, 2)-
entry in the [E4, E5] bracket we deduce that e = a+ 1. Now it must be that
p ̸= 0 or else [E1, E5] = 2E5 implies that E1 = 0. Now from the (1, 3)-entry
in the [E1, E5] bracket we deduce that h = a + 2. From the (1, 3)-entry in
the [E4, E5] bracket we conclude that u = bp − ft. However, we now have a
contradiction because E1 and E4 are proportional.

Hence we may assume that r ̸= 0 and by appealing to Corollary 3.2 that
also t ̸= 0 and hence rt ̸= 0. Now suppose that p = 0. Then comparing E1

and the [E1, E5] bracket we find that j = a + 2. From the (1, 2) and (4, 5)-
entries in the [E4, E5] bracket we find that e = a + 1, h = a + 1 which is a
contradiction because now E1 and E4 are proportional.

Hence we assume that prt ̸= 0. Then from the (1, 2), (2, 3) and (4, 5)-
entries in the [E4, E5] bracket we find that e = a + 1, h = e + 1, j = h + 1
which is a contradiction because now E1, E3 and E4 are linearly dependent.
Hence there can be no representation of A5,21 in gl(4,R).

Proposition 9.2. For algebra A5,22 we have µ = 5.

We assume that algebra A5,22 has an upper triangular representation. In
fact we my assume that E2 and E5 are upper triangular and that E4 is strictly
upper triangular, E1 and E3 being determined by the brackets that define the
algebra. We shall write

E2 =


α β δ ρ

α β δ ρ

0 λ σ τ

0 0 ϕ µ

 , E5 =


c d e f

0 g h i

0 0 j k

0 0 0 m

 .
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From the (1, 2), (2, 3), (3, 4)-entries of [E1, E2] = 0 it follows that the (1, 2),
(2, 3), (3, 4)-entries of E1 are zero. From [E2, E3] = E1 and [E3, E5] = 0 it
follows that the (1, 2), (2, 3), (3, 4)-entries of E3 are zero. Invoking Corollary
3.2 we make an upper-triangular transformation so as to reduce E4 to one of
the following seven forms and work through each of these seven cases in turn:

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

 ,

0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0

 ,

0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

 ,

0 0 1 0

0 0 0 1
0 0 0 0

0 0 0 0

 ,

0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0

 ,

0 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0

 ,

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

 .
In the interests of saving space we do not write out explicitly the very

complicated matrices concerned. In the first case from [E2, E4] = 0 we find
that ϕ = α, σ = β, τ = δ, λ = α, µ = β, ν = α and from [E4, E5] = E4 that
g = c+1, h = d, i = e, j = g+1, k = h, t = j+1. Now, however, [E3, E5] = 0
implies that E3 = 0.

In the second case from [E2, E4] = 0 we find that ϕ = α, σ = β, λ = α,
τ = 0, µ = 0 and from [E4, E5] = E4 that g = c+ 1, h = d, i = 0, j = g + 1,
k = 0. Now, however, [E1, E2] = 0 implies that E1 = 0.

In the third case from [E2, E4] = 0 we find that ϕ = α, σ = 0, τ = δ,
ν = λ and from [E4, E5] = E4 that g = c + 1, h = 0, i = e, t = j + 1. The
(1, 3) entries of [E1, E2] = 0 [E3, E5] = 0 imply that eα+ jδ− cδ− eν = 0 and
hence E1 and E3 are proportional.

In the fourth case from [E2, E4] = 0 we find that λ = α, µ = β, ν = ϕ
and from [E4, E5] = E4 that j = c + 1, k = d, t = g + 1. Now the only
non-zero entry of the commutator [E2, E3] is in the (1, 4) position. On the
hand the (1, 3) and (2, 4) entries of [E3, E5] imply that hβ + δ − dσ = 0 and
dσ + τ − hβ = 0 and hence the only non-zero entry of E3 is in the (1, 4)
position. Thus if also [E2, E3] = E1 then E1 and E3 would be proportional.

In the fifth case from [E2, E4] = 0 we find that λ = α, µ = 0 and from
[E4, E5] = E4 that j = c + 1, k = 0. The (1, 3)-entry of [E3, E5] = 0 im-
plies that the (1, 3)-entry of E3 is zero and (2, 4)-entries of [E1, E2] = 0 and
[E3, E5] = 0 that the (2, 4)-entry of E3 is zero. Now [E2, E3] = E1 gives that
E1 and E3 are proportional.
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In the sixth case from [E2, E4] = 0 we find that ϕ = λ, β = 0, µ = 0 and
from [E4, E5] = E4 that d = 0, j = g + 1, k = 0. Now, however, [E1, E2] = 0
immediately implies that E1 = 0.

In the seventh case from [E2, E4] = 0 we find that ν = α and from
[E4, E5] = E4 that t = c + 1. Then [E2, E3] = E1 implies that the (1, 3)
entry of E1 is zero. If (α−λ)(α−ϕ) ̸= 0 then comparing E1 and [E1, E2] = 0
implies that E1 and E4 are proportional. Hence by appealing to Corollary
3.2 we may assume that λ = α. Again comparing E1 and [E1, E2] we find
that ϕ = α in order not to have E1 and E4 proportional. Now, however,
[E2, E3] = E1 gives that E1 and E4 are proportional.

Proposition 9.3. µ(g) = 5 for algebra Ab
5,23 for b ̸= 1 and µ(g) = 4

for b = 1.

We define

E2 =


0 β δ ρ

0 0 σ τ

0 0 0 µ

0 0 0 0

 , E4 =


0 m n p

0 0 q r

0 0 0 s

0 0 0 0

 , E5 =


c d e f

0 g h i

0 0 j k

0 0 0 t

 ,
and then E3 is defined as [E2, E5]− E2 and E1 as [E2, E3] giving

E3 =


0 −β(−g + c+ 1) βh+ δj − cδ − dσ − δ βi+ δk + ρt− cρ− dτ − eµ− ρ

0 0 −σ(−j + g + 1) σk + τt− gτ − hµ− τ

0 0 0 −µ(−t+ j + 1)

0 0 0 0

 ,

E1 =


0 0 βσ(j − 2g + c) βσk + βτt− 2βgτ − 2βhµ+ δµt− 2δµj + βτc+ µcδ + µdσ

0 0 0 σµ(t− 2 j + g)

0 0 0 0

0 0 0 0

 .

To begin with we consider the (1, 2)-entry of [E3, E5] = E3 which gives
β(g − c − 1) = 0. We separate cases according as first of all β = 0 and then
g − c− 1 = 0. Looking at the (3, 4)-entry of [E3, E5] = E3 we must have that
µ ̸= 0 or E1 = 0 and so t = j + 1. Next, from [E4, E5] = bE4, assuming that
b ̸= 1 we find that s = 0. From the (2, 4)-entry of [E2, E4] = 0 we find that
q = 0. Now comparing E1 and [E1, E5]− 2E1 we find that j = c+ 1 in order
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not to have E1 = 0. Next from the (1, 3) and (1, 4)-entries of [E2, E4] = 0,
respectively, we have σ ̸= 0 or µ ̸= 0 or else E1 = 0. From the (2, 3), (2, 4) and
(1, 4)-entries of [E3, E5] = E3, respectively, we have that g = c, τ = hµ − σk
and ρ = dhµ− δk+ eµ). Looking at the (2, 4)-entry of [E4, E5] = bE4 we have
b = 2 and r ̸= 0 or else E1 and E4 are proportional. Now from the (1, 4)-entry
of [E4, E5] = bE4 we have that d = 0 and hence E3 = 0.

Now we consider the second case where g = c + 1 and β ̸= 0. From the
(1, 2)-entry of [E4, E5]− bE4 = 0 we find that m = 0 and from the (1, 3)-entry
of [E2, E4] = 0 we find that q = 0. Comparing E1 and [E1, E5]− 2E1 we find
that t = c + 2 in order not to have E1 = 0. Now not both µ and σ can be
zero or else E1 = 0 so we distinguish subcases according as σ and µ zero. So
if σ = 0 and µ ̸= 0 the (1, 2) and (3, 4)-entries of [E4, E5] = bE4, respectively,
give that n = s = 0, since we are assuming that b ̸= 1. Finally the (1, 4)-entry
of [E2, E4] implies that r and hence E1 and E4 are proportional. On the other
hand if µ = 0 and σ ̸= 0 then from the (1, 3)-entry of [E2, E3] − E1 = 0
we find that j = c + 2 and from the (2, 4)-entry of [E2, E4] = 0 that s = 0.
Next the (2, 4)-entry of [E4, E5]− bE4 = 0 that r = 0, from the (1, 3)-entry of
[E3, E5]−E3 = 0 that δ = dσ − βh from the (1, 4)-entry of [E3, E5]−E3 = 0
that ρ = (k − i)βh + dτ . From the (1, 3)-entry of [E4, E5] − bE4 = 0 we
find that b = 2 and n ̸= 0 or else E1 and E4 are proportional. Finally the
(1, 4)-entry of [E4, E5]− bE4 = 0 implies that k = 0 which gives that E1 = 0.

Proposition 9.4. Algebra A5,31 has no representation in gl(4,R).

Proof. Put

E4 =


0 t u v

0 0 p q

0 0 0 r

0 0 0 0

 , E5 =


a b c d

0 e f g

0 0 h i

0 0 0 j

 ,

and define E3 = [E4, E5]− E4, E2 = [E3, E4], E1 = [E2, E4]. Then

E1 =


0 0 0 tpr(3e− a− 3h+ j)

0 0 0 0

0 0 0 0

0 0 0 0

 ,
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E2 =


0 0 tp(2e− a− h) 2tqe− tqa+ 2rtf + 2ruh− rau− rbp− tpi− tqj − ruj

0 0 0 pr(2h− e− j)

0 0 0 0

0 0 0 0

 ,

E3 =


0 t(e− a− 1) tf + uh− au− bp− u tg + ui+ vj − av − bq − cr − v

0 0 p(h− e− 1) pi+ qj − eq − fr − q

0 0 0 r(j − h− 1)

0 0 0 0

 .

Of the ten brackets, three, [E2, E4] = E1, [E3, E4] = E1, [E4, E5] = E3 +
E4, are satisfied by construction. Furthermore [E1, E2] = 0, [E1, E3] = 0,
[E1, E4] = 0 identically. Of the remaining four brackets we shall need only the
following:

[E1, E5]− 3E1 =


0 0 0 tpr(3e− a− 3h+ j)(j − a− 3)

0 0 0 0

0 0 0 0

0 0 0 0

 ,

[E3, E5]− E3 =


0 t(e− a− 1)2 ∗ ∗
0 0 p(h− e− 1)2 ∗
0 0 0 r(j − h− 1)2

0 0 0 0

 .
Considering E1, we see that prt ̸= 0. Then looking at [E3, E5]−E3 = 0 we see
that we must have e = a+1, h = e+1, j = h+1 and hence 3e−a−3h+j = 0
and hence E1 = 0 which is a contradiction.

Proposition 9.5. Algebra A5,38 has no representation in gl(4,R)

Proof. Define {E1, E2, E4, E5} as

E1 =


0 α β δ

0 0 ϵ ϕ

0 0 0 ψ

0 0 0 0

 , E2 =


0 ρ σ τ

0 0 λ µ

0 0 0 θ

0 0 0 0

 ,
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E4 =


a b c d

0 e f g

0 0 h i

0 0 0 j

 , E5 =


m n p q

0 r s u

0 0 t v

0 0 0 w

 .
Then define E3 = [E4, E5] and we must have that [E1, E4] = E1, [E2, E5] = E2

and the remaining seven commutators are zero. Consulting the (3, 4) entries
of [E3, E4] and [E3, E5] we deduce that the (3, 4)th entry of E3 vanishes.
Likewise the (1, 2) and (2, 3) entries of E3 vanish.

Just as in A5,22 there are seven normal forms for E2 under change of basis.
We work through each of these cases again suppressing the details of the very
complicated matrices concerned. In the first case ρ = 1, λ = 1, θ = 1, σ = 0,
τ = 0, µ = 0 From [E2, E5] we must have that r = m + 1, s = n, u = p,
t = r + 1, v = s, w = t+ 1 and from [E1, E2] that ϵ = α, ϕ = β, ψ = ϵ. From
[E1, E5] we have that α = 0, β = 0, δ = 0 but now E1 = 0.

In the second case (ii) ρ = 1, λ = 1, θ = 0, σ = 0, τ = 0, µ = 0. Then
[E2, E5] = 0 implies that r = m + 1, s = n, u = 0, v = 0, t = r + 1 and
[E1, E2] = 0 that ϵ = α, ϕ = 0, ψ = 0. Now [E1, E5] = 0 easily gives α = 0,
β = 0 and [E2, E4] = 0 that e = a, f = b, g = 0, i = 0, h = e. Finally
the (1, 3)th entry of [E3, E5] implies that c = 0 and then E1 and E3 are
proportional.

In the third case ρ = 1, λ = 0, θ = 1, σ = 0, τ = 0, µ = 0. Then [E2, E5] =
0 implies that r = m+1, s = 0, u = p, w = t+1, from [E1, E2] = 0 that ϵ = 0,
ϕ = β and from [E1, E5] = 0 that α = 0, ψ = 0. Next from [E2, E4] = 0 we
find that e = a, f = 0, g = c, j = h and from [E4, E5] = E3 that b = 0, i = 0.
Now the (1, 4)th entry of [E2, E3] = 0 implies that ap + ct − mc − ph = 0.
In order for E3 not to vanish we must have that cv + d − nc ̸= 0 and then
from the the (1, 4)th entries of [E3, E4] and [E3, E5] h = a, t = m− 1. Finally
[E4, E5] = E3 implies that c = 0, d = 0 and hence E3 = 0.

In the fourth case ρ = 0, λ = 0, θ = 0, σ = 1, τ = 0, µ = 1. From
[E2, E5] = 0 we have that t = m+1, v = n, w = r+1, from [E1, E2] = 0 that
ψ = α and from [E2, E4] = 0 that h = a, i = b, j = e. Now from [E3, E5] = 0
we find that eu + nf + gm + g − rg − bs − ua = 0 which can be used to
simplify E3. The (1, 3)th entry of [E3, E5] = 0 implies that c = nf − bs. Now
bu− nbs+ n2f + d− ng − pb ̸= 0 or else E3 = 0 and then from the the (1, 4)
entries of [E3, E4] and [E3, E5] we deduce that e = a and r = m − 1. Now
from [E4, E5] = E3 we have that b = 0, d = 0, f = 0, g = 0 which implies
that E3 = 0.
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In the fifth case ρ = 0, λ = 0, θ = 0, σ = 1, τ = 0, µ = 0. From
[E2, E5] = 0 we have that t = m+ 1, v = 0, from [E1, E2] = 0 that ψ = 0 and
from [E2, E4] = 0 that h = a, i = 0. Now the (1, 3)th entries of [E3, E5] = 0
and [E1, E5] = 0 implies that c = nf − bs and β = nϵ− αs. Now we separate
cases according as the (2, 4)th entry eu+fv+gm+g−rg−si−ua of E3 vanishes
or not. In the first of these subcases the (1, 4)th entries of [E3, E4] = 0,
[E3, E5] = 0, [E4, E5] = E3 and [E1, E4] = 0 imply that j = a, w = m, d = 0
and δ = gα − bϕ. Now considering [E1, E4] = 0 we must have e = a + 1 or
e = a− 1 or else E1 = 0. However, now in either if these cases [E4, E5] = E3

implies that E3 = 0. Thus we may assume that eu+fv+gm+g−rg−si−ua ̸=
0 and then the (1, 4)th entries of [E1, E3] = 0 and [E3, E5] = 0 imply that
α = 0 and n = 0. Then the (1, 2) and (2, 4) entries of [E3, E4] = 0 give b = 0
and e = a and finally the (2, 4)th entry of [E3, E5] = 0 that r = m and at this
point we have that [E4, E5] = E3 implies that E3 = 0.

In the sixth case ρ = 0, λ = 1, θ = 0, σ = 0, τ = 0, µ = 0. From
[E2, E5] = 0 we have that t = r + 1, n = 0, v = 0, from [E1, E2] = 0
that α = 0, ψ = 0 and from [E2, E4] = 0 that b = 0, h = e, i = 0. Now
[E4, E5] = E3 imply that f = 0 and the (2, 3)th entry of [E1, E4] = E1 that
ϵ = 0. Now the (1, 3)th entries of [E3, E4] = 0 and [E3, E5] = 0 imply that
the (1, 3)th entry ap + cr + c − mc − pe = 0 of E3 vanishes. Suppose that
d ̸= 0. Then the (1, 4) entries of [E3, E4] = 0, [E3, E5] = 0 and [E4, E5] = E3

imply that j = a, w = m, d = 0. Hence d = 0. Now comparing the (2, 4)th
entries of [E3, E4] = 0 and E3 we find that j = e and from the (2, 4)th entry
of [E3, E5] = 0 that w = r. Now, however, the (2, 4)th entry of [E4, E5] = E3

implies that E3 = 0.

In the seventh case ρ = 0, λ = 0, θ = 0, σ = 0, τ = 1, µ = 0, consulting
the (3, 4) entries of [E3, E4] and [E3, E5] we deduce that the (3, 4)th entry
of [E3, E4] vanish. Likewise the (1, 2) and (2, 3) entries of [E3, E4] vanish.
Now we cannot have that both the (1, 3) and (2, 4) entries of E3 vanish or
else E2 and E3 would be proportional. Appealing to Corollary 3.2 we may
assume that the (1, 3)th entry of E3 is not zero. Hence from the (1, 2) entries
of [E3, E4] and [E3, E5] we deduce that h = a and t = m. Now the (1, 2)
entries of [E1, E5] and [E4, E5] imply that ψ = 0 and i = 0. Next the (1, 3)
and (1, 4) entries of [E1, E4] give that β = fα− bϵ and δ = gα+fiα− biϵ− bϕ
and the (1, 4)th entry of [E3, E5] implies that d = −(vbs− 2vnf + bu+ cv −
ngm − 2ng − pi − neu + nrg + nsi + nua). Consulting the (1, 2) and (2, 3)
entries of [E1, E4] = E1 we see that at least one of α and ϵ must be zero; hence
from the (1, 2) and (2, 3) entries of [E1, E5] we deduce that r = m. Next the
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(2, 4) entries of [E3, E5] and [E1, E5] imply that g = −(eu+ fv− si−ua) and
ϕ = −vϵ.

Now we separate cases assuming first of all that α = 0. Then ϵ ̸= 0 or
else E1 = 0. Now the (1, 3) entry of [E1, E5] implies that n = 0 and the (2, 3)
entry of [E1, E4] − E1 and [E4, E5] − E3 implies that s = 0. Now, however,
E3 = 0, a contradiction.

Finally suppose that ϵ = 0 and α ̸= 0. Then the (1, 2) entry of [E1, E4]−E1

gives that e = a+1. The (1, 2) and (2, 3) entries of [E4, E5]−E3 give n = s = 0
Now, however, again E3 = 0.

Since A5,39 is equivalent over C to A5,38 we deduce that

Corollary 9.6. A5,39 has no representation in gl(4,R).
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