

PROGRAMA DE LA ASIGNATURA Probabilidad y Procesos Estocásticos Curso académico 11/12

I dentificación y características de la asignatura							
Denominación	Probabilidad y Procesos Estocásticos Código						
Créditos (T+P)		7.5 (4.5T + 3P)					
Titulación	Licenciatura en Ciencias y Técnicas Estadísticas						
Centro	Facultad de Cienc	cias					
Curso	Primero Temporalio		alidad	Segundo cuatrimestre			
Carácter	Troncal						
Descriptores (BOE)	Espacios de probabilidad. Teoremas Límite. Procesos Markovianos. Aplicaciones.						
Profesor/es	Nombre	Des- pacho	Cor	reo-e	Página web		a web
	Miguel González Velasco	B37	mvelasco	o@unex.es	http://n	natematicas.ı	unex.es/~mvelasco
	Jacinto R. Martín Jiménez	B39	jrmartin@	<u>@unex.es</u>			
Área de conocimiento	Estadística e Investigación Operativa						
Departamento	Matemáticas						
Profesor coordinador (si hay más de uno)	Miguel González	Velasco					

Objetivos y/o competencias

- 1. Conocer, comprender y saber aplicar de modo eficiente los conceptos fundamentales de Modelos Probabilísticos.
- 2. Conocer, comprender y saber aplicar los principales resultados de convergencia de Sucesiones de Variables Aleatorias (Modos de Convergencia, Leyes de los Grandes Números y Teorema Central del Límite).
- 3. Conocer y comprender los conceptos fundamentales relacionados con Procesos Estocásticos.
- 4. Conocer, comprender y saber aplicar de modo eficiente los conceptos fundamentales relacionados con Cadenas de Markov en Tiempo Discreto.
- 5. Conocer, comprender y saber aplicar de modo eficiente los conceptos fundamentales relacionados con Cadenas de Markov en Tiempo Continuo.
- 6. Conocer, comprender y saber aplicar de modo eficiente los conceptos fundamentales relacionados con algunos modelos estocásticos específicos no Markovianos

Temas y contenidos

(especificar prácticas, teoría y seminarios, y actividades en general, en su caso)

TEMARIO

Secuenciación de bloques temáticos y temas

- 1. Espacios de Probabilidad y Variables Aleatorias.
- 1.1 Introducción.
- 1.2 Espacios de Probabilidad.
- 1.3 Variables y Vectores Aleatorios.
- 1.4 Esperanza Matemática. Momentos.
- 1.5 Función Característica. Funciones Generatrices.
 - 2. Sucesiones de Variables Aleatorias. Principales Teoremas Límite.
- 2.1 Introducción.
- 2.2 Modos de convergencia.
- 2.3 Relaciones entre los modos de convergencia.
- 2.4 Convergencia bajo transformaciones.
- 2.5 Leyes de los Grandes Números.
 - 2.5.1 Ley débil de los grandes números.
 - 2.5.2 Ley fuerte de los grandes números.
- 2.6 Teorema Central del Límite.
 - 2.6.1 Caso de variables aleatorias independientes e idénticamente distribuidas.
 - 2.6.2 Caso de variables aleatorias independientes.
 - 3. Introducción a la Teoría de los Procesos Estocásticos.
- 3.1 Introducción.
- 3.2 Definición de Proceso Estocástico.
- 3.3 Distribución de un Proceso Estocástico.
- 3.4 Principales tipos de Procesos Estocásticos.
 - 3.4.1 Proceso de Bernoulli.
 - 3.4.2 Proceso de Poisson.
 - 3.4.3 Movimiento Browniano.
 - 4. Cadenas de Markov en Tiempo Discreto.
- 4.1 Introducción.
- 4.2 Definición de Cadena de Markov en tiempo discreto.
- 4.3 Probabilidades de transición.
- 4.4 Clasificación de los Estados.
- 4.5 Clasificación de las Cadenas de Markov en tiempo discreto.

- 4.6 Distribuciones estacionarias.
- 4.7 Comportamiento asintótico de una Cadena de Markov en tiempo discreto.
- 4.8 Aplicaciones.
- 5. Cadenas de Markov en Tiempo Continuo.
- 5.1 Introducción.
- 5.2 Definición de Cadena de Markov en tiempo continuo.
- 5.3 Matrices de transición. Q-matriz asociada al proceso.
- 5.4 Clasificación de los Estados.
- 5.5 Clasificación de las Cadenas de Markov en tiempo continuo.
- 5.6 Distribuciones estacionarias.
- 5.7 Comportamiento asintótico de una Cadena de Markov en tiempo continuo.
- 6. Aplicaciones de Cadenas de Markov en Tiempo Continuo y Otros Procesos Estocásticos.
- 6.1 Introducción.
- 6.2 Procesos de Nacimiento-Muerte.
- 6.3 Teoría de Colas.
- 6.4 Teoría de Renovación.

METODOLOGÍA Y ACTIVIDADES

Actividades de enseñanza-aprendizaje Descripción y secuenciación de actividades		Tipo	Horas	Tema
1. Presentación del plan docente de la asignatura	GG	C-E(I)	1	1-6
2. Lectura previa del resumen del tema	NP	T(II)	2	1
3. Explicación, discusión y ejemplificación en clase	GG	T(II)	2	1
4. Estudio de los contenidos explicados	NP	T(II)	2	1
5. Realización de una práctica sobre Espacios de Probabilidad y Variables Aleatorias	S	P(IV,V)	3	1
6. Resolución de problemas prácticos sobre Espacios de Probabilidad y Variables Aleatorias	NP	P(IV,V)	3	1
7. Discusión de los resultados obtenidos en la actividad anterior	S	P(IV,V)	1	1
8. Lectura previa del resumen del tema	NP	T(II)	2	2
9. Explicación, discusión y ejemplificación en clase	GG	T(II)	3	2.1-2.4
10. Estudio de los contenidos explicados	NP	T(II)	2	2.1-2.4
11. Explicación, discusión y ejemplificación en clase	GG	T(II)	3	2.5-2.6
12. Estudio de los contenidos explicados	NP	T(II)	1	2.5-2.6
13. Tutorización de los contenidos del tema		T(III)	1	2
14. Realización de una práctica sobre Sucesiones de Variables Aleatorias. Principales Teoremas Límite.		P(IV,V)	4	2
15. Resolución de problemas prácticos sobre Sucesiones de Variables Aleatorias. Principales Teoremas Límite.	NP	P(IV,V)	4	2
16. Discusión de los resultados obtenidos en la actividad anterior	S	P(IV,V)	1	2

EA.				
17. Lectura previa del resumen del tema	NP	T(II)	2	3
18. Explicación, discusión y ejemplificación en clase	GG	T(II)	2	3.1-3.3
19. Estudio de los contenidos explicados	NP	T(II)	1	3.1-3.3
20. Explicación, discusión y ejemplificación en clase	GG	T(II)	2	3.4
21. Estudio de los contenidos explicados	NP	T(II)	2	3.4
22. Tutorización de los contenidos del tema	Tut	T(III)	1	
23. Realización de una práctica sobre Principales Tipos	S	P(IV,V)	2	3
de Procesos Estocásticos		1 (1 , , ,)	2	
24. Resolución de problemas prácticos sobre Principales	NP	P(IV,V)	3	3
Tipos de Procesos Estocásticos	111	1 (1 , , ,)	3	
25. Discusión de los resultados obtenidos en la actividad	S	P(IV,V)	1	3
anterior		- (- · , ·)	•	
*Elaboración de un trabajo por grupos	NP	P	32	1-6
*Tutorización de la actividad anterior	Tut	Р	4	1-6
26. Lectura previa del resumen del tema	NP	T(II)	2	4
27. Explicación, discusión y ejemplificación en clase	GG	T(II)	4	4.1-4.5
28. Estudio de los contenidos explicados	NP	T(II)	3	4.1-4.5
20. Estado de los contendos explicados	111	1 (11)	3	4.1 4.5
29. Explicación, discusión y ejemplificación en clase	GG	T(II)	6	4.6-4.8
30. Estudio de los contenidos explicados	NP	T(II)	3	4.6-4.8
31. Tutorización de los contenidos del tema	Tut	T(III)	1	4
32. Realización de una práctica sobre Cadenas de	S	P(IV,V)	6	4
Markov en Tiempo Discreto		(' ', ' ')		
33. Resolución de problemas prácticos sobre Cadenas de	NP	P(IV,V)	6	4
Markov en Tiempo Discreto		(, ,		
34. Discusión de los resultados obtenidos en la actividad	S	P(IV,V)	2	4
anterior		, ,		
35. Lectura previa del resumen del tema	NP	T(II)	2	5
36. Explicación, discusión y ejemplificación en clase	GG	T(II)	4	5.1-5.3
37. Estudio de los contenidos explicados	NP	T(II)	2	5.1-5.3
20 E I ' ' I ' ' I I' ' I	00	77'(11)		5 4 5 7
38. Explicación, discusión y ejemplificación en clase	GG	T(II)	2	5.4-5.7
39. Estudio de los contenidos explicados	NP	T(II)	1	5.4-5.7
40. Tutorización de los contenidos del tema	Tut	T(III)	<u>l</u>	5
41. Realización de una práctica sobre Cadenas de	S	P(IV,V)	3	5
Markov en Tiempo Continuo	NTD	D/II/II	2	-
42. Resolución de problemas prácticos sobre Cadenas de	NP	P(IV,V)	3	5
Markov en Tiempo Continuo	C	D/IV/ VA	4	_
43. Discusión de los resultados obtenidos en la actividad	S	P(IV,V)	1	5
anterior	NID	TII	1	-
44. Lectura previa del resumen del tema	NP	T(II)	1	6
45. Explicación, discusión y ejemplificación en clase	GG	T(II)	3	6
46. Estudio de los contenidos explicados	NP	T(II)	2	6
47. Tutorización de los contenidos del tema	Tut	T(III)	1	6
48. Realización de una práctica sobre Aplicaciones de	S	P(IV,V)	3	6
Cadenas de Markov en Tiempo Continuo y otros		. ,		
Procesos				
49. Resolución de problemas prácticos sobre	NP	P(IV,V)	3	6
Aplicaciones de Cadenas de Markov en Tiempo				
Continuo y otros Procesos				
50. Discusión de los resultados obtenidos en la actividad	S	P(IV,V)	1	6

anterior				
51. Exposición oral, defensa y evaluación del trabajo por	GG	T-P	2	1-6
grupos				
52. Estudio y preparación del examen final	NP	T-P	20	1-6
53. Examen final	GG	С-Е	4	1-6

RECOMENDACIONES PARA EL ESTUDIO

- Asistencia continuada tanto a las clases de teoría y como a las clases prácticas de problemas.
- Estudio continuado de los contenidos teórico-prácticos desarrollados en el programa de la asignatura a lo largo del curso.
- Consulta de la bibliografía y demás recursos recomendados.
- Asistencia a tutorías.
- Realización de los problemas prácticos solicitados a lo largo del curso.

Criterios de evaluación

- Demostrar la adquisición y comprensión de los principales conceptos teóricos de la asignatura
- Aplicar de manera eficiente los conocimientos teóricos en la resolución de ejercicios y/o problemas
- Aplicar de manera eficiente los conocimientos teóricos en la modelización de problemas prácticos reales.
- Participar activamente en la resolución de problemas (teórico-prácticos) en la clase.
- Realizar, exponer y defender con suficiencia un trabajo práctico propuesto.

Instrumentos

- Registro y valoración de los problemas prácticos realizados por el alumno (10%).
- Elaboración, exposición pública y defensa del trabajo tutorizado (20%). Será necesario realizar esta actividad para aprobar la asignatura.
- Examen final teórico-práctico que constará de varias cuestiones teóricas, ejercicios y/o problemas (70%).

Bibliografía

Bibliografía Básica:

- 1. Billingsley, P. (1986). Meausure and Probability. Second Edition. Springer-Verlag.
- 2. Chung, K.L. (1967). Markov Chains with stationary transition probabilities. Second Edition.

Springer-Verlag.

- 3. Durrett, R. (1999). Essentials of Stochastic Processes. Springer.
- 4. Grimmett, G.R. and Stirzaker, D.R. (1992). Probability and Random Processes. Oxford University Press.
- 5. Karr, A.F. (1993). Probability. Springer-Verlag.
- 6. Kijima, M. (1997). Markov Processes for Stochastic Modelling. Chapman-Hall.
- 7. Quesada, V. y Pardo, L. (1987). Curso Superior de Probabilidades. PPU, Barcelona.
- 8. Ross, S. M. (1989). Introduction to Probability Models. Academic Press.
- 9. Ross, S. M. (1996). Stochastic Processes. Wiley.
- 10. Rohatgi, V.K. (1976). An Introduction to Probability Theory and Mathematical Statistics. Wiley.
- 11. Taylor, H. And Karlin, S. (1994). An Introduction to Stochastic Modelling. Academic Press.
- 12. Vélez, R. e Ibarrola, P. (1977) Procesos Estocásticos. UNED.

http://matematicas.unex.es/~mvelasco/

http://www.mathcs.carleton.edu/probweb/probweb.html

Bibliografía y sitios web complementarios:

- 1. Ash, R.B. (1972). Real Analysis and Probability. Academic Press.
- 2. Karlin, S. And Taylor, H. (1975). A First Course in Stochastic Analysis. Academic Press.
- 3. Karlin, S. And Taylor, H. (1981). A Second Course in Stochastic Analysis. Academic Press.
- 4. Laha, R.G. and Rohatgi, V.K., (1979). Probability Theory. Wiley.
- 5. Tijms, H.C. (2003). A First Course in Stochastic Models. Wiley.

Tutorías					
Prof. M. González	Horario	Lugar			
Primer Cuatrimestre					
Lunes	De 12:00 a 14:00 horas	Despacho B37 Edificio de Matemáticas			
Martes	De 12:00 a 14:00 horas	Cátedra de Bioestadística Facultad de Medicina			
Jueves	De 10:00 a 12:00 horas	Despacho B37 Edificio de Matemáticas			
Segundo Cuatrimestre					
Martes	De 12:00 a 14:00 horas	Cátedra de Bioestadística Facultad de Medicina			
Miércoles	De 12:00 a 14:00 horas	Despacho B37 Edificio de Matemáticas			
Jueves	De 12:00 a 14:00 horas	Cátedra de Bioestadística Facultad de Medicina			

Tutorías					
Prof. J. R. Martín	Horario	Lugar			
Primer y Segundo Cuatrimestre					
Lunes	De 9:00 a 11:00 horas	Despacho B39 Edificio de Matemáticas			
Martes	De 9:00 a 11:00 horas	Despacho B39 Edificio de Matemáticas			
Miércoles	De 9:00 a 11:00 horas	Despacho B39 Edificio de Matemáticas			