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Abstract : We present a new characterization of Q-point ultrafilters and use it to optimize the result

of Avilés, Mart́ınez-Cervantes, and Rueda Zoca linking the existence of L-orthogonal sequences and
L-orthogonal elements in Banach spaces via ultrafilter limits.
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1. Introduction

The presence of subspaces isomorphic to ℓ1 has been a central topic of
research in contemporary Banach space theory. The concepts of L-orthogonal
sequences and L-orthogonal elements have become relevant, as the existence
of a subspace isomorphic to ℓ1 implies, under a renorming, their existence (see
[10, 4]). Avilés, Mart́ınez-Cervantez, and Rueda Zoca [2] inquired into the re-
lation between these concepts. In one direction they present several examples
of Banach spaces which have L-orthogonal elements but no L-orthogonal se-
quences, and in the other, they show that the existence of counter-examples
is independent of the usual axioms of set theory. In particular, they show:

(1) For any selective ultrafilter U , and any L-orthogonal sequence (xn)n∈N
the U - limxn in the weak∗ topology is an L-orthogonal element.

(2) There exists a Banach space X, such that for any ultrafilter U not a
Q-point, there is an L-orthogonal sequence (xn)n∈N such that U - limxn
in the weak∗ topology is not an L-orthogonal element.
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This suggests the question whether the assumption can be optimized. Our
main theorem answers this question in the positive:

Theorem 1.1. (Main theorem) A free ultrafilter U on N is a Q-point
if and only if for every Banach space X and every L-orthogonal sequence
(xn)n∈N ⊆ X the U - limxn ∈ X∗∗ with respect to the weak∗ topology is an
L-orthogonal element.

The theorem will be a consequence of Corollary 4.2 and Corollary 5.6,
it also involves a new characterization of Q-points in the spirit of Mathias’
characterization of selective ultrafilters (see [12, Theorem 2.12]).

The proof of the theorem requires also knowledge of measure-theoretic
properties of filters, in particular, Lebesgue filters [9]. We include a short
section (Section 3) summarizing known facts about these, in particular, to
simplify the proof of the main theorem compared to the one presented in [2].

Finally, we briefly consider a dual theory to the one that involves L-
orthogonality, this time involving c0 [1]. We offer another result involving
Q-points that generalizes a result of the same authors.

We outline the contents of the paper. Section 2 presents the relevant def-
initions as well as basic results. Section 3 is devoted to measure theoretic
ultrafilters, the main result being Theorem 3.1 which establishes the equiva-
lence between some of measure theoretic filters present in the literature and
which allows, together with Theorem 2.2, to study Lebesgue filters using the
Katětov order. Section 4 is devoted to the first half of our main theorem.
In contrast with [2], we find a single Banach space and a single L-orthogonal
sequence that for any given non-Q ultrafilter U admits an L-orthogonal sub-
sequence which serves as a counter-example. Section 5 presents the other half
of the main theorem and an analogous result concerning c0.

2. Preliminaries

Let X be a Banach space. We denote by BX the closed unit ball of X.

(1) A sequence (xn)n∈N ⊆ BX is called an L-orthogonal sequence provided
that for any x ∈ X, limn→∞ ∥xn + x∥ = 1 + ∥x∥.

(2) A sequence (xn)n∈N ⊆ BX is called an S-sequence if for any x ∈ X,
limn→∞ ∥xn + x∥ = max{∥x∥ , 1}.

(3) An element x∗∗ ∈ S∗∗
X is called an L-orthogonal element if for any x ∈ X,

∥x∗∗ + x∥ = 1 + ∥x∥.
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(4) An element x∗∗ ∈ S∗∗
X is called an S-element provided that for any

x ∈ X, ∥x∗∗ + x∥ = max{∥x∥ , 1}.

The “S-” and “L-” notions are dual in that “L-notions” are related to
embeddability of ℓ1 while “S-notions” are related to the embeddability of
c0. The latter notions also come with a different “convex” closure operation:
Given a Banach space X, A ⊆ X and x ∈ X we say that x is a c0-convex
combination of elements of A if there are t0, . . . , tn ∈ R and x0, . . . xn ∈ A
such that max{|t0| , . . . , |tn|} = 1 and

∑n
i=0 tixi = x. We denote this fact by

x ∈ convc0(A).
Recall that F ⊆ P(N) is a filter if it is closed under taking supersets

and finite intersections, and contains all complements of finite sets, while not
containing the empty set. Dually, I is an ideal if I∗ = {N \ I : I ∈ I} is a
filter, i.e., I contains all finite subsets of N and is closed under finite unions
and taking subsets, and does not contain N. We denote by I+ = {J : J /∈ I}
the set of all I-positive subsets of N. Finally, the restriction of the ideal
(filter) to a set X is I|X= {I ∩X : I ∈ I}.

Given a and (an)n∈N points in a topological space X and a filter F ⊆ P(N)
we write F - lim an = a if for any U neighborhood of a {n ∈ N : an ∈ U} ∈ F .
If the sequence (an)n∈N is a sequence of real numbers we write

(1) F - lim sup an = inf
{
r : {n ∈ N : an ≤ r} ∈ F

}
, and

(2) F - lim inf an = sup
{
r : {n ∈ N : an ≥ r} ∈ F

}
.

Similarly, we can also define limit notions with respect to sequences
(An)n∈N of sets w.r.t. F as follows

(3) F - lim+An =
{
x : {n ∈ N : x ∈ An} ∈ F+

}
, and

(4) F - limAn =
{
x : {n ∈ N : x ∈ An} ∈ F

}
.

The following is an easy observation:

Proposition 2.1. Let (an)n∈N a sequence of reals, (An)n∈N a sequence
of sets, and F ⊆ P(N) a free filter,

(1) lim inf an ≤ F - lim inf an ≤ F - lim sup an ≤ lim sup an.

(2) F - lim an = a exists if, and only if, F - lim inf an = F - lim sup an, and
in this case it is equal to both.

(3) For each x, x ∈ F - lim+An if, and only if, F - lim supχAn(x) = 1;
x ∈ F - limAn if, and only if, F - lim inf χAn(x) = 1.
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(4) F - lim sup an = F - lim inf −an, and (F - lim+An)
c = F - limAc

n.

We say an ideal I ⊆ P(N) is tall if for any infinite F ⊆ N, there is I ∈ I
such that |I ∩ F |= N. We call a family A ⊆ [N]N countably hitting if for
every collection {Xn : n ∈ N} of countably many infinite subsets of N there
exists A ∈ A such that for every n ∈ N, A ∩ Xn is infinite. Notice that in
order to prove that a family A ⊆ [N]N is countably hitting it is enough to
prove that for any partition of {Pn : n ∈ N} of N into infinite sets there exists
A ∈ A such that for every n ∈ N, A ∩ Pn is infinite. This is because given
an arbitrary family {Xn : n ∈ N} of countably many infinite subsets of N we
may apply the Disjoint Refinement Lemma to find a pairwise disjoint family
{Pn : n ∈ N} such that for every n ∈ N, Pn ⊆ Xn, Pn is infinite. So, we
may find A ∈ A such that for every n ∈ N, A ∩ Pn is infinite. It is easy to
see this A is the desired witness for the original family. What we are calling
a countably hitting is often referred to as ω-hitting.

An important class of filters are the maximal ones, called ultrafilters. An
ultrafilter U ⊆ P(N) is a Q-point if for every partition {Fn : n ∈ N} of N
into finite sets there exists X ∈ U such that for every n ∈ N, |X ∩ Fn|≤ 1.
More generally (and dually), we call an ideal I ⊆ P(N) a Q+(N)-ideal if for
every partition {Fn : n ∈ N} of N into finite sets there exists X ∈ I+ such
that for every n ∈ N, |X ∩ Fn|≤ 1.

Ideals are naturally pre-ordered by the Katětov and Katětov-Blass orders.
Given two ideals I,J on N we write I ≤K J if there is a map f : N → N
such that for any I ∈ I, f−1[I] ∈ J , if the map is finite-to-one we write
I ≤KB J .

We consider P(N) equipped with the natural topology inherited from the
product topology of 2N via characteristic functions. Whenever we talk about
a subset of P(N) having any topological property: closed, Borel, analytic,
etc., we refer to this topology.

We shall mention two tall Fσ ideals on countable sets. The first one is the
ideal

EDfin =
{
A ⊆ ∆ : ∃n,m ∈ N ∀ k ≥ n

∣∣{i : (k, i) ∈ A}
∣∣ ≤ m

}
,

on the set ∆ = {(n,m) ∈ N2 : m ≤ n}. The other, the Solecki’s ideal S is the
ideal on N =

{
A ∈ Clop(2N) : λ(A) = 1/2

}
(here λ is the Lebesgue measure

on 2N) generated by the sets Ix = {A ∈ N : x ∈ A}, x ∈ 2N. The ideals are
critical for properties considered in the paper:

Theorem 2.2. (Solecki [14]) Let F be a universally measurable filter.
F is Fatou if, and only if, for every F ∈ F+, S ≰K F ∗ |F .
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Proposition 2.3. ([5]) An ultrafilter F is a Q-point if and only if
EDfin ≰KB F ∗.

3. Measure-theoretic filters

The following properties of filters can be found (with slight modifications)
in the literature (see e.g. [3, 7, 14]). A filter F on N is

(1) Fubini [11] if for any finite measure space (Ω,Σ, µ), any sequence {Xn ∈
Σ : n ∈ N}, and any ϵ > 0, {n ∈ N : µ(Xn) > ϵ} ∈ F+ implies
λ∗(F -lim+Xn}) ≥ ϵ.

(2) Fatou [14] if for any σ-finite measure space (Ω,Σ, µ) and any fn : N →
[0,∞) measurable functions 1

∫
F - lim inf fndµ ≤ F - lim inf

∫
fndµ.

(3) Lebesgue [9] if for any (Ω,Σ, µ) σ-finite measure space and any fn : Ω →
[0,∞) measurable functions such that there is f : Ω → [0,∞) integrable
such that |fn| ≤ f , F − lim fn = 0 implies F - lim

∫
fndµ = 0.

Theorem 3.1. The following are equivalent:

(1) F is Fatou.

(2) F is Lebesgue.

(3) For any finite measure space (Ω,Σ, µ) and any sequence (Xn)n∈N of
elements of Σ, if µ(F -limXn) = 0, then F -limµ(Xn) = 0.

(4) F is Fubini.

(5) For any finite measure space (Ω,Σ, µ) and any sequence (Xn)n∈N of
elements of Σ, µ∗(F -limXn) ≤ F -lim inf µ(Xn).

Proof. Let us prove (1) implies (2). It is clear that we can reduce the
problem to the case where (fn)n ∈ N are measurable and non-negative and f
is integrable such that fn ≤ f , so consider gn = f − fn. Applying the Fatou
property we get∫

fdµ =

∫
F - lim inf gndµ ≤ F - lim inf

∫
gndµ

=

∫
fdµ+ F - lim inf

∫
−fndµ.

1Where
∫
fdµ = sup{

∫
f ′dµ : f is integrable and f ′ ≤ f}
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However, as F -lim inf
∫
−fndµ = −F -lim sup

∫
fndµ, we get

F - lim sup

∫
fndµ = 0.

As all the functions are non-negative we also know that the inferior limit is
non-negative, so F -lim

∫
fndµ = 0.

For (2) implies (3), consider X = F -limXn and Yn = Xn \ X, then
∅ = F -limYn and for every n, µ(Yn) = µ(Xn), because the space is finite
there is a constant that bounds χYn so we get

F - limµ(Xn) = F - lim

∫
χYndµ = 0.

For (3) implies (4), assume there is an ϵ > 0 such that {n ∈ N :
µ(Xn) > ϵ} ∈ F+ but λ∗(F -lim+Xn) < ϵ. Pick X ∈ Σ such that µ(X) < ϵ
and F -lim+Xn ⊆ X, define Yn = Xn \ X and 0 < δ = ϵ − µ(X), then
{n ∈ N : µ(Yn) > δ} ∈ F+ but F -limYn = ∅. This implies that the se-
quence of the measures of Yn converges to 0 in the filter, in particular {n ∈ N :
µ(Yn) < δ} ∈ F , which is a contradiction.

For (4) implies (5), consider Xn ∈ Σ and assume the property is false,
then find X ∈ Σ, such that F -lim inf µ(Xn) < µ(X) and X ⊆ F -limXn. As
always, define Yn = X \Xn, so that if 0 < δ = µ(X)− F -lim inf µ(Xn) then
{n ∈ N : µ(Yn) > δ} ∈ F and F -limYn = ∅, which is impossible.

For (5) implies (1), it is clear we may restrict, again, our attention to a
sequence of non-negative function (fn)n∈N bounded by f , all of them defined
over a measure space. Define

Af = {(x, t) ∈ Ω× [0,∞) : 0 ≤ t < f(x)}

and for each n ∈ N,

Bn = {(x, t) ∈ Ω× [0,∞) : 0 ≤ t < fn(x)}.

Define ν = µ × λ where λ is the Lebesgue measure. By Fubini’s theorem we
get ν(Bn) =

∫
fndµ and

∫
F -lim inf gndµ = ν∗(F -limBn) and that (Af , ν) is

finite and atomless, so we are done.

There are analogs for this properties where we only consider the measure
space

(
2N,B(2N), λ

)
, with λ the Haar measure on the Borel sets of 2N. Under

an additional hypothesis on the filter these notions are also equivalent. Recall
that a filter F on N is universally measurable if it is measurable by any Borel
measure on 2N, where we are identifying a set with its characteristic function.
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Proposition 3.2. (Solecki [14]) Let F be an universally measurable
filter, assume the filter is Lebesgue with respect to the Haar measure over the
Borel subsets of 2N, then it is Lebesgue.

Proof. Consider an arbitrary finite measure space (Ω,Σ, µ) and a sequence
{Xn ∈ Σ : n ∈ N} such that µ(F -limXn) = 0. We may assume w.l.o.g. that
µ(Ω) = 1. Call X = F -limXn, and consider the sets X ′ = X × [0, 1],
X ′

n = Xn× [0, 1] and the measure µ′ = µ×λ on Ω′ = Ω× [0, 1] where λ is the
Lebesgue measure on [0, 1] so we get that µ′(X ′) = µ(X) and for any n ∈ ω,
µ′(X ′

n) = µ(Xn). Notice that µ′ is an atomless probability measure. By
the Caratheodory and Sikorski theorems [13, Theorem 15.4 and Proposition
15.3] there is a measurable function f : Ω′ → 2N such that for any Borel
set B ⊆ 2N λ′(B) = µ′(f−1(B)) where λ′ is the Haar measure on 2N, and
{Bn ∈ B(2N) : n ∈ N} such that for any n, µ′(X ′

n△f−1(Bn)) = 0. Then
λ′
∗(F -limBn) = 0. Let g : 2N → 2N be defined by g(x)(n) = 1 if and only

if x ∈ Bn. The function g is Borel and g−1[F ] = F -limBn, so this last
set is λ′-measurable. This implies λ′(F -limBn) = 0, so F -limµ(Xn) = F -
limµ′(X ′

n) = F -limλ′(Bn) = 0 as desired.

By Solecki’s theorem and the fact that S ≰K EDfin [6] we get the following
result that generalizes [2, Proposition 6.2].

Corollary 3.3. Any F universally measurable filter such that for every
J ∈ F+, F ∗|J≤K EDfin is a Lebesgue Filter.

4. Q-point is necessary

In this section we will present a simple proof of the direct implication of
the main theorem. To do so, let

J =
{
A ⊆ ∆ : ∀ k

∣∣{i : (k, i) ∈ A}
∣∣ ≤ 1

}
.

Let KEDfin
=

{
x ∈ {−1, 1}N×N : x−1[{−1}] ∈ J

}
, which is clearly compact,

and letX = C
(
KEDfin

)
. Notice thatKEDfin

has the following property: Given
any open subset U we can find nU ∈ N such that for any n ≥ nU , m ≤ n, and
any η ∈ {−1, 1} there is y ∈ U such that y(n,m) = η. This is so because for
any open U we can find s ∈ {−1, 1}<(N×N) such that

{
t ∈ KEDfin

: s ⊆ t
}
⊆

U , then it is enough to take nU = max{n : ∃m(n,m) ∈ dom(s)}.
As a consequence of this property KEDfin

is perfect, so it is homeomor-
phic to the Cantor set. We will draw another consequence of this property.
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Consider the sequence {e(i,j)}(i,j)∈∆ ⊆ X, defined by e(i,j)(x) = x(n, k) if
(i, j) = (n, k) and 0 otherwise. We claim it is L-orthogonal (under any enu-
meration of ∆). Consider f ∈ X, and pick x ∈ KEDfin

such that η ∥f∥ = f(x),
pick ϵ > 0 then for every n ≥ nϵ and every m ≤ n, we can find y ∈ KEDfin

such that η = y(n,m) and |f(y)− f(x)| < ϵ, therefore:

∥f∥+ 1− ϵ = |η ∥f∥+ η| − ϵ = |f(x) + y(n,m)| − ϵ

<
∣∣f(y) + e(n,m)(y)

∣∣ ≤ ∥∥f + e(n,m)

∥∥ ≤ ∥f∥+ 1.

Notice that for any x ∈ KEDfin
,

{(i, j) ∈ ∆ : e(i,j)(x) ̸= 1} = {(i, j) ∈ ∆ : x(i, j) = −1} ∈ EDfin.

So (EDfin)
∗- lim e(i,j)(x) = 1 for every x ∈ KEDfin

, recalling that (EDfin)
∗ is

a Lebesgue filter we may conclude that (EDfin)
∗- lim e(i,j) = 1 in the weak∗

topology, by the Riesz representation theorem.

Actually this sequence fulfills a stronger property:

Theorem 4.1. Let X = C(KEDfin
), {e(i,j)}(i,j)∈∆ ⊆ X, and F such that

EDfin ≤KB F ∗, then there is a natural subsequence such that its F -limit in
the weak topology is the constant map 1.

Proof. Assume EDfin ≤KB F ∗ and a witness of φ : N → N2. Consider
the subsequence {eφ(n)}n∈N, we already know its L-orthogonal because φ is
finite to 1.

But because φ is a witness we get that for any x ∈ KEDfin
, F -lim eφ(n)(x)

= 1, as the next computation shows

{n ∈ N : eφ(n)(x) ̸= 1} = {n ∈ N : x(φ(n)) = −1}

⊆ φ−1
[
{(i, j) ∈ ∆ : x(i, j) = −1}

]
∈ F ∗.

Appealing again to the Lebesgue property we get the desired result.

Corollary 4.2. Given an ultrafilter U which is not a Q-point, there is
a an L-orthogonal sequence (xn)n∈N in C(KEDfin

) such that the U - limxn in
the weak topology is not an L-orthogonal element.
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5. Q-point is sufficient

In this section we will prove the inverse implication of the main theorem.
We will take advantage of the following fact:

Theorem 5.1. (Hrušák-Meza-Minami, [8]) Let I be an analytic
ideal, the following are equivalent:

(1) I is a Q+(N)-ideal.
(2) EDfin ≰KB I.
(3) I is not countably hitting.

This fact readily provides a useful characterization of Q-points (compare
to the Mathias’ characterization of selective ultrafilters [12, Theorem 2.12]).

Corollary 5.2. Let U be a ultrafilter, the following are equivalent:

(1) U is a Q-point.

(2) For every Fσ ideal I that is countably hitting, U ∩ I ≠ ∅.

(3) For every analytic ideal I that is countably hitting, U ∩ I ≠ ∅.

Proof. Let us start with (1) implies (3). Assume U is a Q-point. Now pick
I a countably hitting ideal, if I is analytic, then I is not a Q+(N)-ideal, so
U ̸⊆ I∗.

(3) implies (2) is trivial.
Now for (2) implies (1). Assume U is not a Q-point, so take f : N → N

witnessing that U ∗ ≥KB EDfin, and consider I = {f−1[I] : I ∈ EDfin}. J
is Fσ and countably hitting because EDfin is so, but clearly I ∩ U = ∅.

We present two applications of this result. To state them we need to
introduce two classes of ideals. Let X be a Banach space, (xn)n∈N a sequence
in BX , (ϵn)n∈N a sequence of positive real numbers converging to zero, Z ⊆
X a separable subspace of X, and (Fn)n∈N an increasing sequence of finite
dimensional subspaces of X such that Z =

⋃
n∈N Fn. For any B ⊆ N, n ∈ N

call B(n) the n-th element of B, B
−→
(n) = {A ⊆ B : minA ≥ B(n)}, and for

B ⊆ N call C[B] = {w ∈ X : w ∈ conv{xm : m ∈ B}} and Cco [B] = {w ∈
X : w ∈ convc0{xm : m ∈ B}}, then we define the sets

L(Fn)n∈N =
{
B ⊆ N : ∀n ∈ N, ∀A ∈ B

−→
(n), ∀w ∈ C[A], ∀ y ∈ Fn,

(1− ϵn)(1 + ∥y∥) ≤ ∥y + w∥
}
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and

S(Fn)n∈N =
{
B ⊆ N :∀n ∈ N, ∀A ∈ B

−→
(n), ∀w ∈ Cc0 [A], ∀ y ∈ Fn,

|(∥y + w∥)− 1| < ϵnmax{∥y∥ , 1}
}
,

and consider I(Fn)n∈N and J(Fn)n∈N as the ideals generated respectively by
L(Fn)n∈N and S(Fn)n∈N .

It is straightforward to check that L(Fn)n∈N and S(Fn)n∈N are closed, so
I(Fn)n∈N and J(Fn)n∈N are Fσ ideals. We shall prove that they are both count-
ably hitting. For the first one we need the following result [2, Lemma 3.1]:

Lemma 5.3. ([2]) Let X be a Banach space, (xn)∈N an L-orthogonal se-
quence, ϵ > 0 and F ⊆ X a finite dimensional subspace of X, then, there
exists an m ∈ N such that for every n ≥ m, t ∈ R, and y ∈ F

∥y + txn∥ ≥ (1− ϵ)(∥y∥+ |t|).

Theorem 5.4. Let X be a Banach space, (xn)∈N an L-orthogonal se-
quence, (ϵn)n∈N a sequence of positive real numbers, Z ⊆ X a separable
subspace of X, and (Fn)n∈N an increasing sequence of finite dimensional
subspaces of X such that Z =

⋃
n∈N Fn, {Pn : n ∈ N} a partition of N

into infinite sets. Then there exists a subsequence (xnm)m∈N such that for
every i ∈ N, |{nm ∈ N : nm ∈ Pi}|= N and for every k ∈ N, y ∈ Fk,
w ∈ conv{xnm : m ≥ k},

∥y + w∥ ≥ (1− ϵk)(∥y∥+ 1).

Proof. Consider f : N → N such that n ∈ Pf(n). Pick a sequence (δn)n∈N
of positive real numbers such that for every n ∈ N, 1− ϵn <

∏∞
i=n+1(1− δi).

We will construct the subsequence by recursion, so assume we have built our
sequence up to step k, let Ek+1 =

〈
Fk+1∪{xn0 , . . . xnk

}
〉
and apply the lemma

with δk+1 to get an N such that for any n ≥ N , y ∈ Ek+1, and λ ∈ R,

∥y + λxn∥ ≥ (1− δk+1)(∥y∥+ |λ|)

so pick nk+1 ∈ Pf(k+1) such that max{N,nk} < nk+1.

Observe that for any i ∈ N, {nm ∈ N : m ∈ Pi} ⊆ Pi, so the first
condition is met. To check the second condition consider k ∈ N, y ∈ Fk, and
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w ∈ conv{xnm : m ≥ k}. So, we have a sequence (tj)k≥j of non-negative reals
such that

∑∞
k=j tj = 1 and w =

∑∞
k=j tjxmj , then for any l > k∥∥∥∥y −∑l

k≤j
tjxmj

∥∥∥∥ ≥ (1− δl)

(∥∥∥∥y −∑l−1

k≤j
tjxmj

∥∥∥∥+ tl

)
≥ (1− δl)(1− δl−1)

(∥∥∥∥y −∑l−2

k≤j
tjxmj

∥∥∥∥+ tl + tl−1

)
...

≥
∏l

k≤j
(1− δj)

(
∥y∥+

∑l

k≤j
tj

)
≥

∏∞

k≤j
(1− δj)

(
∥y∥+

∑l

k≤j
tj

)
> (1− ϵk)

(
∥y∥+

∑l

k≤j
tj

)
.

It is evident that the sequence
(
y −

∑l
k≤j tjxmj

)
l∈N converges in norm to

y−
∑∞

k≤j tjxmj , so the previous computation ensures that
∥∥∥y −∑∞

k≤j tjxmj

∥∥∥
≥ (1− ϵk)(∥y∥+ 1).

This result directly implies that the associated ideal I(Fn)n∈N is countably
hitting. Avilés, Mart́ınez-Cervantes, and Rueda Zoca [2, Lemma 3.3] using
Maurey’s technique also prove a result which can be stated in the following
way.

Lemma 5.5. ([2]) Let X be a Banach space, (xn)∈N an L-orthogonal se-
quence, (ϵn)n∈N a sequence of positive real numbers converging to zero, Z ⊆ X
a separable subspace of X, and (Fn)n∈N an increasing sequence of finite di-
mensional subspaces of X such that Z =

⋃
n∈N Fn. If B ∈ I(Fn)n∈N and

u ∈
⋂

n∈N convw
∗{xm : m ∈ B,m ≥ n} then for any y ∈ Z, ∥u+ y∥ =

∥u∥+ ∥y∥ = 1 + ∥y∥.

Corollary 5.6. Let X be a Banach space, (xn)∈N an L-orthogonal se-
quence, and U a Q-point, if x∗∗ = U- limxn, then x∗∗ is an L-orthogonal
element.

Proof. Consider z ∈ X and (ϵn)n∈N a sequence of positive reals converging
to zero. Let I⟨z⟩ be the associated ideal, by Theorem 5.4 we know I⟨z⟩ is an Fσ,
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countably hitting ideal of N, so by Theorem 5.1 it is not Q+(N), which implies
that U ∩ I⟨z⟩ ̸= ∅, so take I ∈ U ∩ I⟨z⟩, then there exist J0, . . . , Jm ∈ L⟨z⟩
such that I ⊂

⋃
i≤m Ji. Because U is an ultrafilter there is i ≤ m such that

Ji ∈ U , this implies that x∗∗ ∈ clw∗({xn : n ∈ Ji}) so by the previous lemma
∥u+ z∥ = 1 + ∥z∥.

The second result follows using similar techniques. We need an analogue
to Lemma 5.3 this result is presented as [1, Lemma 2.5].

Lemma 5.7. ([1]) Let X be a Banach space, (xn)∈N an S sequence, ϵ > 0
and F ⊆ X a finite dimensional subspace of X, then, there exists an m ∈ N
such that for every n ≥ m, t ∈ R, and y ∈ F∣∣ ∥y + txn∥ −max{∥y∥ , |t|}

∣∣ < ϵmax{∥y∥ , |t|}.

Theorem 5.8. Let X be a Banach space, (xn)∈N an S sequence, (ϵn)n∈N
a sequence of positive real numbers, Z ⊆ X a separable subspace of X, and
(Fn)n∈N an increasing sequence of finite dimensional subspaces of X such that
Z =

⋃
n∈N Fn, {Pn : n ∈ N} a partition of N into infinite sets. Then there

exists a subsequence (xnm)m∈N such that for every i ∈ N, |{nm ∈ N : nm ∈
Pi}|= N and for every k ∈ N, y ∈ Ek = ⟨Fk ∪ {xni : i<k}⟩, w ∈ convc0{xnm :
m ≥ k}, ∣∣ ∥y + w∥ −max{∥y∥ , 1}

∣∣ < ϵk max{∥y∥ , 1}.

Proof. Consider, again, f : N → N such that n ∈ Pf(n). Pick a sequence
(δn)n∈N of positive real numbers such that for every n ∈ N,

1− ϵn <
∞∏

i=n+1

(1− δi) <
∞∏

i=n+1

(1 + δi) < 1 + ϵn.

We will, once again, construct the subsequence by recursion, so assume we
have built our sequence up to step k, consider Ek+1 and apply the lemma
with δk+1 to get an N such that for any n ≥ N , y ∈ Ek+1, and t ∈ R,∣∣ ∥y + txn∥ −max{∥y∥ , |t|}

∣∣ < δk+1max{∥y∥ , |t|}.

so pick nk+1 ∈ Pf(k+1) such that max{N,nk} < nk+1.

Once again, for any i ∈ N, {nm ∈ N : m ∈ Pi} ⊆ Pi. To check the second
condition consider k ∈ N, y ∈ Ek, and w ∈ convc0{xnm : m ≥ k}. So, we
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have a sequence (tj)
l
k=j of reals such that max{|tj | : k ≤ j ≤ l} = 1 and

w =
∑l

k=j tjxmj , then∥∥∥∥y +∑l

k≤j
tjxmj

∥∥∥∥ =

∥∥∥∥(y +∑l−1

k≤j
tjxmj

)
+ tlxml

∥∥∥∥
< (1 + δl)

(
max

{∥∥∥∥y +∑l−1

k≤j
tjxmj

∥∥∥∥ , |tl|})
= (1 + δl)

(
max

{∥∥∥∥(y +∑l−2

k≤j
tjxmj

)
+ tl−1xml−1

∥∥∥∥ , |tl|})
< (1 + δl)(1 + δl−1)

(
max

{∥∥∥∥(y +∑l−2

k≤j
tjxmj

)∥∥∥∥ , |tl−1| , |tl|
})

...

<
∏l

k≤j
(1 + δj)

(
max

{
∥y∥ ,max{|tj | : k ≤ j ≤ l}

})
< (1 + ϵn)max{∥y∥ , 1}.

Obviously the opposite inequality is proved in a similar way.

Our final result takes advantage of the following fact [1, Lemma 2.4].

Lemma 5.9. Let X be a Banach Space and {Cγ : γ ∈ Γ} a family of
bounded convex sets in X∗∗ with the finite intersection property and such
that for every ϵ > 0 and x ∈ X there is γ ∈ Γ such that for every x∗∗ ∈ Cγ ,

|∥x+ x∗∗∥ −max{∥x∥ , 1}| < ϵmax{∥x∥ , 1}.

Then, there is an S-element in X(4).

Corollary 5.10. Let X be a Banach space, (xn)n∈N and S-sequence, if
there is U a Q-point, then there is x ∈ X(4) an S-element.

Proof. Fix (ϵn) converging to zero by applying Theorem 5.8 to the sub-
space 0 (and relabeling if necessary), we may assume that for any n ∈ N, any
i ≤ n, and any y ∈ convc0{xj : j > n}, |∥xi − y∥ − 1| < ϵn. Now, given
A ⊆ N and n ∈ N define xA(n) =

∑
i≤A(n) xi. Because of the previous in-

equality the set {xA(n) : n ∈ N} is bounded for any A. So we can fix y∗∗A a
w∗-cluster point of it in BX∗∗ . Define CA = conv{y∗∗B : B ⊆ A,B ∈ U }, it
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is enough to show that {CA : A ∈ U } satisfies the hypothesis of the previ-
ous lemma. So, the only missing piece is the inequality, so take y ∈ X and
ϵ > 0. Consider now J⟨y⟩, it is clear it is Fσ because S⟨y⟩ is closed, and the
previous theorem implies that it is countably hitting, so U ∩ J⟨y⟩ ̸= ∅, the
same argument as before shows there is A ∈ U ∩ S⟨y⟩. We claim CA is the
desired witness, pick z∗∗ ∈ CA, and express it as z∗∗ =

∑m
i=0 tiy

∗∗
Bi
, because

every Bi ∈ U we may choose k ∈
⋂

i≤mBi. Consider

DA,k = conv{xB(n) : B ⊆ A,B ∈ U , k ∈ B,B(n) ≥ k}.

Notice that x∗∗ ∈ DA,k
w∗

and that DA,k ⊆ convc0{xi : i ∈ A} and even
more, if z ∈ DA,k and we express it as a c0-convex combination, z =

∑n
i=0 tixi,

then max{|ti| : i ≤ n} = tk = 1. Now, the fact that A ∈ S⟨y⟩ implies that
|(∥z + y∥)− 1| < ϵnmax{∥y∥ , 1} for any z ∈ DA,k, this easily implies that

|(∥z∗∗ + y∥)− 1| < ϵnmax{∥y∥ , 1} for any z∗∗ ∈ DA,k
w∗

, in particular for our
chosen x∗∗.
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[5] M. Hrušák, Combinatorics of filters and ideals, in “Set theory and its ap-
plications”, Contemp. Math., 533, Amer. Math. Soc., Providence, RI, 2011,
26 – 69, DOI: 10.1090/conm/533/10503.
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