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Abstract: We classify the subspaces of each real four-dimensional Lie algebra, up to auto-
morphism. Enumerations of the subalgebras, ideals, and full-rank (or bracket generating)
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1. Introduction

In this paper we classify the subspaces of each (real) four-dimensional
Lie algebra; two subspaces Γ1 and Γ2 of a Lie algebra g are equivalent if
there exists a Lie algebra automorphism ψ ∈ Aut(g) such that ψ · Γ1 = Γ2.
The subspaces are enumerated and partitioned into the subalgebras (which
are not ideals), the ideals, the subspaces generating proper subalgebras, and
the full-rank subspaces (i.e., those subspaces generating the entire Lie alge-
bra). Furthermore, the quotients by the one-dimensional fully characteristic
ideals are determined. The decomposable algebras are covered in Section 2
while the indecomposable algebras are covered in Section 3. The classifica-
tion procedure (utilizing computer algebra for verification of completeness and
nonredundancy) is described in Appendix B; a typical proof is also supplied.

We prefer to use (a modified version of) the enumeration of the four-
dimensional Lie algebras due to Mubarakzyanov ([16]), similar to that used
by Patera et al. ([18, 17]); details are given in Appendix A. Also, we shall
find it convenient to represent these algebras as subalgebras of gl(n,R), n ≤ 4
(matrix representations of low dimensional Lie algebras are given in [11]).
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For each Lie algebra, the corresponding enumeration of subspaces is cata-
logued as follows:

SA: subalgebras (which are not ideals)
I: ideals (which are not characteristic)

CI: characteristic ideals (which are not fully characteristic)
FCI: fully characteristic ideals

GSA: subspaces generating proper subalgebras
FRSS: full-rank subspaces.

(A characteristic ideal is an ideal which is invariant under all derivations
whereas a fully characteristic ideal is one which is invariant under all auto-
morphisms.) We refer to this partitioning of the subspaces as the subspace
structure of the Lie algebra. Unless stated otherwise, each listed subalgebra is
Abelian. For example, the oscillator algebra g0

4.9 has the following subspace
structure:

SA: ⟨E2⟩ , ⟨E4⟩ , ⟨E1, E2⟩ , ⟨E1, E4⟩
FCI: ⟨E1⟩ , ⟨E1, E2, E3⟩ ∼= g3.1

GSA: ⟨E2, E3⟩
FRSS: ⟨E2, E4⟩ , ⟨E1, E2, E4⟩ , ⟨E2, E3, E4⟩ .

(Here E1, E2, E3, E4 is a basis for g0
4.9 and ⟨·⟩ denotes the linear span.) This

means, for instance, that any subalgebra of g0
4.9 (which is not an ideal) is

equivalent to exactly one of the Abelian subalgebras ⟨E2⟩, ⟨E4⟩, ⟨E1, E2⟩,
and ⟨E1, E4⟩.

In Section 4, we briefly explore to what extent a classification of the sub-
spaces of a given Lie algebra g can be projected (resp. lifted) to a quotient
(resp. extension) of g. A few remarks conclude the paper.

2. Decomposable algebras

2.1. Algebra g2.1 ⊕ 2g1 (trivial extension of aff (R)). The Lie
algebra

g2.1 ⊕ 2g1 =




0 0 0 0
w −x 0 0
0 0 y 0
0 0 0 z

 = wE1 + xE2 + yE3 + zE4 : w, x, y, z ∈ R


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has nonzero commutator relations [E1, E2] = E1 and center {0} ⊕ 2g1. The
group of automorphisms is given by

Aut (g2.1⊕2g) =



a1 a2 0 0
0 1 0 0
0 a3 a4 a5
0 a6 a7 a8

 : a1, . . . , a8 ∈ R, a1(a4a8 − a5a7) ̸= 0

 .
Theorem 2.1. The Lie algebra g2.1 ⊕ 2g1 has the following subspace

structure:

SA: ⟨E2⟩ , ⟨E1 + E4⟩ , ⟨E2, E4⟩ , ⟨E1 + E3, E4⟩ , ⟨E2, E3, E4⟩
I: ⟨E4⟩ , ⟨E1, E2⟩ ∼= g2.1, ⟨E1, E4⟩ , ⟨E1, E2, E4⟩ ∼= g2.1 ⊕ g1

FCI: ⟨E1⟩ , ⟨E3, E4⟩ , ⟨E1, E3, E4⟩
GSA: ⟨E1 + E4, E2⟩
FRSS: ⟨E1 + E3, E2, E4⟩.

g2.1 ⊕ 2g1 is a fully characteristic extension of the three-dimensional Abelian
Lie algebra 3g1. Indeed,

q : g2.1 ⊕ 2g1 → 3g1,


0 0 0 0
w −x 0 0
0 0 y 0
0 0 0 z

 7−→

x 0 0
0 y 0
0 0 z


is a Lie algebra epimorphism with kernel ker q = ⟨E1⟩.

2.2. Algebra 2g2.1. The Lie algebra

2g2.1 =




0 0 0 0
w −x 0 0
0 0 0 0
0 0 y −z

 = wE1 + xE2 + yE3 + zE4 : w, x, y, z ∈ R


has nonzero commutator relations [E1, E2] = E1, [E3, E4] = E3 and trivial
center. The group of automorphisms is given by

Aut (2g2.1) =



a1 a2 0 0
0 1 0 0
0 0 a3 a4
0 0 0 1

 ,


0 0 a3 a4
0 0 0 1
a1 a2 0 0
0 1 0 0


: a1, . . . , a4 ∈ R, a1a3 ̸= 0

}
.
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Theorem 2.2. The Lie algebra 2g2.1 has the following subspace struc-
ture:

SA: ⟨E4⟩ , ⟨E1 + E3⟩ , ⟨E1 + E4⟩ , ⟨εE2 + E4⟩
⟨E1, E4⟩ , ⟨E2, E4⟩ , ⟨E1 + E4, E3⟩ ∼= g2.1
⟨E1, ηE2 + E4⟩ ∼= g2.1, ⟨E1 + E3, E2 + E4⟩ ∼= g2.1
⟨E1, E2, E4⟩ ∼= g1 ⊕ g2.1

CI: ⟨E1⟩ , ⟨E1, E2⟩ ∼= g2.1, ⟨E1, E2, E3⟩ ∼= g1 ⊕ g2.1

⟨E1, µE2 + E4, E3⟩ ∼= g
1+µ
1−µ

3.4
FCI: ⟨E1, E3⟩ , ⟨E1, E2 + E4, E3⟩ ∼= g3.3

⟨E1,−E2 +E4, E3⟩ ∼= g0
3.4

GSA: ⟨E1 + E3, E4⟩ , ⟨E1 +E4, E2⟩ , ⟨E1 + E3, γE2 + E4⟩
FRSS: ⟨E1 + E4, E2 + E3⟩ , ⟨E1, E2 + E3, E4⟩ , ⟨E1 + E3, E2, E4⟩.

Here ε, γ, η, µ ̸= 0, −1 ≤ ε ≤ 1, −1 ≤ γ < 1, −1 < µ < 1 parametrize
families of distinct (nonequivalent) subspaces.

2g2.1 has no fully characteristic one-dimensional ideals.

2.3. Algebra g3.1 ⊕ g1 (trivial extension of the Heisenberg al-
gebra). The Lie algebra

g3.1 ⊕ g1 =




0 x w 0
0 0 y 0
0 0 0 0
0 0 0 z

 = wE1 + xE2 + yE3 + zE4 : w, x, y, z ∈ R


has nonzero commutator relations [E2, E3] = E1 and center ⟨E1, E4⟩. The
group of automorphisms is given by

Aut(g3.1 ⊕ g1) =



a2a7 − a6a3 a1 a5 a9

0 a2 a6 0
0 a3 a7 0
0 a4 a8 a10


: a1, . . . , a10 ∈ R, (a2a7 − a6a3)a10 ̸= 0

}
.

Theorem 2.3. The Lie algebra g3.1⊕g1 has the following subspace struc-
ture:
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SA: ⟨E2⟩ , ⟨E2, E4⟩
I: ⟨E4⟩ , ⟨E1, E2⟩ , ⟨E1, E2, E3⟩ ∼= g3.1, ⟨E1, E2, E4⟩

FCI: ⟨E1⟩ , ⟨E1, E4⟩
GSA: ⟨E2, E3⟩
FRSS: ⟨E2, E3, E4⟩.

g3.1 ⊕ g1 is a fully characteristic (central) extension of the three-dimensional
Abelian Lie algebra 3g1. Indeed,

q : g3.1 ⊕ g1 → 3g1,


0 x w 0
0 0 y 0
0 0 0 0
0 0 0 z

 7−→

x 0 0
0 y 0
0 0 z


is a Lie algebra epimorphism with kernel ker q = ⟨E1⟩.

2.4. Algebra g3.2 ⊕ g1. The Lie algebra

g3.2 ⊕ g1 =




0 0 0 0
x y 0 0
w −y y 0
0 0 0 z

 = wE1 + xE2 + yE3 + zE4 : w, x, y, z ∈ R


has nonzero commutator relations [E2, E3] = E1 − E2, [E3, E1] = E1 and
center {0} ⊕ g1. The group of automorphisms is given by

Aut(g3.2 ⊕ g1) =



a1 a2 a3 0
0 a1 a4 0
0 0 1 0
0 0 a5 a6

 : a1, . . . , a6 ∈ R, a1a6 ̸= 0

 .
Theorem 2.4. The Lie algebra g3.2⊕g1 has the following subspace struc-

ture:

SA: ⟨E2⟩ , ⟨E3⟩ , ⟨E1 +E4⟩ , ⟨E2 + E4⟩
⟨E1, E3⟩ ∼= g2.1, ⟨E2, E4⟩ , ⟨E3, E4⟩
⟨E1, E2 + E4⟩ , ⟨E1 + E4, E2⟩ , ⟨E1, E3, E4⟩ ∼= g2.1 ⊕ g1

I: ⟨E1, E2, E3⟩ ∼= g3.2
FCI: ⟨E1⟩ , ⟨E4⟩ , ⟨E1, E2⟩ , ⟨E1, E4⟩ , ⟨E1, E2, E4⟩

GSA: ⟨E2, E3⟩ , ⟨E1 + E4, E3⟩
FRSS: ⟨E2 + E4, E3⟩

⟨E2, E3, E4⟩ , ⟨E1 + E4, E2, E3⟩ , ⟨E1, E2 + E4, E3⟩.
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Clearly g3.2 ⊕ g1 is a trivial fully characteristic (central) extension of g3.2.
However, it is also a fully characteristic extension of g2.1 ⊕ g1. Indeed,

q : g3.2 ⊕ g1 → g2.1 ⊕ g1,


0 0 0 0
x y 0 0
w −y y 0
0 0 0 z

 7−→

0 0 0
x y 0
0 0 z


is a Lie algebra epimorphism with kernel ker q = ⟨E1⟩.

2.5. Algebra g3.3 ⊕ g1. The Lie algebra

g3.3 ⊕ g1 =




0 0 0 0
x y 0 0
w 0 y 0
0 0 0 z

 = wE1 + xE2 + yE3 + zE4 : w, x, y, z ∈ R


has nonzero commutators [E2, E3] = −E2, [E3, E1] = E1 and center {0}⊕g1.
The group of automorphisms is given by

Aut(g3.3 ⊕ g1) =



a1 a2 a3 0
a4 a5 a6 0
0 0 1 0
0 0 a7 a8

 : a1, . . . , a8 ∈ R, (a1a5 − a2a4)a8 ̸= 0

 .
Theorem 2.5. The Lie algebra g3.3⊕g1 has the following subspace struc-

ture:

SA: ⟨E3⟩ , ⟨E1 + E4⟩ , ⟨E1, E3⟩ ∼= g2.1, ⟨E3, E4⟩
⟨E1, E2 + E4⟩ , ⟨E1, E3, E4⟩ ∼= g2.1 ⊕ g1

I: ⟨E1⟩ , ⟨E1, E4⟩ , ⟨E1, E2, E3⟩ ∼= g3.3
FCI: ⟨E4⟩ , ⟨E1, E2⟩ , ⟨E1, E2, E4⟩

GSA: ⟨E1 + E4, E3⟩
FRSS: ⟨E1, E2 + E4, E3⟩.

Clearly g3.3 ⊕ g1 is a trivial fully characteristic (central) extension of g3.3.

2.6. Algebra g0
3.4 ⊕ g1 (trivial extension of the semi-Euclidean

algebra). The Lie algebra

g0
3.4 ⊕ g1 =




0 0 0 0
w 0 −y 0
x −y 0 0
0 0 0 z

 : w, x, y, z ∈ R


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has nonzero commutator relations [E2, E3] = E1, [E3, E1] = −E2 and center
{0} ⊕ g1. The group of automorphisms is given by

Aut (g3.3 ⊕ g1) =



a1 a2 a3 0
σ a2 σ a1 a4 0

0 0 σ 0
0 0 a5 a6


: a1, . . . , a6 ∈ R, σ = ±1, (a2

1 − a2
2)a6 ̸= 0

}
.

Theorem 2.6. The Lie algebra g0
3.4⊕g1 has the following subspace struc-

ture:

SA: ⟨E1⟩ , ⟨E3⟩ , ⟨E1 +E4⟩ , ⟨E1 + E2 + E4⟩
⟨E1, E4⟩ , ⟨E3, E4⟩ , ⟨E1, E2 + E4⟩ , ⟨E1 + E2, E3⟩ ∼= g2.1
⟨E1 + E2, E1 + E4⟩ , ⟨E1 + E2, E3, E4⟩ ∼= g2.1 ⊕ g1

I: ⟨E1, E2, E3⟩ ∼= g0
3.4

CI: ⟨E1 + E2⟩ , ⟨E1 + E2, E4⟩
FCI: ⟨E4⟩ , ⟨E1, E2⟩ , ⟨E1, E2, E4⟩

GSA: ⟨E1, E3⟩ , ⟨E1 + E2 + E4, E3⟩
FRSS: ⟨E1 + E4, E3⟩

⟨E1, E3, E4⟩ , ⟨E1, E2 + E4, E3⟩ , ⟨E1 + E2, E1 + E4, E3⟩.

Clearly g0
3.4 ⊕ g1 is a trivial fully characteristic (central) extension of g0

3.4.

2.7. Algebra gα3.4 ⊕ g1. The Lie algebra

gα3.4 ⊕ g1 =




0 0 0 0
w αy −y 0
x −y α y 0
0 0 0 z

 : w, x, y, z ∈ R


has nonzero commutators [E2, E3] = E1 − αE2, [E3, E1] = αE1 − E2 and
center {0} ⊕ g1. Here α > 0, α ̸= 1. (When α = 0, we recover g0

3.4 ⊕ g1 and
when α = 1, we recover g2.1 ⊕ 2g1.) The group of automorphisms is given by

Aut(gα3.4 ⊕ g1) =



a1 a2 a3 0
a2 a1 a4 0
0 0 1 0
0 0 a5 a6

 : a1, . . . , a6 ∈ R, (a2
1 − a2

2)a6 ̸= 0

 .



48 r. biggs, c.c. remsing

Remark 2.7. Aut(gα3.4 ⊕ g1) is a subgroup of Aut(g0
3.4 ⊕ g1). Indeed,

Aut(g0
3.4 ⊕ g1) decomposes as a semidirect product of subgroups

Aut(g0
3.4 ⊕ g1) = Aut(gα3.4 ⊕ g1) o {diag(1, σ, σ, 1) : σ = ±1} .

Accordingly, the classification of the subspaces of gα3.4 ⊕ g1 is very similar
to that of g0

3.4 ⊕ g1. Indeed, any subspace of gα3.4 ⊕ g1 is equivalent to a
subspace with the same formal expression as that of one of g0

3.4 ⊕ g1, up to a
transformation diag(1, σ, σ, 1), σ = ±1.

Theorem 2.8. The Lie algebra gα3.4⊕g1 has the following subspace struc-
ture:

SA: ⟨E1⟩ , ⟨E3⟩ , ⟨E1 +E4⟩ , ⟨E1 + E2 + E4⟩ , ⟨E1 − E2 + E4⟩
⟨E1, E4⟩ , ⟨E3, E4⟩ , ⟨E1, E2 + E4⟩ , ⟨E1 + E2, E3⟩ ∼= g2.1
⟨E1 − E2, E3⟩ ∼= g2.1, ⟨E1 +E2, E1 + E4⟩ , ⟨E1 − E2, E1 + E4⟩
⟨E1 + E2, E3, E4⟩ ∼= g2.1 ⊕ g1, ⟨E1 − E2, E3, E4⟩ ∼= g2.1 ⊕ g1

I: ⟨E1, E2, E3⟩ ∼= gα3.4
FCI: ⟨E4⟩ , ⟨E1 + E2⟩ , ⟨E1 − E2⟩

⟨E1, E2⟩ , ⟨E1 + E2, E4⟩ , ⟨E1 − E2, E4⟩ , ⟨E1, E2, E4⟩
GSA: ⟨E1, E3⟩ , ⟨E1 + E2 + E4, E3⟩ , ⟨E1 −E2 + E4, E3⟩
FRSS: ⟨E1 + E4, E3⟩ , ⟨E1, E3, E4⟩ , ⟨E1, E2 + E4, E3⟩

⟨E1 + E2, E1 + E4, E3⟩ , ⟨E1 − E2, E1 + E4, E3⟩.

Clearly gα3.4 ⊕ g1 is a trivial fully characteristic (central) extension of gα3.4.
However, it is also a fully characteristic extension of g2.1 ⊕ g1. Indeed, the
mappings

q1 : gα3.4 ⊕ g1 → g2.1 ⊕ g1,


0 0 0 0
w αy −y 0
x −y αy 0
0 0 0 z

 7−→

 0 0 0
w − x (α+ 1)y 0

0 0 z



q2 : gα3.4 ⊕ g1 → g2.1 ⊕ g1,


0 0 0 0
w αy −y 0
x −y αy 0
0 0 0 z

 7−→

 0 0 0
w + x (α− 1)y 0

0 0 z


are Lie algebra epimorphisms with kernels ker q1 = ⟨E1 + E2⟩ and ker q2 =
⟨E1 − E2⟩, respectively.
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2.8. Algebra g0
3.5 ⊕g1 (trivial extension of the Euclidean alge-

bra). The Lie algebra

g0
3.5 ⊕ g1 =




0 0 0 0
w 0 −y 0
x y 0 0
0 0 0 z

 : w, x, y, z ∈ R


has nonzero commutator relations [E2, E3] = E1, [E3, E1] = E2 and center
{0} ⊕ g1. The group of automorphisms is given by

Aut (g0
3.5 ⊕ g1) =



a1 a2 a3 0

−σa2 σa1 a4 0
0 0 σ 0
0 0 a5 a6


: a1, . . . ,a6 ∈ R, (a2

1 + a2
2)a6 ̸= 0, σ = ±1

}
.

Theorem 2.9. The Lie algebra g0
3.5⊕g1 has the following subspace struc-

ture:

SA: ⟨E1⟩ , ⟨E3⟩ , ⟨E1 + E4⟩ , ⟨E1, E4⟩ , ⟨E3, E4⟩ , ⟨E1, E2 + E4⟩
I: ⟨E1, E2, E3⟩ ∼= g0

3.5
FCI: ⟨E4⟩ , ⟨E1, E2⟩ , ⟨E1, E2, E4⟩

GSA: ⟨E1, E3⟩
FRSS: ⟨E1 + E4, E3⟩ , ⟨E1, E3, E4⟩ , ⟨E1, E2 + E4, E3⟩.

Clearly g0
3.5 ⊕ g1 is a trivial fully characteristic (central) extension of g0

3.5.

2.9. Algebra gα3.5 ⊕ g1. The Lie algebra

gα3.5 ⊕ g1 =




0 0 0 0
w αy −y 0
x y α y 0
0 0 0 z

 : w, x, y, z ∈ R


has nonzero commutator relations [E2, E3] = E1 −αE2, [E3, E1] = αE1 +E2
and center {0} ⊕ g1. Here α > 0. The group of automorphisms is given by

Aut (gα3.5 ⊕ g1) =



a1 a2 a3 0

−a2 a1 a4 0
0 0 1 0
0 0 a5 a6

 : a1, . . . , a6 ∈ R, (a2
1 + a2

2)a6 ̸= 0

 .
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Remark 2.10. Aut(gα3.5 ⊕ g1) is a subgroup of Aut(g0
3.5 ⊕ g1). Indeed,

Aut(g0
3.5 ⊕ g1) decomposes as a semidirect product of subgroups

Aut(g0
3.5 ⊕ g1) = Aut(gα3.5 ⊕ g1) o {diag(1, σ, σ, 1) : σ = ±1} .

Accordingly, the classification of the subspaces of gα3.5 ⊕ g1 is very similar
to that of g0

3.5 ⊕ g1. In fact, the classification of subspaces turns out to be
formally identical.

Theorem 2.11. The Lie algebra gα3.5 ⊕ g1 has the following subspace
structure:

SA: ⟨E1⟩ , ⟨E3⟩ , ⟨E1 + E4⟩ , ⟨E1, E4⟩ , ⟨E3, E4⟩ , ⟨E1, E2 + E4⟩
I: ⟨E1, E2, E3⟩ ∼= gα3.5

FCI: ⟨E4⟩ , ⟨E1, E2⟩ , ⟨E1, E2, E4⟩
GSA: ⟨E1, E3⟩
FRSS: ⟨E1 + E4, E3⟩ , ⟨E1, E3, E4⟩ , ⟨E1, E2 + E4, E3⟩.

Clearly gα3.5 ⊕ g1 is a trivial fully characteristic (central) extension of gα3.5.

2.10. Algebra g3.6 ⊕ g1 (trivial extension of the pseudo-orthog
onal algebra). The Lie algebra

g3.6 ⊕ g1 =
{[

z+w
2

x−y
2

x+y
2

z−w
2

]
: w, x, y, z ∈ R

}
= gl(2,R)

has nonzero commutator relations [E2, E3] = E1, [E3, E1] = E2, [E1, E2] =
−E3, and center {0} ⊕ g1. The group of automorphisms is given by

Aut(g3.6 ⊕ g1) =


 g

0
0
0

0 0 0 a4

 : g ∈ SO (2, 1), a4 ∈ R, a4 ̸= 0


where

SO (2, 1) =
{
g ∈ R3×3 : g⊤Jg = J, det g = 1

}
, J = diag(1, 1,−1).

Theorem 2.12. The Lie algebra g3.6 ⊕ g1 has the following subspace
structure:
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SA: ⟨E1⟩ , ⟨E3⟩ , ⟨E1 + E3⟩ , ⟨E1 + E4⟩ , ⟨E3 + E4⟩
⟨E1 + E3 + E4⟩ , ⟨E1, E4⟩ , ⟨E3, E4⟩ , ⟨E1, E2 + E3⟩ ∼= g2.1
⟨E2 + E3, E4⟩ , ⟨E1 + E4, E2 + E3⟩ ∼= g2.1
⟨E1 + E3, E2, E4⟩ ∼= g2.1 ⊕ g1

FCI: ⟨E4⟩ , ⟨E1, E2, E3⟩ ∼= g3.6
GSA: ⟨E1, E2⟩ , ⟨E1, E3⟩ , ⟨E1, E2 + E3 + E4⟩
FRSS: ⟨E1, E2 +E4⟩ , ⟨E1, E3 + E4⟩ , ⟨E1 + E4, E3⟩

⟨E2 + E4, E2 + E3⟩ , ⟨E1, E2, E4⟩ , ⟨E2, E3, E4⟩
⟨E1, E2, E3 + E4⟩ , ⟨E1 + E4, E2, E3⟩ , ⟨E1 + E3, E2, E1 + E4⟩.

Clearly g3.6 ⊕ g1 is a trivial fully characteristic (central) extension of g3.6.

2.11. Algebra g3.7 ⊕ g1 (trivial extension of the orthogonal
algebra). The Lie algebra

g3.7 ⊕ g1 =




0 w −x 0
−w 0 y 0
x −y 0 0
0 0 0 z

 : w, x, y, z ∈ R


has nonzero commutator relations [E2, E3] = E1, [E3, E1] = E2, [E1, E2] =
E3 and center {0} ⊕ g1. The group of automorphisms is given by

Aut (g3.7 ⊕ g1) =


 g

0
0
0

0 0 0 a4

 : g ∈ SO (3), a4 ∈ R, a4 ̸= 0


where SO (3) =

{
g ∈ R3×3 : g⊤g = I3, det g = 1

}
.

Theorem 2.13. The Lie algebra g3.7 ⊕ g1 has the following subspace
structure:

SA: ⟨E1⟩ , ⟨E1 + E4⟩ , ⟨E1, E4⟩
FCI: ⟨E4⟩ , ⟨E1, E2, E3⟩ ∼= g3.7

GSA: ⟨E1, E2⟩
FRSS: ⟨E1, E2 + E4⟩ , ⟨E2, E3, E4⟩ , ⟨E1 + E4, E2, E3⟩.

Clearly g3.7 ⊕ g1 is a trivial fully characteristic (central) extension of g3.7.
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3. Indecomposable algebras

3.1. Algebra g4.1 (Engel algebra, central extension of the
Heisenberg algebra). The Lie algebra

g4.1 =




0 z 0 w
0 0 z z − x
0 0 0 y
0 0 0 0

 = wE1 + xE2 + yE3 + zE4 : w, x, y, z ∈ R


has nonzero commutators [E2, E4] = E1, [E3, E4] = E2 and center ⟨E1⟩. The
group of automorphisms is given by

Aut (g4.1) =



a1a

2
2 a2a3 a4 a5

0 a1a2 a3 a6
0 0 a1 a7
0 0 0 a2

 : a1, . . . , a7 ∈ R, a1a2 ̸= 0

 .
Theorem 3.1. The Lie algebra g4.1 has the following subspace structure:

SA: ⟨E2⟩ , ⟨E3⟩ , ⟨E4⟩ , ⟨E1, E3⟩ , ⟨E1, E4⟩ , ⟨E2, E3⟩
I: ⟨E1, E2, E4⟩ ∼= g3.1

FCI: ⟨E1⟩ , ⟨E1, E2⟩ , ⟨E1, E2, E3⟩
GSA: ⟨E2, E4⟩
FRSS: ⟨E3, E4⟩ , ⟨E1, E3, E4⟩ , ⟨E2, E3, E4⟩.

g4.1 is a fully characteristic (central) extension of the Heisenberg algebra g3.1.
Indeed, the mapping

q : g4.1 → g3.1,


0 z 0 w
0 0 z z − x
0 0 0 y
0 0 0 0

 7−→

0 y x
0 0 z
0 0 0


is an epimorphism with ker q = ⟨E1⟩ = Z(g4.1).

3.2. Algebra gα4.2. The Lie algebra

gα4.2 =




−α z 0 0 w
0 −z −α z αx
0 0 −z y
0 0 0 0


= wE1+xE2 + yE3 + zE4 : w, x, y, z ∈ R

}
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has nonzero commutators [E1, E4] = αE1, [E2, E4] = E2, [E3, E4] = E2 +E3
and trivial center. Here α ̸= 0. (We note that α = 0 corresponds to the Lie
algebra g3.2 ⊕ g1.) If α ̸= 1, then the group of automorphisms is given by

Aut (gα4.2) =



a1 0 0 a4
0 a2 a3 a5
0 0 a2 a6
0 0 0 1

 : a1, . . . , a6 ∈ R

 .
If α = 1, then we have

Aut (gα4.2) =



a1 0 a4 a6
a2 a3 a5 a7
0 0 a3 a8
0 0 0 1

 : a1, . . . , a8 ∈ R

 .

3.2.1. Case α ̸= 1

Theorem 3.2. The Lie algebra gα4.2, α ̸= 1 has the following subspace
structure:

SA: ⟨E3⟩ , ⟨E4⟩ , ⟨E1 + E2⟩ , ⟨E1 +E3⟩ , ⟨E1, E3⟩
⟨E1, E4⟩ ∼= g2.1, ⟨E2, E4⟩ ∼= g2.1, ⟨E1 + E2, E3⟩ , ⟨E1 + E3, E2⟩
⟨E1, E2, E4⟩ ∼= gβ3.4, ⟨E2, E3, E4⟩ ∼= g3.2

FCI: ⟨E1⟩ , ⟨E2⟩ , ⟨E1, E2⟩ , ⟨E2, E3⟩ , ⟨E1, E2, E3⟩
GSA: ⟨E3, E4⟩ , ⟨E1 + E2, E4⟩
FRSS: ⟨E1 + E3, E4⟩ , ⟨E1, E3, E4⟩ , ⟨E1 + E2, E3, E4⟩ , ⟨E1 + E3, E2, E4⟩.

Here β = 1+α
1−α when −1 ≤ α < 1 and β = α+1

α−1 when |α| > 1.

gα4.2, α ̸= 1 is a fully characteristic extension of the Lie algebra g3.2. Indeed,
the mapping

q : gα4.2 → g3.2,


−αz 0 0 w

0 −z −αz αx
0 0 −z y
0 0 0 0

 7−→

 0 0 0
−y −z 0
x z −z


is an epimorphism with ker q = ⟨E1⟩. If −1 ≤ α < 1, then gα4.2 is a
fully-characteristic extension of gβ3.4 where β = 1+α

1−α . Indeed, the mapping

q : gα4.2 → g
1+α
1−α

3.4 ,
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
−αz 0 0 w

0 −z −αz αx
0 0 −z y
0 0 0 0

 7−→

 0 0 0
w + y −1

2z(α+ 1) −1
2z(α− 1)

w − y −1
2z(α− 1) −1

2z(α+ 1)


is an epimorphism with ker q = ⟨E2⟩. If |α| > 1, then gα4.2 is a fully-
characteristic extension of gβ3.4 where β = α+1

α−1 . Indeed, the mapping q :

gα4.2 → g
α+1
α−1
3.4 ,

−αz 0 0 w
0 −z −αz αx
0 0 −z y
0 0 0 0

 7−→

 0 0 0
w + y −1

2z(α+ 1) 1
2z(α− 1)

−w + y 1
2z(α− 1) −1

2z(α+ 1)


is an epimorphism with ker q = ⟨E2⟩.

3.2.2. Case α = 1

Theorem 3.3. The Lie algebra g1
4.2 has the following subspace structure:

SA: ⟨E3⟩ , ⟨E4⟩ , ⟨E1, E3⟩ , ⟨E1, E4⟩ ∼= g2.1, ⟨E2, E4⟩ ∼= g2.1
⟨E1, E2, E4⟩ ∼= g3.3, ⟨E2, E3, E4⟩ ∼= g3.2

I: ⟨E1⟩ , ⟨E2, E3⟩
FCI: ⟨E2⟩ , ⟨E1, E2⟩ , ⟨E1, E2, E3⟩

GSA: ⟨E3, E4⟩
FRSS: ⟨E1, E3, E4⟩.

g1
4.2 is a fully characteristic extension of the Lie algebra g3.3. Indeed, the

mapping

q : g1
4.2 → g3.3,


−z 0 0 w
0 −z −z x
0 0 −z y
0 0 0 0

 7−→

0 0 0
y −z 0
w 0 −z


is an epimorphism with ker q = ⟨E2⟩.
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3.3. Algebra g4.3. The Lie algebra

g4.3 =




−z 0 0 w
0 0 −z x
0 0 0 y
0 0 0 0

 = wE1 + xE2 + yE3 + zE4 : w, x, y, z ∈ R


has nonzero commutator relations [E1, E4] = E1, [E3, E4] = E2 and center
⟨E2⟩. The group of automorphisms is given by

Aut(g4.3) =



a1 0 0 a4
0 a2 a3 a5
0 0 a2 a6
0 0 0 1

 : a1, . . . , a6 ∈ R, a1a2 ̸= 0

 .
Theorem 3.4. The Lie algebra g4.3 has the following subspace structure:

SA: ⟨E3⟩ , ⟨E4⟩ , ⟨E1 + E2⟩ , ⟨E1 + E3⟩
⟨E1, E3⟩ , ⟨E1, E4⟩ ∼= g2.1, ⟨E2, E4⟩ ,
⟨E1 + E2, E3⟩ , ⟨E1 + E3, E2⟩ , ⟨E2, E3, E4⟩ ∼= g3.1

I: ⟨E1, E2, E4⟩ ∼= g2.1 ⊕ g1
FCI: ⟨E1⟩ , ⟨E2⟩ , ⟨E1, E2⟩ , ⟨E2, E3⟩ , ⟨E1, E2, E3⟩

GSA: ⟨E3, E4⟩ , ⟨E1 + E2, E4⟩
FRSS: ⟨E1 + E3, E4⟩ , ⟨E1, E3, E4⟩

⟨E1 + E2, E3, E4⟩ , ⟨E1 + E3, E2, E4⟩.

g4.3 is a fully characteristic extension of the Lie algebra g3.1. Indeed, the
mapping

q : g4.3 → g3.1,


−z 0 0 w
0 0 −z x
0 0 0 y
0 0 0 0

 7−→

0 y x
0 0 z
0 0 0


is an epimorphism with ker q = ⟨E1⟩. The Lie algebra g4.3 is also a fully
characteristic (central) extension of the Lie algebra g2.1 ⊕ g1. Indeed, the
mapping

q : g4.3 → g2.1 ⊕ g1,


−z 0 0 w
0 0 −z x
0 0 0 y
0 0 0 0

 7−→

0 0 0
w −z 0
0 0 y


is an epimorphism with ker q = ⟨E2⟩ = Z(g4.3).
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3.4. Algebra g4.4. The Lie algebra

g4.4 =




−z −z 0 w
0 −z −z x
0 0 −z y
0 0 0 0

 = wE1 + xE2 + yE3 + zE4 : w, x, y, z ∈ R


has nonzero commutator relations [E1, E4] = E1, [E2, E4] = E1 + E2,
[E3, E4] = E2 + E3 and trivial center. The group of automorphisms is given
by

Aut(g4.4) =



a1 a2 a3 a4
0 a1 a2 a5
0 0 a1 a6
0 0 0 1

 : a1, . . . , a6 ∈ R, a1 ̸= 0

 .

Theorem 3.5. The Lie algebra g4.4 has the following subspace structure:

SA: ⟨E2⟩ , ⟨E3⟩ , ⟨E4⟩
⟨E1, E3⟩ , ⟨E1, E4⟩ ∼= g2.1, ⟨E2, E3⟩ , ⟨E1, E2, E4⟩ ∼= g3.2

FCI: ⟨E1⟩ , ⟨E1, E2⟩ , ⟨E1, E2, E3⟩
GSA: ⟨E2, E4⟩
FRSS: ⟨E3, E4⟩ , ⟨E1, E3, E4⟩ , ⟨E2, E3, E4⟩.

g4.4 is a fully characteristic extension of the Lie algebra g3.2. Indeed, the
mapping

q : g4.4 → g3.2,


−z −z 0 w
0 −z −z x
0 0 −z y
0 0 0 0

 7−→

 0 0 0
y −z 0

−x z −z


is an epimorphism with ker q = ⟨E1⟩.

3.5. Algebra gα,β4.5 . The Lie algebra

gα,β4.5 =




−z 0 0 w
0 −α z 0 y
0 0 −β z x
0 0 0 0

 = wE1 + xE2 + yE3 + zE4 : w, x, y, z ∈ R


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has nonzero commutator relations [E1, E4] = E1, [E2, E4] = βE2, [E3, E4] =
αE3 and trivial center. Here −1 < α ≤ β ≤ 1, αβ ̸= 0 or α = −1,
0 < β ≤ 1. We note that

gβ,α4.5
∼= gα,β4.5 , gα,β4.5

∼= g
α
β
, 1

β

4.5 , gα,β4.5
∼= g

1
α
, β

α
4.5 , g−1,β

4.5
∼= g−1,−β

4.5 ,

g

γ−1
γ+1 ,0
4.5

∼= gγ3.4 ⊕ g1, g0,0
4.5

∼= g2.1 ⊕ 2g1, g1,0
4,5

∼= g3.3 ⊕ g1.

If α ̸= 1, β ̸= 1 and α ̸= β, then the group of automorphisms is given by

Aut (gα,β4.5 ) =



a1 0 0 a4
0 a2 0 a5
0 0 a3 a6
0 0 0 1

 : a1, . . . , a6 ∈ R, a1a2a3 ̸= 0

 .
If α ̸= 1 and α = β, then the group of automorphisms is given by

Aut (gα,β4.5 ) =



a1 0 0 a6
0 a2 a4 a7
0 a3 a5 a8
0 0 0 1

 : a1, . . . , a8 ∈ R, a1(a2a5 − a3a4) ̸= 0

 .
If α ̸= 1 and β = 1, then the group of automorphisms is given by

Aut (gα,β4.5 ) =



a1 a3 0 a6
a2 a4 0 a7
0 0 a5 a8
0 0 0 1

 : a1, . . . , a8 ∈ R, (a1a4 − a2a3)a5 ̸= 0

 .
If α = 1 (and β = 1), then the group of automorphisms is given by

Aut (gα,β4.5 ) =



a1 a4 a7 a10
a2 a5 a8 a11
a3 a6 a9 a12
0 0 0 1

 : a1, . . . , a12 ∈ R,

∣∣∣∣∣∣∣
a1 a4 a7
a2 a5 a8
a3 a6 a9

∣∣∣∣∣∣∣ ̸= 0

 .

3.5.1. Case α ̸= 1, β ̸= 1, α ̸= β

Theorem 3.6. The Lie algebra gα,β4.5 , α ̸= 1, β ̸= 1, α ̸= β has the
following subspace structure:
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SA: ⟨E4⟩ , ⟨E1 + E2⟩ , ⟨E1 + E3⟩ , ⟨E2 + E3⟩ , ⟨E1 + E2 +E3⟩
⟨E1, E4⟩ ∼= g2.1, ⟨E2, E4⟩ ∼= g2.1, ⟨E3, E4⟩ ∼= g2.1, ⟨E1 + E2, E3⟩
⟨E1 + E3, E2⟩ , ⟨E1, E2 + E3⟩ , ⟨E1 − E2, E1 + E2 + E3⟩

⟨E1, E2, E4⟩ ∼= g
1+β
1−β

3.4 , ⟨E1, E3, E4⟩ ∼= g
1+α
1−α

3.4 , ⟨E2, E3, E4⟩ ∼= gχ3.4
FCI: ⟨E1⟩ , ⟨E2⟩ , ⟨E3⟩

⟨E1, E2⟩ , ⟨E1, E3⟩ , ⟨E2, E3⟩ , ⟨E1, E2, E3⟩
GSA: ⟨E1 + E2, E4⟩ , ⟨E1 +E3, E4⟩ , ⟨E2 + E3, E4⟩
FRSS: ⟨E1 + E2 +E3, E4⟩ , ⟨E1, E2 + E3, E4⟩ , ⟨E1 + E3, E2, E4⟩

⟨E1 + E2, E3, E4⟩ , ⟨E1 − E2, E1 + E2 + E3, E4⟩.

Here χ = α+β
β−α if α+ β ≥ 0 and χ = −α+β

β−α if α+ β < 0.

If α + β ≥ 0, then gα,β4.5 is a fully characteristic extension of the Lie algebra

gχ3.4 with χ = α+β
β−α . Indeed, the mapping q : gα,β4.5 → g

α+β
β−α

3.4 ,


−z 0 0 w
0 −zα 0 y
0 0 −zβ x
0 0 0 0

 7−→

 0 0 0
y + x

β −1
2z(α+ β) 1

2z(−α+ β)
y − x

β
1
2z(−α+ β) −1

2z(α+ β)



is an epimorphism with ker q = ⟨E1⟩. If α + β < 0, then gα,β4.5 is a fully
characteristic extension of the Lie algebra gχ3.4 with χ = α+β

α−β . Indeed, the

mapping q : gα,β4.5 → g
α+β
α−β

3.4 ,


−z 0 0 w
0 −zα 0 y
0 0 −zβ x
0 0 0 0

 7−→

 0 0 0
y + x

β −1
2z(α+ β) 1

2z(α− β)
−y + x

β
1
2z(α− β) −1

2z(α+ β)



is an epimorphism with ker q = ⟨E1⟩. The Lie algebra gα,β4.5 is a fully character-

istic extension of the Lie algebra g
1+α
1−α

3.4 . Indeed, the mapping q : gα,β4.5 → g
1+α
1−α

3.4 ,


−z 0 0 w
0 −zα 0 y
0 0 −zβ x
0 0 0 0

 7−→

 0 0 0
w + y −1

2z(1 + α) −1
2z(−1 + α)

−w + y −1
2z(−1 + α) −1

2z(1 + α)


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is an epimorphism with ker q = ⟨E2⟩. Furthermore, gα,β4.5 is also a fully

characteristic extension of g
1+β
1−β

3.4 . Indeed, the mapping q : gα,β4.5 → g
1+β
1−β

3.4 ,
−z 0 0 w
0 −zα 0 y
0 0 −zβ x
0 0 0 0

 7−→

 0 0 0
w + x −1

2z(1 + β) −1
2z(−1 + β)

−w + x −1
2z(−1 + β) −1

2z(1 + β)


is an epimorphism with ker q = ⟨E3⟩.

3.5.2. Case α ̸= 1, α = β

Theorem 3.7. The Lie algebra gα,β4.5 , α ̸= 1, α = β has the following
subspace structure:

SA: ⟨E4⟩ , ⟨E1 + E2⟩ , ⟨E1, E4⟩ ∼= g2.1, ⟨E2, E4⟩ ∼= g2.1

⟨E1 + E2, E3⟩ , ⟨E1, E2, E4⟩ ∼= g
1+α
1−α

3.4 , ⟨E2, E3, E4⟩ ∼= g3.3
I: ⟨E2⟩ , ⟨E1, E2⟩

FCI: ⟨E1⟩ , ⟨E2, E3⟩ , ⟨E1, E2, E3⟩
GSA: ⟨E1 +E2, E4⟩
FRSS: ⟨E1 +E2, E3, E4⟩.

gα,β4.5 , α ̸= 1, α = β is a fully characteristic extension of the Lie algebra g3.3.
Indeed, the mapping

q : gα,α4.5 → g3.3,


−z 0 0 w
0 −zα 0 y
0 0 −zα x
0 0 0 0

 7−→

 0 0 0
x+y
α −zα 0
x−y
α 0 −zα


is an epimorphism with ker q = ⟨E1⟩.

3.5.3. Case α ̸= 1, β = 1

Theorem 3.8. The Lie algebra gα,14.5 , α ̸= 1 has the following subspace
structure:
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SA: ⟨E4⟩ , ⟨E1 + E3⟩ , ⟨E1, E4⟩ ∼= g2.1, ⟨E3, E4⟩ ∼= g2.1,

⟨E1, E2 + E3⟩ , ⟨E1, E2, E4⟩ ∼= g3.3, ⟨E1, E3, E4⟩ ∼= g
1+α
1−α

3.4
I: ⟨E1⟩ , ⟨E1, E3⟩

FCI: ⟨E3⟩ , ⟨E1, E2⟩ , ⟨E1, E2, E3⟩
GSA: ⟨E1 + E3, E4⟩
FRSS: ⟨E1, E2 + E3, E4⟩.

gα,14.5 , α ̸= 1 is a fully characteristic extension of the Lie algebra g
1+α
1−α

3.4 . Indeed,

the mapping q : gα,14.5 → g
1+α
1−α

3.4 ,
−z 0 0 w
0 −αz 0 y
0 0 −z x
0 0 0 0

 7−→

 0 0 0
x+ y −1

2z(1 + α) −1
2z(−1 + α)

−x+ y −1
2z(−1 + α) −1

2z(1 + α)


is an epimorphism with ker q = ⟨E1⟩.

3.5.4. Case α = 1

Theorem 3.9. The Lie algebra g1,1
4.5 has the following subspace structure:

SA: ⟨E4⟩ , ⟨E1, E4⟩ ∼= g2.1, ⟨E1, E2, E4⟩ ∼= g3.3
I: ⟨E1⟩ , ⟨E1, E2⟩

FCI: ⟨E1, E2, E3⟩.

Every subspace of g1,1
4.5 is a subalgebra; hence g1,1

4.5 admits no proper full-
rank subspaces. Also, g1,1

4.5 has no one-dimensional fully characteristic ideals.
Hence g1,1

4.5 is not a fully characteristic extension of any three-dimensional Lie
algebra.

3.6. Algebra gα,β4.6 . The Lie algebra

gα,β4.6 =




−α z 0 0 w
0 −β z −z −y
0 z −β z x
0 0 0 0


= wE1 + xE2+yE3 + zE4 : w, x, y, z ∈ R

}
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has nonzero commutator relations [E1, E4] = αE1, [E2, E4] = βE2 − E3,
[E3, E4] = E2 + βE3 and trivial center. Here α > 0 and β ∈ R. (We note
that g0,β

4.6
∼= g

|β|
3.5 ⊕ g1 and gα,β4.6

∼= g−α,−β
4.6 .) The group of automorphisms is

given by

Aut (gα,β4.6 ) =



a1 0 0 a4
0 a2 a3 a5
0 −a3 a2 a6
0 0 0 1

 : a1, . . . , a6 ∈ R, a1(a2
2 + a2

3) ̸= 0

 .

Theorem 3.10. The Lie algebra gα,β4.6 has the following subspace struc-
ture:

SA: ⟨E2⟩ , ⟨E4⟩ , ⟨E1 + E2⟩ , ⟨E1, E2⟩ , ⟨E1, E4⟩ ∼= g2.1

⟨E1 +E2, E3⟩ , ⟨E2, E3, E4⟩ ∼= g
|β|
3.5

FCI: ⟨E1⟩ , ⟨E2, E3⟩ , ⟨E1, E2, E3⟩
GSA: ⟨E2, E4⟩
FRSS: ⟨E1 +E2, E4⟩ , ⟨E1, E2, E4⟩ , ⟨E1 + E2, E3, E4⟩.

gα,β4.6 is a fully characteristic extension of the Lie algebra g
|β|
3.5. Indeed, the

mappings

q1 : gα,β4.6 → gβ3.5,


−zα 0 0 w

0 −zβ −z −y
0 z −zβ x
0 0 0 0

 7−→

0 0 0
y −zβ z
x −z −zβ

 β ≥ 0

q2 : gα,β4.6 → g−β
3.5 ,


−zα 0 0 w

0 −zβ −z −y
0 z −zβ x
0 0 0 0

 7−→

0 0 0
x −zβ −z
y z −zβ

 β < 0

are epimorphisms with ker q1 = ⟨E1⟩ and ker q2 = ⟨E1⟩.

3.7. Algebra g4.7. The Lie algebra

g4.7 =




−2z −y x 2w
0 −z −z x
0 0 −z y
0 0 0 0

 : w, x, y, z ∈ R


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has nonzero commutators [E2, E3] = E1, [E1, E4] = 2E1, [E2, E4] = E2,
[E3, E4] = E2 + E3 and trivial center. The group of automorphisms is given
by

Aut(g4.7) =



a2

1 −a1a3 a1a4 − (a1 + a2) a3 a5
0 a1 a2 a4
0 0 a1 a3
0 0 0 1


: a1, . . . ,a5 ∈ R, a1 ̸= 0

}
.

Theorem 3.11. The Lie algebra g4.7 has the following subspace struc-
ture:

SA: ⟨E2⟩ , ⟨E3⟩ , ⟨E4⟩ , ⟨E1, E3⟩
⟨E1, E4⟩ ∼= g2.1, ⟨E2, E4⟩ ∼= g2.1, ⟨E1, E2, E4⟩ ∼= g3

3.4
FCI: ⟨E1⟩ , ⟨E1, E2⟩ , ⟨E1, E2, E3⟩ ∼= g3.1

GSA: ⟨E2, E3⟩ , ⟨E1 + E2, E4⟩
FRSS: ⟨E3, E4⟩ , ⟨E1, E3, E4⟩ , ⟨E2, E3, E4⟩.

g4.7 is a fully characteristic extension of the Lie algebra g3.2. Indeed, the
mapping

q : g4.7 → g3.2,


−2z −y x 2w

0 −z −z x
0 0 −z y
0 0 0 0

 7−→

 0 0 0
−y −z 0
x z −z



is an epimorphism with ker q = ⟨E1⟩.

3.8. Algebra g−1
4.8 (central extension of the semi-Euclidean al-

gebra). The Lie algebra

g−1
4.8 =


0 x w

0 z y
0 0 0

 = wE1 + xE2 + yE3 + zE4 : w, x, y, z ∈ R


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has nonzero commutator relations [E2, E3] = E1, [E2, E4] = E2, [E3, E4] =
−E3 and center ⟨E1⟩. The group of automorphisms is given by

Aut(g−1
4.8) =



a1a2 a1a3 a2a4 a5

0 a1 0 a4
0 0 a2 a3
0 0 0 1

 ,


−a1a2 −a2a4 −a1a3 a5
0 0 a1 a4
0 a2 0 a3
0 0 0 −1


: a1, . . . , a5 ∈ R, a1a2 ̸= 0

}
.

Theorem 3.12. (cf. [2]) The Lie algebra g−1
4.8 has the following sub-

space structure:

SA: ⟨E2⟩ , ⟨E2 + E3⟩ , ⟨E4⟩ , ⟨E1, E4⟩
⟨E2, E4⟩ ∼= g2.1, ⟨E1, E2 + E3⟩ , ⟨E1, E2, E4⟩ ∼= g2.1 ⊕ g1

CI: ⟨E1, E2⟩
FCI: ⟨E1⟩ , ⟨E1, E2, E3⟩ ∼= g3.1

GSA: ⟨E2, E3⟩ , ⟨E1 + E2, E4⟩
FRSS: ⟨E2 + E3, E4⟩ , ⟨E2, E3, E4⟩ , ⟨E1, E2 + E3, E4⟩.

g−1
4.8 is a fully characteristic (central) extension of the semi-Euclidean algebra

se (1, 1) = g0
3.4. Indeed, the mapping

q : g−1
4.8 → g0

3.4,

0 x w
0 z y
0 0 0

 7−→

 0 0 0
x+ y 0 −z
x− y −z 0


is an epimorphism with ker q = ⟨E1⟩ = Z(g−1

4.8).

3.9. Algebra gα4.8. The Lie algebra

gα4.8 =


−(1 + α) z x w

0 −α z y
0 0 0

 = wE1 + xE2 + yE3 + zE4 : w, x, y, z ∈ R


has nonzero commutator relations [E2, E3] = E1, [E1, E4] = (1 + α)E1,
[E2, E4] = E2, [E3, E4] = αE3 and trivial center. Here −1 < α ≤ 1. If
α ̸= 0 and α ̸= 1, then the group of automorphisms is given by

Aut(gα4.8) =



a1a2 −a1a3 a2a4 a5

0 a1 0 a4
0 0 a2 αa3
0 0 0 1

 : a1, . . . , a5 ∈ R, a1a2 ̸= 0

 .
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If α = 0 or α = 1, then

Aut(g0
4.8) =



a1a2 a3 a2a4 a5

0 a1 0 a4
0 0 a2 0
0 0 0 1

 : a1, . . . , a5 ∈ R, a1a2 ̸= 0



Aut(g1
4.8) =



a1a2 − a6a7 −a1a3 + a4a6 a2a4 − a3a7 a5

0 a1 a7 a4
0 a6 a2 a3
0 0 0 1


: a1, . . . , a7 ∈ R, a1a2 − a6a7 ̸= 0

}
respectively.

3.9.1. Case α ̸= 0, α ̸= 1

Theorem 3.13. The Lie algebra gα4.8, α ̸= 0, α ̸= 1 has the following
subspace structure:

SA: ⟨E2⟩ , ⟨E3⟩ , ⟨E4⟩ , ⟨E2 + E3⟩
⟨E1, E4⟩ ∼= g2.1, ⟨E2, E4⟩ ∼= g2.1, ⟨E3, E4⟩ ∼= g2.1, ⟨E1, E2 + E3⟩

⟨E1, E2, E4⟩ ∼= g
|1+ 2

α |
3.4 , ⟨E1, E3, E4⟩ ∼= g

|1+2α|
3.4

FCI: ⟨E1⟩ , ⟨E1, E2⟩ , ⟨E1, E3⟩ , ⟨E1, E2, E3⟩ ∼= g3.1
GSA: ⟨E2, E3⟩ , ⟨E1 + E2, E4⟩ , ⟨E1 + E3, E4⟩
FRSS: ⟨E2 + E3, E4⟩ , ⟨E2, E3, E4⟩ , ⟨E1, E2 + E3, E4⟩.

gα4.8, α ̸= 0, α ̸= 1 is a fully characteristic extension of the Lie algebra g
1+α
1−α

3.4 .

Indeed, the mapping q : gα4.8 → g
1+α
1−α

3.4 ,−z(1 + α) x w
0 −zα y
0 0 0

 7−→

 0 0 0
x+ y −1

2z(1 + α) 1
2z(1 − α)

−x+ y 1
2z(1 − α) −1

2z(1 + α)


is an epimorphism with ker q = ⟨E1⟩.
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3.9.2. Case α = 0

Theorem 3.14. The Lie algebra g0
4.8 has the following subspace struc-

ture:

SA: ⟨E2⟩ , ⟨E3⟩ , ⟨E4⟩ , ⟨E2 + E3⟩ , ⟨E3 + E4⟩ , ⟨E1, E4⟩ ∼= g2.1
⟨E2, E4⟩ ∼= g2.1, ⟨E3, E4⟩ , ⟨E1, E2 + E3⟩ , ⟨E1, E3 + E4⟩ ∼= g2.1
⟨E1, E3, E4⟩ ∼= g2.1 ⊕ g1

I: ⟨E1, E2, E3 + E4⟩ ∼= g3.2
FCI: ⟨E1⟩ , ⟨E1, E2⟩ , ⟨E1, E3⟩

⟨E1, E2, E3⟩ ∼= g3.1, ⟨E1, E2, E4⟩ ∼= g3.3
GSA: ⟨E2, E3⟩ , ⟨E1 + E3, E4⟩ , ⟨E2, E3 + E4⟩
FRSS: ⟨E2 + E3, E4⟩ , ⟨E1, E2 + E3, E4⟩ , ⟨E2, E3, E4⟩.

g0
4.8 is a fully characteristic extension of the Lie algebra g2.1 ⊕g1. Indeed, the

mapping

q : g0
4.8 → g2.1 ⊕ g1,

−z x w
0 0 y
0 0 0

 7−→

0 0 0
x −z 0
0 0 y


is an epimorphism with ker q = ⟨E1⟩.

3.9.3. Case α = 1

Theorem 3.15. The Lie algebra g1
4.8 has the following subspace struc-

ture:

SA: ⟨E2⟩ , ⟨E4⟩ , ⟨E1, E4⟩ ∼= g2.1, ⟨E2, E4⟩ ∼= g2.1, ⟨E1, E2, E4⟩ ∼= g3
3.4

I: ⟨E1, E2⟩
FCI: ⟨E1⟩ , ⟨E1, E2, E3⟩ ∼= g3.1

GSA: ⟨E1 + E2, E4⟩ , ⟨E2, E3⟩
FRSS: ⟨E2, E3, E4⟩.

g1
4.8 is a fully characteristic extension of the Lie algebra g3.3. Indeed, the

mapping

q : g1
4.8 → g3.3,

−2z x w
0 −z y
0 0 0

 7−→

0 0 0
y −z 0
x 0 −z


is an epimorphism with ker q = ⟨E1⟩.
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3.10. Algebra g0
4.9 (oscillator algebra, central extension of

the Euclidean algebra). The (oscillator) Lie algebra

g0
4.9 =




0 −x y −2w
0 0 z y
0 −z 0 x
0 0 0 0

 = wE1 + xE2 + yE3 + zE4 : w, x, y, z ∈ R


has nonzero commutator relations [E2, E3] = E1, [E2, E4] = −E3, [E3, E4] =
E2 and center ⟨E1⟩. The group of automorphisms is given by

Aut(g0
4.9) =



σ
(
a2

1 + a2
2
)

−σa1a4 + a2a5 −a1a5 − σa2a4 a3
0 a1 a2 a4
0 −σa2 σa1 a5
0 0 0 σ


: a1, . . . , a5 ∈ R, a2

1 + a2
2 ̸= 0, σ = ±1

}
.

Theorem 3.16. (cf. [9]) The Lie algebra g0
4.9 has the following sub-

space structure:

SA: ⟨E2⟩ , ⟨E4⟩ , ⟨E1, E2⟩ , ⟨E1, E4⟩
FCI: ⟨E1⟩ , ⟨E1, E2, E3⟩ ∼= g3.1

GSA: ⟨E2, E3⟩
FRSS: ⟨E2, E4⟩ , ⟨E1, E2, E4⟩ , ⟨E2, E3, E4⟩.

g0
4.9 is a fully characteristic (central) extension of the Euclidean algebra

se (2) = g0
3.5. Indeed, the mapping

q : g0
4.9 → g0

3.5,


0 −x y −2w
0 0 z y
0 −z 0 x
0 0 0 0

 7−→

0 0 0
x 0 −z
y z 0


is an epimorphism with ker q = ⟨E1⟩ = Z(g0

4.9).

3.11. Algebra gα4.9. The Lie algebra

gα4.9 =




−2α z −x y −2w
0 −α z z y
0 −z −α z x
0 0 0 0


= wE1 + xE2+yE3 + zE4 : w, x, y, z ∈ R

}
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has nonzero commutator relations [E2, E3] = E1, [E1, E4] = 2αE1, [E2, E4] =
αE2 − E3, [E3, E4] = E2 + αE3 and trivial center. Here α > 0. The group
of automorphisms is given by

Aut(gα4.9) =



a2

1 + a2
2

∗1
1+α2

∗2
1+α2 a3

0 a1 a2 a4
0 −a2 a1 a5
0 0 0 1

 :

∗1 = −a2(αa4 − a5) − a1(a4 + αa5)
∗2 = a1(αa4 − a5) − a2(a4 + αa5)
a1, . . . , a5 ∈ R, a2

1 + a2
2 ̸= 0 } .

Theorem 3.17. The Lie algebra gα4.9 has the following subspace struc-
ture:

SA: ⟨E2⟩ , ⟨E4⟩ , ⟨E1, E2⟩ , ⟨E1, E4⟩ ∼= g2.1
FCI: ⟨E1⟩ , ⟨E1, E2, E3⟩ ∼= g3.1

GSA: ⟨E2, E3⟩
FRSS: ⟨E2, E4⟩ , ⟨E1, E2, E4⟩ , ⟨E2, E3, E4⟩.

gα4.9 is a fully characteristic extension of the Lie algebra gα3.5. Indeed, the
mapping

q : gα4.9 → gα3.5,


−2αz −x y −2w

0 −αz z y
0 −z −αz x
0 0 0 0

 7−→

0 0 0
y −αz z
x −z −αz


is an epimorphism with ker q = ⟨E1⟩.

3.12. Algebra g4.10. The Lie algebra

g4.10 =


−y z x

−z −y w
0 0 0

 = wE1 + xE2 + yE3 + zE4 : w, x, y, z ∈ R


has nonzero commutator relations [E1, E3] = E1, [E2, E3] = E2, [E1, E4] =
−E2, [E2, E4] = E1 and trivial center. The group of automorphisms is given
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by

Aut(g4.10) =



a1 σ a2 a3 σ a4

−a2 σ a1 a4 −σ a3
0 0 1 0
0 0 0 σ

 : a1, . . . , a4 ∈ R, σ = ±1, a1 ̸= 0

 .
Theorem 3.18. The Lie algebra g4.10 has the following subspace struc-

ture:

SA: ⟨E1⟩ , ⟨E3⟩ , ⟨γE3 + E4⟩ , ⟨E1, E3⟩ ∼= g2.1, ⟨E3, E4⟩
CI: ⟨E1, E2, ηE3 + E4⟩ ∼= gη3.5

FCI: ⟨E1, E2⟩ , ⟨E1, E2, E3⟩ ∼= g3.3, ⟨E1, E2, E4⟩ ∼= g0
3.5

GSA: ⟨E1, γE3 + E4⟩
FRSS: ⟨E1 + E4, E3⟩ , ⟨E1, E3, E4⟩.

Here γ ≥ 0 and η > 0 parametrize families of equivalence representatives,
each different value yielding a distinct (nonequivalent) representative.

g4.10 has no one-dimensional ideals.

4. Quotients, extensions and equivalence

We briefly explore the relation between the subspaces of a Lie algebra g
and the subspaces of an extension ĝ of g. It turns out that if ĝ is a fully
characteristic extension of g, then a classification of subspaces of g can easily
be obtained from a classification of subspaces of ĝ. Conversely, in some cases
a partial classification of subspaces of ĝ may be obtained from classification
of subspaces of g. Throughout, let q : ĝ → g be an epimorphism (i.e., ĝ is
an extension of g by ker q).

Lemma 4.1. If Γ is a subspace (resp. subalgebra, ideal, full-rank sub-
space) of ĝ, then q(Γ) is a subspace (resp. subalgebra, ideal, full-rank sub-
space) of g. Likewise, if Γ is a subspace (resp. subalgebra, ideal, full-rank
subspace) of g, then q−1(Γ) is a subspace (resp. subalgebra, ideal, full-rank
subspace) of ĝ.

Proof. We prove only the assertion that if Γ is a full-rank subspace of g,
then q−1(Γ) is a full-rank subspace of ĝ (proofs for the other assertions are
rather straightforward). Suppose Γ is a full-rank subspace of g and suppose
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q−1(Γ) is not a full-rank subspace of ĝ. Then there exists a proper subalgebra
h of ĝ such that ker q ⊆ q−1(Γ) ⊆ h ⊂ ĝ. Hence q(q−1(Γ)) ⊆ q(h) and so
Γ ⊆ q(h). Therefore Lie(Γ) = g ⊆ q(h), i.e., q(h) = g. Let A ∈ ĝ\h.
There exists B ∈ h such that q(B) = q(A). Hence q(A − B) = 0 and so
A−B ∈ ker q ⊆ h. As A−B and B are both in h we have that A ∈ h, thus
yielding a contradiction.

We can therefore lift and project subspaces by means of the epimorphism q.
Next we investigate the compatibility of the automorphisms with the quotient
map q.

Proposition 4.2. Let ψ̂ ∈ Aut(ĝ). There exists ψ ∈ Aut(g) such that
q ◦ ψ̂ = ψ ◦ q if and only if ψ̂(ker q) = ker q.

Proof. Suppose ψ̂(ker q) = ker q. As q is surjective, there exists a linear
map p : g → ĝ such that q ◦ p = idg. We claim that ψ = q ◦ ψ̂ ◦ p is an
automorphism of g satisfying the requirements. Let A ∈ ĝ. We have that
q · ψ̂ · p · q ·A = q · ψ̂ · (A+B) = q · ψ̂ ·A+ q · ψ̂ ·B for some B ∈ ker q. Hence,
as ψ̂(ker q) = ker q, it follows that q · ψ̂ ·p ·q ·A = q · ψ̂ ·A and so ψ ◦q = q ◦ ψ̂.
It remains to be shown that ψ is an automorphism. We have

ψ · [A,B] − [ψ ·A,ψ ·B] = (q ◦ ψ̂) · (p · [A,B] − [p ·A, p ·B])

for A,B ∈ g. However, q · (p · [A,B] − [p · A, p · B]) = 0 and so p · [A,B] −
[p · A, p · B] ∈ ker q. Thus ψ̂ · (p · [A,B] − [p · A, p · B]) ∈ ker q. Therefore
(q◦ ψ̂) ·(p · [A,B]− [p ·A, p ·B]) = 0. Hence ψ is a Lie algebra homomorphism.
Moreover

(q ◦ ψ̂ ◦ p)(A) = 0 ⇐⇒ (ψ̂ ◦ p)(A) ∈ ker q ⇐⇒ p(A) ∈ ker q
⇐⇒ (q ◦ p)(A) = 0 ⇐⇒ A = 0.

Therefore kerψ = {0} and hence ψ ∈ Aut(g).
Conversely, suppose there exists ψ ∈ Aut(g) such that q ◦ ψ̂ = ψ ◦ q. Let

A ∈ ker q. We have (q ◦ ψ̂)(A) = (ψ ◦ q)(A) = ψ(0) = 0. Hence ψ̂(A) ∈ ker q.
Consequently, ψ̂(ker q) = ker q.

Corollary 4.3. For every ψ̂ ∈ Aut(ĝ), there exists ψ ∈ Aut(g) such
that q ◦ ψ̂ = ψ ◦ q if and only if ker q is a fully characteristic ideal of ĝ.

Corollary 4.4. Suppose ker q is a fully characteristic ideal of ĝ. If Γ1
and Γ2 are equivalent, then q(Γ1) and q(Γ2) are equivalent. (Equivalently,
if q(Γ1) and q(Γ2) are not equivalent, then neither are Γ1 and Γ2.)
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We now show that one can project classifications of subspaces, subalge-
bras, ideals, and full-rank subspaces; the subsequent theorem deals with lifting
classifications.

Theorem 4.5. Suppose ker q is a fully characteristic ideal of ĝ. Further,
suppose Γi, i ∈ I is a complete enumeration of class representatives for
subspaces (resp. subalgebras, ideals, full-rank subspaces) of ĝ. Then q(Γi),
i ∈ I is a complete enumeration of class representatives for subspaces (resp.
subalgebras, ideals, full-rank subspaces) of g.

Proof. Let Γ be a subspace of g. Then q−1(Γ) is a subspace of ĝ. Hence,
as Γi, i ∈ I is complete, there exists i ∈ I such that q−1(Γ) is equivalent
to Γi. Consequently, by Corollary 4.4, Γ is equivalent to q(Γi). The same
argument holds when Γ is a subalgebra, ideal, or full-rank subspace.

Remark 4.6. The enumeration q(Γi), i ∈ I may have redundancies even
if Γi, i ∈ I is nonredundant.

Theorem 4.7. Suppose Aut(g) ◦ q ⊆ q ◦ Aut(ĝ). Further, suppose Γi,
i ∈ I is a complete enumeration of class representatives for subspaces (resp.
subalgebras, ideals, full-rank subspaces) of g. Then for any subspace (resp.
subalgebra, ideal, full-rank subspace) Γ of ĝ there exists i ∈ I such that Γ
is equivalent to a subspace Γ′ of q−1(Γi) satisfying q(Γ′) = Γi.

Proof. Let Γ be a subspace of ĝ. We have that q(Γ) is a subspace of
g and so there exist i ∈ I and an automorphism ψ ∈ Aut(g) such that
ψ · q(Γ) = Γi. As Aut(g) ◦ q ⊆ q ◦ Aut(ĝ), there exists ψ̂ ∈ Aut(ĝ) such that
ψ ◦ q = q ◦ ψ̂. Thus q · ψ̂(Γ) = Γi and so ψ̂(Γ) ⊆ q−1(Γi). Accordingly, Γ is
equivalent to a subspace Γ′ = ψ̂(Γ) of q−1(Γi) which satisfies q(Γ′) = Γi.

We collect the fully characteristic four-dimensional extensions of each
three-dimensional Lie algebra in Table 1. Each three-dimensional Lie alge-
bra has a four-dimensional fully characteristic extension. Hence, the classi-
fication of subspaces (resp. subalgebras, ideals, full-rank subspaces) of the
thee-dimensional Lie algebras may readily be reobtained from the classifica-
tion obtained in this paper. A few illustrative examples follow.
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Table 1: Complete list of 4D fully characteristic extensions of 3D algebras
3D algebra Fully characteristic 4D extensions
3g1 g2.1 ⊕ 2g1, g3.1 ⊕ g1
g2.1 ⊕ g1 g3.2 ⊕ g1, gα3.4 ⊕ g1, g0

4.8
g3.1 g4.1
g3.2 g3.2 ⊕ g1, gα4.2

α ̸=1
, g4.4, g3.7, g1

4.8

g3.3 g3.3 ⊕ g1, g1
4.2, gα,α4.5

α ̸=1
g0

3.4 g0
3.4 ⊕ g1, g−1

4.8
gα3.4 gα3.4 ⊕ g1, gᾱ4.2, gᾱ,β̄4.5 , gᾱ,14.5 , gᾱ4.8

ᾱ̸=0,ᾱ ̸=1
g0

3.5 g0
3.5 ⊕ g1, g0

4.9
gα3.5 gα3.5 ⊕ g1, gᾱ,β̄4.6 , gα4.9
g3.6 g3.6 ⊕ g1
g3.7 g3.7 ⊕ g1

Example 4.8. The Lie algebra g0
4.9 is a fully characteristic (central) ex-

tension of the Euclidean algebra se (2) = g0
3.5. Indeed, the mapping

q : g0
4.9 → g0

3.5,


0 −x y −2w
0 0 z y
0 −z 0 x
0 0 0 0

 7−→

0 0 0
x 0 −z
y z 0

 = xẼ1 + yẼ2 + zẼ3

is an epimorphism with ker q = ⟨E1⟩ = Z(g0
4.9). Any subalgebra of g0

3.9 is
equivalent to exactly one of the subalgebras:

{0}, ⟨E1⟩ , ⟨E2⟩ , ⟨E4⟩ , ⟨E1, E2⟩ , ⟨E1, E4⟩ , ⟨E1, E2, E3⟩ , g0
4.9.

Consequently, any subalgebra of g0
3.5 is equivalent to at least one of the fol-

lowing subalgebras:

{0}, {0}, ⟨Ẽ1⟩, ⟨Ẽ3⟩, ⟨Ẽ1⟩, ⟨Ẽ3⟩, ⟨Ẽ1, Ẽ2⟩, g0
3.5.

Once one has verified that ⟨Ẽ1⟩ and ⟨Ẽ3⟩ are not equivalent, one then has
that any subalgebra of g0

3.5 is equivalent to exactly one of the following sub-
algebras:

{0}, ⟨Ẽ1⟩, ⟨Ẽ3⟩, ⟨Ẽ1, Ẽ2⟩, g0
3.5.
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Example 4.9. We consider again the fully characteristic extension q :
g0

4.9 → g0
3.5 of the Euclidean Lie algebra. Any ideal of g0

3.5 is equivalent to
exactly one of the following ideals:

{0}, ⟨Ẽ1, Ẽ2⟩, g0
3.5.

Hence any ideal of g0
4.9 is equivalent to an ideal Γ′ of one of the following

ideals
⟨E1⟩ , ⟨E1, E2, E3⟩ , g0

4.9

satisfying q(Γ′) = {0}, q(Γ′) = ⟨Ẽ1, Ẽ2⟩, or q(Γ′) = g0
3.5, respectively. Indeed,

it turns out that these are the only ideals (apart from the trivial one) of g0
4.9.

Example 4.10. The Lie algebra g1
4.2 is a fully characteristic extension of

the Lie algebra g3.3. Indeed,

q : g1
4.2 → g3.3,


−z 0 0 w
0 −z −z x
0 0 −z y
0 0 0 0

 7−→

0 0 0
y −z 0
w 0 −z


is an epimorphism with ker q = ⟨E2⟩. Any proper full-rank subspace of g1

4.2
is equivalent to ⟨E1, E2, E4⟩. We have q(⟨E1, E2, E4⟩) = g3.3. Hence, g3.3
has no proper full-rank subspaces.

Example 4.11. The Lie algebra g−1
4.8 is a fully characteristic (central)

extension of the semi-Euclidean algebra g0
3.4 = se (1, 1). Indeed, the mapping

q : g−1
4.8 → g0

3.4,0 x w
0 z y
0 0 0

 7−→

 0 0 0
x+ y 0 −z
x− y −z 0

 = (x+ y)Ẽ1 + (x− y)Ẽ2 + zẼ3

is an epimorphism with ker q = ⟨E1⟩ = Z(g−1
4.8). Any full-rank subspace of

g−1
4.8 is equivalent to exactly one of the following subspaces:

⟨E2 + E3, E4⟩ , ⟨E2, E3, E4⟩ , ⟨E1, E2 + E3, E4⟩ , g−1
3.8.

Hence any full-rank subspace of g−1
3.4 is equivalent to at least one of the fol-

lowing subspaces:

⟨Ẽ1, Ẽ3⟩, g0
3.4, ⟨Ẽ1, Ẽ3⟩, g0

3.4.

Consequently, any proper full-rank subspace of g−1
3.4 is equivalent to ⟨Ẽ1, Ẽ3⟩.
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5. Final remarks

A classification of subalgebras (but not all subspaces) of four-dimensional
Lie algebras was obtained in [18], up to inner automorphism. This classifica-
tion has been employed by several authors (especially in the field of mathe-
matical physics, see e.g., [12, 15, 19, 20, 21]). For instance, in [19] the (fully
characteristic) ideals are identified among the subalgebras; these ideals are
then used in finding a complete set of inequivalent realizations of real Lie
algebras (of dimension no greater than four).

It turns out that equivalence up to automorphism (as studied in this paper)
is considerably weaker than equivalence up to inner automorphism. The main
reason for our interest in the classification of subspaces is in connection with
geometric control and sub-Riemannian structures on Lie groups. More pre-
cisely, the classification of full-rank subspaces of a Lie algebra yields a classifi-
cation of the invariant (bracket-generating) distributions or the homogeneous
invariant control affine systems on the corresponding simply connected Lie
group (cf. [7, 2, 8, 3]).

A. Classification of low-dimensional Lie algebras

The classification of three- and four-dimensional (real) Lie algebras is
well known (see, e.g., [14], [19], and the references therein). We prefer to
use (a modified version of) the enumeration of these Lie algebras due to
Mubarakzyanov ([16]), similar to that used by Patera et al. ([18, 17]), which
is complete and nonredundant. However, in the three-dimensional case, we
use the commutator relations in the Bianchi-Behr form ([13]).

A.1. Three-dimensional Lie algebras. In terms of an (appropriate)
ordered basis (E1, E2, E3), the commutator operation is given by

[E2, E3] = n1E1 − αE2

[E3, E1] = αE1 + n2E2

[E1, E2] = n3E3.

The (Bianchi-Behr) structure parameters α, n1, n2, n3 for each type are given
in Table 2.
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Table 2: Bianchi-Behr classification of 3D Lie algebras

Type Bianchi α n1 n2 n3 U
ni

m
od

ul
ar

N
ilp

ot
en

t

C
om

pl
.

So
lv

.

Ex
po

ne
nt

ia
l

So
lv

ab
le

Si
m

pl
e

Re
pr

es
en

ta
tiv

es

3g1 I 0 0 0 0 • • • • • R3

g2.1 ⊕ g1 III 1 1 −1 0 • • • aff(R) ⊕R,
g1

3.4

g3.1 II 0 1 0 0 • • • • • h3

g3.2 IV 1 1 0 0 • • •

g3.3 V 1 0 0 0 • • •

g0
3.4 V I0 0 1 −1 0 • • • • se(1, 1)

gα3.4 V Iα
α>0
α ̸=1 1 −1 0 • • •

g0
3.5 V II0 0 1 1 0 • • se(2)

gα3.5 V IIα α>0 1 1 0 • •

g3.6 V III 0 1 1 −1 • • sl(2,R),
so(2, 1)

g3.7 IX 0 1 1 1 • • su(2),
so(3)

A.2. Four-dimensional Lie algebras. We distinguish between the
decomposable (as direct sums of lower-dimensional Lie algebras) and indecom-
posable algebras. There are twelve types of decomposable algebras (in fact,
ten algebras and two one-parameter families of algebras) and twelve types of
indecomposable algebras (in fact, seven algebras, three one-parameter families
of algebras, and two two-parameter families of algebras). In terms of an (ap-
propriate) ordered basis (E1, E2, E3, E4), the commutator relations for each
four-dimensional Lie algebra are given in Table 3.

We collect some basic properties for each algebra in Table 4. For each
algebra g, the quotient g/Z(g) is displayed when Z(g) is nontrivial. We also
list all fully characteristic ideals of codimension one. Furthermore, we indicate
those algebras that admit an invariant scalar product (abbreviated ISP), i.e.,
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a nondegenerate bilinear form ⟨·, ·⟩ satisfying ⟨A, [B,C]⟩ = ⟨[A,B], C⟩ for all
A,B,C ∈ g.

Table 3: Four-dimensional Lie algebras (commutator relations)

Type Non-zero commutators Parameter

4g1

g2.1 ⊕ 2g1 [E1, E2] = E1

2g2.1 [E1, E2] = E1 [E3, E4] = E3

g3.1 ⊕ g1 [E2, E3] = E1

g3.2 ⊕ g1 [E2, E3] = E1 − E2 [E3, E1] = E1

g3.3 ⊕ g1 [E2, E3] = −E2 [E3, E1] = E1

g0
3.4 ⊕ g1 [E2, E3] = E1 [E3, E1] = −E2

gα3.4 ⊕ g1 [E2, E3] = E1 − αE2 [E3, E1] = αE1 − E2 α > 0, α ̸= 1

g0
3.5 ⊕ g1 [E2, E3] = E1 [E3, E1] = E2

gα3.5 ⊕ g1 [E2, E3] = E1 − αE2 [E3, E1] = αE1 + E2 α > 0

g3.6 ⊕ g1 [E2, E3] = E1 [E3, E1] = E2 [E1, E2] = −E3

g3.7 ⊕ g1 [E2, E3] = E1 [E3, E1] = E2 [E1, E2] = E3
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Table 3: (continued)

Type Non-zero commutators Parameter

g4.1 [E2, E4] = E1 [E3, E4] = E2

gα4.2 [E1, E4] = αE1 [E2, E4] = E2 [E3, E4] = E2 + E3 α ̸= 0

g4.3 [E1, E4] = E1 [E3, E4] = E2

g4.4 [E1, E4] = E1 [E2, E4] = E1 + E2 [E3, E4] = E2 + E3

gα,β4.5 [E1, E4] = E1 [E2, E4] = β E2 [E3, E4] = αE3
−1<α≤β≤1,
αβ ̸=0 or

α=−1, 0<β≤1

gα,β4.6 [E1, E4] = αE1 [E2, E4] = β E2 − E3 [E3, E4] = E2 + β E3 α > 0, β ∈ R

g4.7
[E1, E4] = 2E1 [E2, E4] = E2 [E3, E4] = E2 + E3

[E2, E3] = E1

g−1
4.8 [E2, E3] = E1 [E2, E4] = E2 [E3, E4] = −E3

gα4.8

[E1, E4] = (1 + α)E1 [E2, E4] = E2 [E3, E4] = αE3
−1 < α ≤ 1

[E2, E3] = E1

g0
4.9 [E2, E3] = E1 [E2, E4] = −E3 [E3, E4] = E2

gα4.9

[E1, E4] = 2αE1 [E2, E4] = αE2 − E3 [E3, E4] = E2 + αE3
α > 0

[E2, E3] = E1

g4.10
[E1, E3] = E1 [E2, E3] = E2 [E1, E4] = −E2

[E2, E4] = E1
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Table 4: Four-dimensional Lie algebras (properties)

Type Fu
lly

ch
ar

.
3D

id
ea

l

g
/

Z(
g
)

U
ni

m
od

ul
ar

N
ilp

ot
en

t

C
om

pl
.

So
lv

.

Ex
po

ne
nt

ia
l

So
lv

ab
le

A
dm

its
IS

P

4g1 — {0} • • • • • •
g2.1 ⊕ 2g1 3g1 g2.1 • • •
2g2.1 g3.3, g

0
3.4 — • • •

g3.1 ⊕ g1 — 2g1 • • • • •
g3.2 ⊕ g1 3g1 g3.2 • • •
g3.3 ⊕ g1 3g1 g3.3 • • •
g0

3.4 ⊕ g1 3g1 g0
3.4 • • • •

gα3.4 ⊕ g1 3g1 gα3.4 • • •
g0

3.5 ⊕ g1 3g1 g0
3.5 • •

gα3.5 ⊕ g1 3g1 gα3.5 • •
g3.6 ⊕ g1 g3.6 g3.6 • •
g3.7 ⊕ g1 g3.7 g3.7 • •
g4.1 3g1 g3.1 • • • • •
gα4.2 3g1 — α=−2 • • •
g4.3 3g1 g2.1 ⊕ g1 • • •
g4.4 3g1 — • • •
gα,β4.5 3g1 — α+β=−1 • • •
gα,β4.6 3g1 — α=−2β β ̸=0 •
g4.7 g3.1 — • • •
g−1

4.8 g3.1 g0
3.4 • • • • •

gα4.8 g3.1, g3.3α=0 — • • •
g0

4.9 g3.1 g0
3.5 • • •

gα4.9 g3.1 — • •
g4.10 g3.3, g0

3.5 — •
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B. Classification procedure and proofs

The classification procedure is described in Appendix B.1. Details for the
classification of a typical case is given in Appendix B.2. In Appendix B.3
and Appendix B.4 proofs are provided for the classification of subspaces of
g3.6⊕g1 and g3.7⊕g2 where the usual verification procedure (using a computer
algebra system) breaks down.

B.1. Subspace classification. The classification procedure for each
Lie algebra g is as follows. First, a standard computation yields the auto-
morphism group Aut(g) (see, e.g., [19, 10]). One then constructs class repre-
sentatives by considering the action of automorphisms on a typical subspace.
Finally, one verifies that none of these representatives are equivalent. This
procedure has been successfully applied in classifying certain classes of (affine)
subspaces of three-dimensional Lie algebras ([7], see also [4, 5, 6]) as well as
some higher-dimensional Lie algebras ([9, 1, 2]). In the four-dimensional case,
we verify nonredundancy and completeness of the classification by using a
computer algebra system (Mathematica).

Note B.1. For the sake of simplicity, we shall discuss here only the case
when the enumeration of subspaces is finite and the Lie algebra is fixed. It is
not difficult to adapt the approach for the case of an (infinite) parametrized
family of Lie algebras, or the case where the prospective enumeration contains
(infinite) parametrized families of subspaces.

Finding a prospective (finite) enumeration Γ1, . . . ,Γn of subspaces is not
difficult; we provide details for Theorem 2.1 in Appendix B.2. The problem
then reduces to verifying that (a) the enumeration is nonredundent, i.e., no
two subspace Γi and Γj are equivalent, and that (b) the enumeration is
complete, i.e., any subspace is equivalent to at least one subspace Γi. We
can apply simple (although computationally intensive) algorithms to verify
(a) and (b); these algorithms are described bellow.

Note B.2. For the Lie algebras g3.6 ⊕ g1 and g3.7 ⊕ g1 such a computer
aided verification does not work. (Due to the nature of the automorphism
groups, these algorithms become impractical to implement.) In these cases an
approach similar to that used in [4] is implemented; proofs are appended.

Any subspace Γ has a basis B1, . . . , Bℓ; we write this basis as a ma-
trix B =

[
B1 · · · Bℓ

]
. (Here each Bi is identified with its correspond-
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ing coordinate column vector.) By a slight abuse of notation, we write
Γ = ⟨B⟩ = ⟨B1, . . . , Bℓ⟩. Two bases B and B′ define the same subspace ex-
actly when there exists R ∈ GL (ℓ,R) such that B = B′R. Consequently, two
subspaces ⟨B⟩ and ⟨B′⟩ are equivalent exactly when there exist ψ ∈ Aut(g)
and R ∈ GL (ℓ,R) such that ψB = B′R. (Throughout, each automorphisms
ψ is identified with its matrix.)

Nonredundancy. Given a prospective enumeration ⟨B1⟩ , . . . , ⟨Bn⟩ of
the ℓ-dimensional subspaces (for a Lie algebra g), we wish to show that no
two subspaces ⟨Bi⟩ and ⟨Bj⟩ are equivalent. Formally, this is equivalent to
showing that the statement∨

1≤i<j≤n
∃ψ∈Aut(g) ∃R∈GL (ℓ,R) ψBi = Bj R (B.1)

is false. (Here ∨ denotes logical disjunction.) Given the automorphism group
Aut(g) as a parametrized matrix Lie group, the truth value of (B.1) can fairly
easily be determined by using a computer algebra system.

Completeness. Given a prospective enumeration ⟨B1⟩ , . . . , ⟨Bn⟩ of the
ℓ-dimensional subspaces, we wish to show that any subspace ⟨B⟩ is equivalent
to at least one subspace ⟨Bi⟩. This will be the case exactly when the statement

∀B∈Rdim g×ℓ, det(B⊤B)̸=0 ∃i∈{1,...,n} ∃ψ∈Aut(g) ∃R∈GL (ℓ,R) ψB = BiR (B.2)

is true. However, in our experience (B.2) cannot be evaluated (or rather, the
evaluation does not terminate) in Mathematica, except in the one-dimensional
case. Hence, we express (B.2) in a more computationally amenable form.

As ⟨B⟩ = ⟨BR⟩ for any R ∈ GL (ℓ,R), we can reduce the collection of
possible bases B ∈ Rdim g×ℓ, det(B⊤B) ̸= 0 for the ℓ-dimensional subspaces.
Henceforth, we shall assume that dim g = 4.

Lemma B.3. Any two-dimensional subspace admits a basis B ∈ B2, where

B2 =




1 0
0 1
s1 s2
s3 s4

 ,


1 0
s1 s2
0 1
s3 s4

 ,


1 0
s1 s2
s3 s4
0 1

 ,

s1 s2
1 0
0 1
s3 s4

 ,

s1 s2
1 0
s3 s4
0 1

 ,

s1 s2
s3 s4
1 0
0 1


: s1, s2, s3, s4 ∈R

}
.
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Proof. Let

B =


s1 s2
s3 s4
s5 s6
s7 s8

 .
We have that exactly two rows of B are linearly independent (as ⟨B⟩ is
two-dimensional). Suppose the first two rows are linearly independent, i.e.,
s1s4 − s2s3 ̸= 0. Then

B′ =


s1 s2
s3 s4
s5 s6
s7 s8


[
s1 s2
s3 s4

]−1

=


1 0
0 1
s′

5 s′
6

s′
7 s′

8


for some s′

5, s
′
6, s

′
7, s

′
8 ∈ R. Moreover ⟨B⟩ = ⟨B′⟩. The other possible bases

correspond to other combinations of rows of B being linearly independent.

Accordingly, a prospective enumeration ⟨B1⟩ , . . . , ⟨Bn⟩ of the two-
dimensional subspaces of g is complete if and only if the statement

∀B∈B2 ∃i∈{1,...,n} ∃ψ∈Aut(g) ∃R∈GL (ℓ,R) ψB = BiR (B.3)

is true. Likewise, for the three-dimensional case we have the following reduced
collection of bases.

Lemma B.4. Any three-dimensional subspace admits a basis B ∈ B3,
where

B3 =




1 0 0
0 1 0
0 0 1
s1 s2 s3

 ,


1 0 0
0 1 0
s1 s2 s3
0 0 1

 ,


1 0 0
s1 s2 s3
0 1 0
0 0 1

 ,

s1 s2 s3
1 0 0
0 1 0
0 0 1


: s1, s2, s3 ∈ R

}
.

Hence, a prospective enumeration ⟨B1⟩ , . . . , ⟨Bn⟩ of the three-dimensional
subspaces of g is complete if and only if the statement

∀B∈B3 ∃i∈{1,...,n} ∃ψ∈Aut(g) ∃R∈GL (ℓ,R) ψB = BiR (B.4)
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is true. In most cases, (B.3) and (B.4) can be evaluated using a computer
algebra system. However, there are a number of exceptions in which we use
different reduced collections of bases. For several algebras we used

B′
2 =



s1 s2
1 0
0 1
0 0

 ,


1 0
0 1
s1 s2
0 0

 ,


1 0
s1 s2
0 1
0 0

 ,


1 0
s1 s2
s3 s4
0 1

 ,

s1 s2
s3 s4
1 0
0 1

 ,

s1 s2
1 0
s3 s4
0 1


: s1, s2, s3, s4 ∈R

}
.

B′
3 =




1 0 0
0 1 0
0 0 1
0 0 0

 ,


1 0 0
s1 s2 s3
0 1 0
0 0 1

 ,


1 0 0
0 1 0
s1 s2 s3
0 0 1

 ,

s1 s2 s3
1 0 0
0 1 0
0 0 1


: s1, s2,s3 ∈ R

}
.

(Here we separate bases for which the fourth row is zero from those for which
it is not.) In a few cases, we used

B′′
2 =




1 0
0 1
0 0
s1 s2

 ,


1 0
s1 s2
0 0
0 1

 ,

s1 s2
1 0
0 0
0 1

 ,


1 0
s1 s2
0 1
s3 s4

 ,

s1 s2
1 0
0 1
s3 s4

 ,

s1 s2
s3 s4
1 0
0 1


: s1, s2, s3, s4 ∈R

}
.

B′′
3 =




1 0 0
0 1 0
0 0 0
0 0 1

 ,

s1 s2 s3
1 0 0
0 1 0
0 0 1

 ,


1 0 0
s1 s2 s3
0 1 0
0 0 1

 ,


1 0 0
0 1 0
0 0 1
s1 s2 s3


: s1, s2,s3 ∈ R

}
.

(Here we separate bases for which third row is zero from those for which it is
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not.) Finally, for g4.10 we used the collection

B′′′
2 =



s1 s2
s3 s4
1 0
0 1

 ,


1 0
0 1
0 s1
0 s2

 ,


1 0
s1 0
0 1
0 s2

 ,


1 0
s1 0
0 s2
0 1

 ,

s1 0
1 0
0 1
0 s2

 ,

s1 0
1 0
0 s2
0 1


: s1, s2, s3, s4 ∈R

}
.

in testing the completeness of the two-dimensional subspaces (and B′
3 for

the thee-dimensional subspaces). One can show that any two-dimensional
subspace admits a basis B ∈ B′′′

2 by considering whether or not the last
two rows are linearly independent and then whether or not first two rows are
linearly independent.

Subspace structure. Given a complete and nonredundent enumera-
tion ⟨B1⟩ , . . . , ⟨Bn⟩ of the subspaces of g, we wish to determine exactly which
subspaces are (Abelian or non-Abelian) subalgebras, are (noncharacteristic,
characteristic, or fully characteristic) ideals, or have full rank. An ideal n
is characteristic if it is invariant under all derivations, i.e., ψ · n ⊆ n for
ψ ∈ der(g). On the other hand, an ideal n is fully characteristic if it is invari-
ant under all automorphisms, i.e., ψ · n = n for ψ ∈ Aut(g). A subspace Γ is
said to have full rank if it generates the whole Lie algebra, i.e., the smallest
Lie algebra Lie(Γ) containing Γ is g.

It is easy to determine which subspaces are (Abelian or non-Abelian) sub-
algebras and which are (noncharacteristic, characteristic, or fully characteris-
tic) ideals. We have the following characterization of full-rank subspaces (for
four-dimensional Lie algebras). No one-dimensional subspace has full rank.
A two-dimensional subspace ⟨B⟩, B =

[
B1 B2

]
has full rank exactly when

the matrix

M =
[
B1 B2 [B1, B2] [B1, [B1, B2]] [B2, [B1, B2]]

]
has full rank, i.e., det(MM⊤) ̸= 0. Similarly, a three-dimensional subspace
⟨B⟩, B =

[
B1 B2 B3

]
has full rank exactly when the matrix

M =
[
B1 B2 B3 [B1, B2] [B1, B3] [B2, B3]

]
has full rank, i.e., det(MM⊤) ̸= 0.



subspaces of real four-dimensional lie algebras 83

B.2. Proof for Theorem 2.1 (algebra g2.1 ⊕ 2g1). We prove only
the assertion that any proper subspace of g2.1 ⊕ 2g1 is equivalent to one
of the subspaces listed. Let Γ = ⟨a1E1 + a2E2 + a3E3 + a4E4⟩ be a one-
dimensional subspace of g2.1 ⊕ 2g1. Suppose a4 ̸= 0 or a3 ̸= 0. If a4 ̸= 0,
then Γ = Γ′ = ⟨a′

1E1 + a′
2E2 + a′

3E3 + E4⟩ for some a′
1, a

′
2, a

′
3 ∈ R and if

a4 = 0, then

ψ =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


is an automorphism such that Γ′ = ψ · Γ = ⟨a′

1E1 + a′
2E2 + E4⟩ for some

a′
1, a

′
2 ∈ R. In either case we have that Γ is equivalent to a subspace Γ′ =

⟨a′
1E1 + a′

2E2 + a′
3E3 + E4⟩ for some a′

1, a
′
2, a

′
3 ∈ R. If a′

2 ̸= 0, then

ψ =


1 −a′

1
a′

2
0 0

0 1 0 0
0 0 1 −a′

3
0 1 0 −a′

2


is an automorphism such that ψ ·Γ′ = ψ · ⟨a′

1E1 + a′
2E2 + a′

3E3 + E4⟩ = ⟨E2⟩.
If a′

2 = 0 and a′
1 ̸= 0, then

ψ =


1
a′

1
0 0 0

0 1 0 0
0 0 1 −a′

3
0 0 0 1


is an automorphism such that ψ · Γ′ = ψ · ⟨a′

1E1 + a′
3E3 + E4⟩ = ⟨E1 + E4⟩.

If a′
1 = a′

2 = 0, then

ψ =


1 0 0 0
0 1 0 0
0 0 1 −a′

3
0 0 0 1


is an automorphism such that ψ · Γ′ = ψ · ⟨a′

3E3 + E4⟩ = ⟨E4⟩. On the other
hand, suppose a3 = a4 = 0. If a2 ̸= 0, then

ψ =


1 −a1

a2
0 0

0 1 0 0
0 0 1 0
0 0 0 1


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is an automorphism such that ψ · Γ = ψ · ⟨a1E1 + a2E2⟩ = ⟨E2⟩. If a2 = 0,
then Γ = ⟨E1⟩.

Accordingly, any one-dimensional subspace of g2.1 ⊕ 2g1 is equivalent to
⟨E1⟩, ⟨E2⟩, ⟨E4⟩, or ⟨E1 + E4⟩. Completeness and nonredundancy can now
be verified as described in Appendix B.1.

Remark B.5. Alternatively, nonredundency can often be handled by iden-
tifying some basic invariants. For example, any automorphism ψ preserves
⟨E1⟩, i.e., ψ · ⟨E1⟩ = ⟨E1⟩. Thus ⟨E1⟩ is not equivalent to ⟨E2⟩, ⟨E4⟩, or
⟨E1 + E4⟩.

Let Γ = ⟨
∑
aiEi,

∑
biEi⟩ be a two-dimensional subspace of g2.1 ⊕ 2g1.

Suppose E2(Γ) ̸= {0}, i.e., a2
2 + b2

2 ̸= 0. (Here E2 denotes the corresponding
element of the dual basis.) We may assume that a2 = 1 and b2 = 0, i.e.,
Γ = ⟨a1E1 + E2 + a3E3 + a3E4, b1E1 + b3E3 + b4E4⟩. If b3 = b4 = 0, then
b1 ̸= 0 and so 

1
b1

−a1
b1

0 0
0 1 0 0
0 −a3 1 0
0 −a4 0 1


is an automorphism such that ψ · Γ = ⟨E1, E2⟩. If b2

3 + b2
4 ̸= 0, then

ψ =


x −a1x 0 0
0 1 0 0
0 a4b3−a3b4

b2
3+b2

4

b4
b2

3+b2
4

− b3
b2

3+b2
4

0 −a3b3+a4b4
b2

3+b2
4

b3
b2

3+b2
4

b4
b2

3+b2
4

 , x ̸= 0

is an automorphism such that ψ · Γ = ⟨E2, xb1E1 + E4⟩. Hence, Γ is
equivalent to ⟨E2, E4⟩ if b1 = 0 and is equivalent to ⟨E2, E1 + E4⟩ if b1 ̸= 0
(in this case we take x = 1

b1
). On the other hand, suppose E2(Γ) = {0}, i.e.,

Γ = ⟨a1E1 + a3E3 + a4E4, b1E1 + b3E3 + b4E4⟩. If b3 = a3b3, then

ψ =


1 0 0 0
0 1 0 0
0 0 1 −a3
0 0 0 1


is an automorphism such that ψ · Γ = ⟨a1E1 + E4, b1E1 + b4E4⟩ = ⟨E1, E4⟩.
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If a1 ̸= 0 and b3 − a3b4 ̸= 0, then

ψ =


1
a1

0 0 0
0 1 0 0
0 0 b1−a1b4

a1(b3−a3b4)
−a3b1+a1b3
a1(b3−a3b4)

0 0 1
b3−a3b4

a3
−b3+a3b4


is an automorphism such that ψ · Γ =

⟨
E1 + E3,

b1
a1
E1 + b1

a1
E3 + E4

⟩
=

⟨E1 + E3, E4⟩. If a1 = 0 and b3 − a3b4 ̸= 0, then

ψ =


x 0 0 0
0 1 0 0
0 0 1

b3−a3b4
a3

−b3+a3b4
0 0 0 1

 , x ̸= 0

is an automorphism such that

ψ · Γ = ⟨E4, xb1E1 + E3 + b4E4⟩ = ⟨E4, xb1E1 + E3⟩ .

Hence, Γ is equivalent to ⟨E3, E4⟩ if b1 = 0 and is equivalent to ⟨E1 + E3, E4⟩
if b1 ̸= 0 (in this case we take x = 1

b1
).

Accordingly, any two-dimensional subspace is equivalent to ⟨E1, E2⟩,
⟨E1, E4⟩, ⟨E2, E4⟩, ⟨E3, E4⟩, ⟨E1 + E4, E2⟩, or ⟨E1 + E3, E4⟩. Completeness
and nonredundancy can again be verified as described in Appendix B.1. As a
typical example, we illustrate this computational approach to nonredundancy
for one case. Suppose ⟨E1, E2⟩ and ⟨E1, E4⟩ are equivalent. Then there
exists an automorphism

ψ =


σ 0 0 0
0 1 0 0
0 a1 a2 a3
0 a4 a5 a6


such that 

σ 0 0 0
0 1 0 0
0 x1 x2 x3
0 x4 x5 x6




1 0
0 1
0 0
0 0

 =


1 0
0 0
0 0
0 1


[
r1 r2
r3 r4

]

for some r1, r2, r3, r4 ∈ R, r1r4 − r2r3 ̸= 0. That is,
x1 x2
0 1
0 x3
0 x6

 =


r1 r2
0 0
0 0
r3 r4


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which is clearly impossible.
Let Γ = ⟨

∑
aiEi,

∑
biEi,

∑
ciEi⟩ be a three-dimensional subspace of g2.1 ⊕

2g1. Suppose E2(Γ) ̸= {0}. In this case we may assume a2 = 1 and b2 =
c2 = 0. If b1 = c1 = 0, then

ψ =


0 0 0 0
0 1 0 0
0 −a3 1 0
0 −a4 0 1


is an automorphism such that ψ · Γ = ⟨E2, E3, E4⟩. If b1 ̸= 0 or c1 ̸= 0, and
b3c4 − b4c3 ̸= 0, then we may assume b1 = 1 and c1 = 0 and hence

ψ =


−b4c3 + b3c4 a1(b4c3 − b3c4) 0 0

0 1 0 0
0 a4c3 − a3c4 c4 −c3
0 a3(−c3 + c4) − a4(c3 + c4) c3 − c4 c3 + c4


is an automorphism such that ψ · Γ = ⟨E1 + E3, E2, E4⟩. If b1 ̸= 0 or c1 ̸= 0,
and b3c4 − b4c3 = 0, then we may again assume b1 = 1 and c1 = 0 and hence

ψ =


1 −a1 0 0
0 1 0 0
0 a4c3 − a3c4 c4 −c3
0 a3(−c3 + c4) − a4(c3 + c4) c3 − c4 c3 + c4


is an automorphism such that ψ · Γ = ⟨E1, E2, E4⟩. On the other hand,
suppose E2(Γ) = {0}. Then Γ = ⟨E1, E3, E4⟩. Hence we have that any
three-dimensional subspace is equivalent to ⟨E2, E3, E4⟩, ⟨E1 + E3, E2, E4⟩,
⟨E1, E2, E4⟩, or ⟨E1, E3, E4⟩. Once again, completeness and nonredundency
can be verified as described in Appendix B.1.

B.3. Proof for Theorem 2.12 (algebra g3.6 ⊕ g1). We prove only
the assertion that any proper subspace of g3.6 ⊕ g1 is equivalent to one of
the subspaces listed. First, note that g3.6 ⊕ g1 admits exactly one family of
invariant scalar products (ωρ); in coordinates

ωρ =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 ρ

 , ρ ̸= 0. (B.5)
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Let Γ = ⟨
∑
aiEi⟩ be a one-dimensional subspace. Suppose E4(Γ) = {0},

i.e., a4 = 0. The pseudo-orthogonal group SO (2, 1) (as a subgroup of the
group of automorphisms) acts transitively on the level sets Hα = {A ∈
⟨E1, E2, E3⟩ : ω0(A,A) = α, A ̸= 0}. (Hα is a hyperboloid of two sheets
when α < 0, a hyperboloid of one sheet when α > 0, and a punctured
cone when α = 0.) Hence, there exists an automorphism ψ such that
ψ ·(a1E1 +a2E2 +a3E3) is either αE1 ∈ Hα2 , αE3 ∈ H−α2 , or E1 +E3 ∈ H0.
Consequently, Γ is equivalent to either ⟨E1⟩, ⟨E3⟩, or ⟨E1 + E3⟩. Like-
wise, when E4(Γ) ̸= {0}, i.e., a4 ̸= 0, then Γ is equivalent to ⟨E1 + E4⟩,
⟨E3 + E4⟩, ⟨E1 + E3 + E4⟩, or ⟨E4⟩. Note that ω0 is invariant under au-
tomorphisms (i.e., ω0(ψ(A), ψ(B)) = ω0(A,B) for any automorphism ψ);
also, E4(A) = 0 if and only if E4(ψ · A) = 0. Accordingly, no two of the
one-dimensional subspaces enumerated are equivalent.

Let Γ = ⟨A1, A2⟩ be a two-dimensional subspace. The sign σ(Γ) of Γ is
given by

σ(Γ) = sgn
(∣∣∣∣∣ω0(A1, A1) ω0(A1, A2)
ω0(A1, A2) ω0(A2, A2)

∣∣∣∣∣
)
.

It is easy to show that the sign of Γ does not depend on the parametriza-
tion of Γ and is invariant under automorphisms, i.e., σ(Γ) = σ(ψ · Γ) for
any automorphism ψ ∈ Aut(g3.6 ⊕ g1) (see [4]). Furthermore, the condition
E4(Γ) = {0} is invariant under automorphisms. Suppose E4(Γ) ̸= {0}. Then
Γ ∩ ⟨E1, E2, E3⟩ is a one-dimensional subspace. Let B ∈ g3.6 ⊕ g1 such that
⟨B⟩ = Γ ∩ ⟨E1, E2, E3⟩. Note that for any automorphism ψ we have that
(ψ · Γ) ∩ ⟨E1, E2, E3⟩ = ψ · (Γ ∩ ⟨E1, E2, E3⟩) = ⟨ψ ·B⟩. Hence, we have an-
other sign for Γ, namely σ̄(Γ) = sgn(ω0(B,B)). (We have that σ̄(Γ) does not
depend on the parametrization for Γ and is invariant under automorphisms.)
We also note that the projection of Γ to g3.6 is a two-dimensional subspace if
and only if the same holds true for ψ ·Γ for any automorphism ψ of g3.6 ⊕g1.

If E4(Γ) = {0}, then Γ is equivalent to ⟨E1, E3⟩ whenever σ(Γ) = −1,
Γ is equivalent to ⟨E1, E2 +E3⟩ whenever σ(Γ) = 0, and Γ is equiva-
lent to ⟨E1, E2⟩ whenever σ(Γ) = 1 (see [4]). Suppose E4(Γ) ̸= {0}. As
SO (2, 1) acts transitively on the level sets Hα, it follows that Γ is equivalent
to ⟨E3, a1E1 + a2E2 + E4⟩ (when σ̄(Γ) = −1), ⟨E2 + E3, a1E1 + a2E2 + E4⟩
(when σ̄(Γ) = 0), or ⟨E1, a2E2 + a3E3 + E4⟩ (when σ̄(Γ) = 1) for some
a1, a2, a3 ∈ R.

Consider the subspace Γ′ = ⟨E3, a1E1 + a2E2 + E4⟩. If a1 = a2 =
0, then Γ′ = ⟨E3, E4⟩. On the other hand, if a2

1 + a2
2 ̸= 0, then Γ′ =
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⟨
E3, cos θE1 + sin θE2 + 1

rE4
⟩

for some r, θ ∈ R and

ψ =


cos θ sin θ 0 0

− sin θ cos θ 0 0
0 0 1 0
0 0 0 r


is an automorphism such that ψ · Γ′ = ⟨E3, E1 +E4⟩.

Next, consider the subspace Γ′ = ⟨E2 +E3, a1E1 + a2E2 + E4⟩. If a1 =
a2 = 0, then Γ′ = ⟨E2 + E3, E4⟩. If a2

1 + a2
2 ̸= 0 and σ(Γ′) = sgn(−a2

2) = 0,
then a2 = 0 and so ψ = diag(1, 1, 1, a1) is an automorphism such that
ψ · Γ′ = ⟨E2 + E3, E1 + E4⟩. If a2

1 + a2
2 ̸= 0 and σ(Γ′) = −1, then a2 ̸= 0

and

ψ =


1 −a1

a2
a1
a2

0
a1
a2

1 − a2
1

2a2
2

a2
1

2a2
2

0
a1
a2

− a2
1

2a2
2

1 + a2
1

2a2
2

0
0 0 0 a2


is an automorphism such that ψ ·Γ′ = ⟨E2 +E3,

a2
1

2a2
(E2 +E3)+a2(E2 +E4)⟩ =

⟨E2 + E3, E2 + E4⟩. (Clearly the situation σ(Γ) = 1 is impossible.)
Lastly, consider that subspace Γ′ = ⟨E1, a2E2 + a3E3 + E4⟩. If a2 = a3 =

0, then Γ = ⟨E1, E4⟩. If a2
2 + a2

3 ̸= 0 and σ(Γ′) = sgn(a2
2 − a2

3) = −1, then
Γ′ =

⟨
E1, sinh θE2 + cosh θE3 + 1

rE4
⟩

for some r, θ ∈ R and so

ψ =


1 0 0 0
0 cosh θ − sinh θ 0
0 − sinh θ cosh θ 0
0 0 0 r


is an automorphism such that ψ · Γ′ = ⟨E1, E3 + E4⟩. If a2

2 + a2
3 ̸= 0 and

σ(Γ′) = sgn(a2
2 − a2

3) = 1, then Γ′ =
⟨
E1, cosh θE2 + sinh θE3 + 1

rE4
⟩

for
some r, θ ∈ R and so

ψ =


1 0 0 0
0 cosh θ − sinh θ 0
0 − sinh θ cosh θ 0
0 0 0 r


is an automorphism such that ψ · Γ′ = ⟨E1, E2 + E4⟩. If a2

2 + a2
3 ̸= 0 and

σ(Γ′) = sgn(a2
2 − a2

3) = 0, then Γ′ =
⟨
E1, E2 ± E3 + 1

rE4
⟩

for some r ∈ R
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and so ψ = diag(1, 1, 1, r) or ψ = diag(−1, 1,−1, r) is an automorphisms
such that ψ · Γ′ = ⟨E1, E2 + E3 + E4⟩.

Hence, if E4(Γ) ̸= {0}, then Γ is equivalent to ⟨E1, E4⟩, ⟨E3, E4⟩,
⟨E1, E2 + E4⟩, ⟨E1, E3 + E4⟩, ⟨E1 + E4, E3⟩, ⟨E2 + E3, E4⟩,

⟨
E1, E2 + E3 +

E4
⟩
, ⟨E1 + E4, E2 + E3⟩, or ⟨E2 + E4, E2 + E3⟩. The signs corresponding to

these subspaces are given by

⟨E1 + E4, E3⟩ σ = −1 σ̄ = −1
⟨E2 + E4, E2 + E3⟩ σ = −1 σ̄ = 0
⟨E1, E3 + E4⟩ σ = −1 σ̄ = 1
⟨E3, E4⟩ σ = 0 σ̄ = −1
⟨E2 + E3, E4⟩ σ = 0 σ̄ = 0
⟨E1 + E4, E2 + E3⟩ σ = 0 σ̄ = 0
⟨E1, E4⟩ σ = 0 σ̄ = 1
⟨E1, E2 + E3 + E4⟩ σ = 0 σ̄ = 1
⟨E1, E2 + E4⟩ σ = 1 σ̄ = 1.

Subspaces corresponding to different signs clearly cannot be equivalent. The
only pairs for which the signs match are (⟨E2 +E3, E4⟩ , ⟨E1 + E4, E2 + E3⟩)
and (⟨E1, E4⟩ , ⟨E1, E2 + E3 + E4⟩). In these cases nonequivalence follows
from the invariant property of whether or not the projection of Γ to g3.6
is a two-dimensional subspace.

Let Γ be a three-dimensional subspace. Again, the condition E4(Γ) =
{0} is invariant under automorphisms. Suppose E4(Γ) ̸= {0}. Then Γ ∩
⟨E1, E2, E3⟩ is a two-dimensional subspace. Let B,C ∈ g3.6 ⊕ g1 such that
⟨B,C⟩ = Γ ∩ ⟨E1, E2, E3⟩. For any automorphism ψ we have that (ψ · Γ) ∩
⟨E1, E2, E3⟩ = ψ · (Γ ∩ ⟨E1, E2, E3⟩) = ⟨ψ ·B,ψ · C⟩. Hence, we shall define
the sign ¯̄σ(Γ) of Γ as ¯̄σ(Γ) = σ(⟨B,C⟩). (We have that ¯̄σ(Γ) does not
depend on the parametrization for Γ and is invariant under automorphisms.)
We also note that the projection of Γ to g3.6 is g3.6 if and only if the same
holds true for ψ · Γ for any automorphism ψ of g3.6 ⊕ g1.

The orthogonal complement Γ⊥ of Γ with respect to ω1 (see (B.5)) is a
one-dimensional subspace Γ⊥ = ⟨

∑
aiEi⟩. By transitivity of SO (2, 1)0 (the

group of inner automorphisms) on each of the connected components of the
level sets Hα, there exists an inner automorphism φ of g3.6 ⊕ g1 such that
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φ · Γ is equal to one of the following subspaces

⟨E1⟩ , ⟨E3⟩ , ⟨E1 + E3⟩ , ⟨E1 − E3⟩ , ⟨E4⟩ ,
⟨E1 + aE4⟩ , ⟨E3 + aE4⟩ , ⟨E1 + E3 + aE4⟩ , ⟨E1 − E3 + aE4⟩

for some a ̸= 0. Hence, Γ is equivalent to the orthogonal complement of
one of these one-dimensional subspaces with respect to ω1; the respective
orthogonal complements are

⟨E2, E3, E4⟩ , ⟨E1, E2, E4⟩ , ⟨E1 + E3, E2, E4⟩ , ⟨E1 − E3, E2, E4⟩ ,

⟨E1, E2, E3⟩ ,
⟨
E2, E3, E1 − 1

aE4
⟩
,
⟨
E1, E2, E3 + 1

aE4
⟩
,⟨

E1 + E3, E2, E1 − 1
aE4

⟩
,
⟨
E1 − E3, E2, E1 − 1

aE4
⟩
.

The automorphisms ψ = diag(1, 1, 1,±a) serve to normalize the E4 com-
ponents. Moreover, we have that ψ = diag(1,−1,−1, 1) is an automor-
phism such that ψ · ⟨E1 − E3, E2, E4⟩ = ⟨E1 + E3, E2, E4⟩ and ψ ·

⟨
E1 −

E3, E2, E1 + E4
⟩

= ⟨E1 + E3, E2, E1 + E4⟩. Hence we have shown that any
three-dimensional subspace is equivalent to one of the seven subspaces enu-
merated in the statement of the theorem. As ⟨E1, E2, E3⟩ is the only subspace
for which E4(Γ) = {0}, it is not equivalent to any of the other six subspaces
enumerated. For the remaining six subspaces we have that

¯̄σ(⟨E2, E3, E4⟩) = ¯̄σ(⟨E2, E3, E1 + E4⟩) = −1
¯̄σ(⟨E1 + E3, E2, E4⟩) = ¯̄σ(⟨E1 +E3, E2, E1 + E4⟩) = 0

¯̄σ(⟨E1, E2, E4⟩) = ¯̄σ(⟨E1, E2, E3 + E4⟩) = 1.

Accordingly, by looking at the projection of each of the subspaces to g3.6, we
conclude that none of the subspaces are equivalent.

B.4. Proof for Theorem 2.13 (algebra g3.7 ⊕ g1). We prove only
the assertion that any proper subspace is equivalent to exactly one of the sub-
spaces listed. First note that g3.7 ⊕ g1 admits exactly one family of invariant
scalar products (ωρ); in coordinates

ωρ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ρ

 , ρ ̸= 0. (B.6)
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The orthogonal group SO (3) (i.e., the group of inner automorphisms) acts
transitively on the spheres Sα = {A ∈ ⟨E1, E2, E3⟩ : ω0(A,A) = α}, α > 0.
We note that for any subspace Γ of g3.7 ⊕ g1 we have that E4(Γ) = {0} if
and only if E4(ψ · Γ) = {0} for any automorphism ψ.

Let Γ = ⟨
∑
aiEi⟩ be a one-dimensional subspace. If E4(Γ) = {0}, then

there exists an inner automorphism φ such that φ·Γ = ⟨E1⟩. If E4(Γ) ̸= {0}
and a2

1 + a2
2 + a2

3 ̸= 0, then there exists an inner automorphism φ such that
φ · Γ = ⟨E1 + aE4⟩ for some a ̸= 0. Furthermore, ψ = diag(1, 1, 1, 1

a) is an
automorphism such that ψ · ⟨E1 + aE4⟩ = ⟨E1 + E4⟩. On the other hand, if
E4(Γ) ̸= {0} and a2

1 + a2
2 + a2

3 = 0, then Γ = ⟨E4⟩.
Let Γ be a three-dimensional subspace. Its orthogonal complement Γ⊥

with respect to ω1 (see (B.6)) is a one-dimensional subspace; hence there ex-
ists an inner automorphism φ such that φ ·Γ⊥ is ⟨E1⟩, ⟨E4⟩, or ⟨E1 + aE4⟩.
Thus Γ is equivalent to the orthogonal complements of one of these sub-
spaces, namely, ⟨E2, E3, E4⟩, ⟨E1, E2, E3⟩, and

⟨
E1 − 1

aE4, E2, E3
⟩
. For the

last case we have that ψ = diag(1, 1, 1, a) is an automorphism such that
ψ ·
⟨
E1 − 1

aE4, E2, E3
⟩

= ⟨E1 − E4, E2, E3⟩.
Let Γ = ⟨

∑
aiEi,

∑
biEi⟩ be a two-dimensional subspace of g3.7 ⊕ g1. If

E4(Γ) = {0}, then Γ is a subspace of ⟨E1, E2, E3⟩ and so there exists an inner
automorphism φ such that φ · Γ = ⟨E1, E2⟩ ([4]). Suppose E4(Γ) ̸= {0}. We
may assume a4 = 0 and b4 ̸= 0. Hence there exists an inner automorphism
φ such that φ · Γ = ⟨E1,

∑
b′
iEi⟩ with b′

1 = 0 and b′
4 ̸= 0. If b′

2 = b′
3 = 0,

then φ · Γ = ⟨E1, E4⟩. On the other hand if b′2
2 + b′2

3 ̸= 0, then φ · Γ =
⟨E1, cos θE2 + sin θE3 + rE4⟩ for some θ, r ∈ R and so

ψ =


1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1

r


is an automorphism such that ψ · φ · Γ = ⟨E1, E2 +E4⟩.

It is a simple matter to verify that no two of the subspaces enumerated
are equivalent.
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