José E. Chacón
José E. Chacón
Home
Publications
Contact
Light
Dark
Automatic
Publications
Type
Journal article
Report
Book
Date
2024
2023
2022
2021
2020
2019
2018
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
J. E. Chacón
,
J. Fernández Serrano
(2024).
Mode-based estimation of the center of symmetry
.
Preprint
J. E. Chacón
,
C. Tenreiro
(2024).
A nonstandard application of cross-validation to estimate density functionals
.
Statistica Neerlandica
.
Preprint
Code
DOI
J. E. Chacón
,
J. Fernández Serrano
(2024).
Bayesian taut splines for estimating the number of modes
.
Computational Statistics and Data Analysis
,
196
, 107961.
Preprint
DOI
J. E. Chacón
,
J. Fernández Serrano
(2023).
Bump hunting through density curvature features
.
Test
,
32
, 1251–1275.
Preprint
Code
DOI
J. E. Chacón
,
A. I. Rastrojo
(2023).
Minimum adjusted Rand index for two clusterings of a given size
.
Advances in Data Analysis and Classification
,
17
, 125–133.
Preprint
DOI
R. Cao
,
J. E. Chacón
(2022).
Introduction to the special issue on Data Science for COVID-19
.
Journal of Nonparametric Statistics
,
34
, 555–569.
DOI
A. Baíllo
,
J. E. Chacón
(2022).
A new selection criterion for statistical home range estimation
.
Journal of Applied Statistics
,
49
, 722–737.
Preprint
DOI
J. E. Chacón
(2021).
Explicit agreement extremes for a 2x2 table with given marginals
.
Journal of Classification
,
38
, 257–263.
Preprint
DOI
J. E. Chacón
(2021).
A close-up comparison of the misclassification error distance and the adjusted Rand index for external clustering evaluation
.
British Journal of Mathematical and Statistical Psychology
,
74
, 203–231.
Preprint
DOI
A. Baíllo
,
J. E. Chacón
(2021).
Statistical outline of animal home ranges: An application of set estimation
. In
Data Science: Theory and Applications
(A.S.R. Srinivasa Rao and C.R. Rao, eds.).
Handbook of Statistics
,
44
, 3–37.
DOI
J. E. Chacón
,
T. Duong
(2020).
Higher order differential analysis with vectorized derivatives
.
Preprint
.
Preprint
J. E. Chacón
(2020).
The modal age of Statistics
.
International Statistical Review
,
88
, 122–141.
Preprint
DOI
A. Casa
,
J. E. Chacón
,
G. Menardi
(2020).
Modal clustering asymptotics with applications to bandwidth selection
.
Electronic Journal of Statistics
,
14
, 835–856.
DOI
J. E. Chacón
(2019).
Mixture model modal clustering
.
Advances in Data Analysis and Classification
,
13
, 379–404.
Preprint
Code
DOI
J. E. Chacón
,
T. Duong
(2018).
Multivariate Kernel Smoothing and Its Applications
. Chapman & Hall.
PDF
DOI
J. E. Chacón
,
T. Duong
(2015).
Efficient recursive algorithms for functionals based on higher order derivatives of the multivariate Gaussian density
.
Statistics and Computing
,
25
, 959–974.
DOI
J. E. Chacón
(2015).
A population background for nonparametric density-based clustering
.
Statistical Science
,
30
, 518–532.
DOI
J. E. Chacón
,
P. Monfort
(2014).
A comparison of bandwidth selectors for mean shift clustering
. In
Theoretical and Applied Issues in Statistics and Demography
(C. H. Skiadas, ed.), 47–59.
Preprint
J. E. Chacón
,
P. Monfort
,
C. Tenreiro
(2014).
Fourier methods for smooth distribution function estimation
.
Statistics & Probability Letters
,
84
, 223–230.
DOI
J. E. Chacón
,
T. Duong
(2013).
Data-driven density derivative estimation, with applications to nonparametric clustering and bump hunting
.
Electronic Journal of Statistics
,
7
, 499–532.
DOI
J. E. Chacón
,
C. Tenreiro
(2013).
Data-Based Choice of the Number of Pilot Stages for Plug-in Bandwidth Selection
.
Communications in Statistics-Theory and Methods
,
42
, 2200–2214.
DOI
J. E. Chacón
,
C. Tenreiro
(2012).
Exact and Asymptotically Optimal Bandwidths for Kernel Estimation of Density Functionals
.
Methodology and Computing in Applied Probability
,
14
, 523–548.
DOI
J. E. Chacón
,
T. Duong
(2011).
Unconstrained Pilot Selectors for Smoothed Cross-validation
.
Australian & New Zealand Journal of Statistics
,
53
, 331–351.
DOI
J. E. Chacón
,
G. Mateu-Figueras
,
J. A. Martín-Fernández
(2011).
Gaussian kernels for density estimation with compositional data
.
Computers & Geosciences
,
37
, 702–711.
DOI
J. E. Chacón
,
T. Duong
,
M. P. Wand
(2011).
Asymptotics for general multivariate kernel density derivative estimators
.
Statistica Sinica
,
21
, 807–840.
DOI
J. E. Chacón
,
T. Duong
(2010).
Multivariate plug-in bandwidth selection with unconstrained pilot bandwidth matrices
.
Test
,
19
, 375–398.
DOI
J. E. Chacón
,
A. Rodríguez-Casal
(2010).
A note on the universal consistency of the kernel distribution function estimator
.
Statistics & Probability Letters
,
80
, 1414–1419.
DOI
J. E. Chacón
,
J. Montanero
,
A. G. Nogales
,
P. Pérez
(2009).
Partial sufficiency and density estimation
.
Journal of Nonparametric Statistics
,
21
, 969–975.
DOI
J. E. Chacón
(2009).
Data-driven choice of the smoothing parametrization for kernel density estimators
.
Canadian Journal of Statistics
,
37
, 249–265.
DOI
J. E. Chacón
,
J. Montanero
,
A. G. Nogales
(2008).
Bootstrap bandwidth selection using an h-dependent pilot bandwidth
.
Scandinavian Journal of Statistics
,
35
, 139–157.
DOI
J. E. Chacón
,
J. Montanero
,
A. G. Nogales
,
P. Pérez
(2007).
Stability under products of sufficient, minimal sufficient and complete sigma-fields in the Bayesian case
.
Statistics & Probability Letters
,
77
, 710–716.
DOI
J. E. Chacón
,
J. Montanero
,
A. G. Nogales
,
P. Pérez
(2007).
On the use of Bayes factor in frequentist testing of a precise hypothesis
.
Communications in Statistics-theory and Methods
,
36
, 2251–2261.
DOI
J. E. Chacón
,
J. Montanero
,
A. G. Nogales
,
P. Pérez
(2007).
On the existence and limit behavior of the optimal bandwidth for kernel density estimation
.
Statistica Sinica
,
17
, 289–300.
DOI
J. E. Chacón
,
J. Montanero
,
A. G. Nogales
(2007).
A note on kernel density estimation at a parametric rate
.
Journal of Nonparametric Statistics
,
19
, 13–21.
DOI
J. E. Chacón
,
J. Montanero
,
A. G. Nogales
,
P. Pérez
(2006).
A note on minimal sufficiency
.
Statistica Sinica
,
16
, 7–14.
DOI
J. E. Chacón
,
A. Rodríguez Casal
(2005).
On the L-1-consistency of wavelet density estimates
.
Canadian Journal of Statistics
,
33
, 489–496.
DOI
Cite
×