
BARSOTTI–TATE GROUPS AND DIEUDONNÉ CRYSTALS

ALEXANDRE GROTHENDIECK
TRANSLATED BY ERIC PETERSON

FOREWORDS

This is an English translation of Grothendieck’s Groupes de Barsotti–Tate et Cristaux de
Dieudonné, published in 1974 by Les Presses de l’Université de Montréal in their Séminaire
de Mathématiques Supérieures sequence. While the French original is actually quite legible
even to an anglophone, I find it preferable to be able to read this interesting lay-of-the-land
document without even the minor distraction of having to mentally pair the cognates
“cohomologie” and “cohomology”. I hope that this translation encourages a wider audience
to become familiar with its contents, rather than (as was the case for me) skimming the
main for the biggest ideas and relegating the rest to a rainy day.

I’ve taken some liberties with the prose, but I’ve done my best to preserve the letter of
the mathematics. Corrections are warmly welcomed at peterson.eric.c@gmail.com.

Eric Peterson

AvertissementThese notes do not include certain material treated by Prof. Grothendieck in his 1970
summer Montreal course. We hope to include in a later edition those materials not
published here.

Among the items omitted here, the first is a chapter intended to cover F –crystals, which
would have been inserted between the final two. As a compromise, one will instead find a
letter from Grothendieck to Barsotti in an appendix at the end of the notes which covers
the intended applications of F –crystals. One may also consult the notes of Demazure
on p–divisible groups [Dem72], here called Barsotti–Tate groups. The second omission
is two other chapters which were to sit at the end of the text and which were to cover
the definition of generalized Dieudonné functors and their relationship with the classical
functors. We will instead refer the reader to the article, presently in preparation, of Mazur
and Messing [MM74].

The existence of these notes is primarily due to the efforts of Monique Hakim and Jean-
Pierre Delale, who drafted the majority of the chapters. We sincerely thank them. We must
also mention that they are not the ones responsible for our incapacity to reproduce all the
materials outlined in the course; we hope nonetheless that these notes, even if incomplete,
will give to readers an introduction to the theory of crystals and to Barsotti–Tate groups.

Finally, we thank Ms. Thérèse Fournier for her excellent work in typing these notes.

J.P. Labute, October 1973

1



2 ALEXANDRE GROTHENDIECK

CONTENTS

Forewords 1
1. Preliminaries on Witt vectors 3
1.1. Reminders on Witt vectors 3
1.2. The ind-schemes cW and cW′ 4
1.3. The ring W 5
1.4. The Frobenius and Verschiebung of a group scheme 7
2. Locally free finite groups and classical Dieudonné theory 8
2.1. General reminders on locally free finite groups 9
2.2. Particular types of groups 11
2.3. Decomposition of a finite locally free p–group over a point s of char. p 13
2.4. Dieudonné theory over a perfect field 14
2.5. Corollaries 17
2.6. Construction of a quasi-inverse to D∗ 18
3. Barsotti–Tate groups 21
3.1. Notation, preliminary definitions, and flatness and representability criteria 21
3.2. Barsotti–Tate groups, in full and truncated at stage n 23
3.3. Facts about Barsotti–Tate groups 25
3.4. Examples and particular types of Barsotti–Tate groups 26
3.5. Composition series of a Barsotti–Tate group 29
4. Crystals 30
4.1. Reminders on divided powers 30
4.2. The crystalline site of a scheme 34
4.3. Relation between crystals and Witt vectors 35
4.4. The case of a perfect scheme 38
4.5. Case of a relatively smooth scheme 42
4.6. Crystals on a scheme over a perfect field of characteristic p 44
4.7. Indications on crystalline cohomology 44
5. Main course 46
5.1. The Dieudonné functor 47
5.2. Filtrations associated to Dieudonné crystals 48
5.3. Admissible F –V –crystals in characteristic p 49
5.4. Deformation theory for abelian schemes 49
5.5. Relations between the two Dieudonné theories 51
6. Infinitesimal properties and deformations of Barsotti–Tate groups 52
6.1. Infinitesimal neighborhoods and formal Lie groups 52
6.2. Results special to characteristic p 54
6.3. Formal Lie groups in characteristic p 57
6.4. The Formal Lie group of a Barsotti–Tate group where p is locally nilpotent 57
6.5. Infinitesimal deformations of Barsotti–Tate groups (announcements) 58
6.6. The relative cotangent complex 58
6.7. Example deformation problems 60
Appendix A. A letter from M. A. Grothendieck to Barsotti 61
References 65



BARSOTTI–TATE GROUPS AND DIEUDONNÉ CRYSTALS 3

1. PRELIMINARIES ON WITT VECTORS

Chapitre I
Preliminaires sur Witt

To lead off, we describe a variety of results stemming from the study of Witt vectors
which will either be of specific use to us later on or which serve as motifs which we will
emulate. Throughout this section, p will denote a fixed prime number.

1. Rappels sur les
vecteurs de Witt

1.1. Reminders on Witt vectors. The schemeW of Witt vectors and the schemeWn of
Witt vectors truncated to order n are certain ring-schemes, each affine over Z. To give
their definitions, let n ≥ 1 be an integer and let En = SpecZ[T1,T2, . . . ,Tn] be affine space
of dimension n over Z. The scheme En represents the functor A 7→ An in the category
of affine schemes in the category of sets. It is thus endowed with a natural structure of
a scheme in rings. We will denote O n the scheme En endowed with this structure. One
then proves [Ser62, Section II.6] that there exists a unique ring scheme structure on En

such that the morphism of schemes

ϕ = (ϕ1,ϕ2, . . . ,ϕn) : E
n→O n ,

ϕi : (x1, x2, . . . , xn) 7→
i
∑

j=1

p j−1x p i− j

j

is a homomorphism of rings.

Definition 1.1.1. Wn is the scheme En endowed with this ring scheme structure.

This definition of the ring (resp. group) structure comes with a universality property:
a map f : X →Wn is a morphism of ring (resp. group) schemes if and only if for every
1≤ i ≤ n, the map ϕi ◦ f : X →O is a homomorphism of rings (resp. of groups). This
entails that the restriction morphisms

Rn : Wn+1→Wn

(x1, . . . , xn , xn+1) 7→ (x1, . . . , xn)

are morphisms of ring schemes, since ϕi Rn = ϕi .

Definition 1.1.2. The ring scheme of Witt vectors is given by

W= lim
�

· · · →Wn+1
Rn−→Wn→ ·· ·

�

.

The scheme underlyingW is, in particular, isomorphic to EN.

2. Quelques mor-
phismes remarquables

2.1

We define two families of maps:

V =Vn : Wn→Wn , T = Tn : Wn→Wn+1,

(x1, x2, . . . , xn) 7→ (0, x1, . . . , xn−1), (x1, x2, . . . , xn) 7→ (0, x1, . . . , xn).

The morphism T is additive, since ϕt T = pϕi−1 for 1≤ i ≤ n+ 1. It follows then that
Vn = RnTn = Tn−1Rn−1 is also an additive morphism.

Definition 1.1.3. Passing to the limit, the morphisms Vn define an additive morphism

V : W→W

called Verschiebung.1
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2.2Definition 1.1.4. The Frobenius F : W→W is defined as the limit of the morphisms

Fn : Wn→Wn ,

(x1, x2, . . . , xn) 7→ (x
p
1 , x p

2 , . . . , x p
n ).

The Frobenius is generally not even additive, but after reducing to characteristic p it
defines a ring homomorphism

FFp
: WFp

→WFp
,

where Fp denotes the prime field Z/pZ andWFp
denotes the schemeW base-changed to

Fp .
We may use these morphisms to study the two composition laws onW:

(x1, x2, . . . , xn , . . .)+ (y1, y2, . . . , yn , . . .) = (S1, S2, . . . , Sn , . . .),

(x1, x2, . . . , xn , . . .) · (y1, y2, . . . , yn , . . .) = (P1, P2, . . . , Pn , . . .),

where Si and Pi are integer-coefficient polynomials in the indeterminates x1, x2, . . . , xi ,
and y1, y2, . . . , yi . Using the fact that FFp

is a ring morphism, for all Fp–algebras we then
have

P (x p , y p ) = [P (x, y)]p .

Proposition 2.3 Proposition 1.1.5 ([Ser62, Section II.6, Corollary of Theorem 7]). In characteristic p, one
has the relations onWFp

:

F ◦V =V ◦ F = p.

Proof. Set
h = (h1, h2, . . . , hn , . . .) = (p −V F )(x1, . . . , xn , . . .).

We know hi ∈ Z[x1, . . . , xi ], and it suffices to show that hi is divisible by p for all i to
prove the proposition. We calculate

ϕi (h) = pϕi (x)−ϕi (V F (x)) = p i xi ,

from which it follows first that h1 = p x1, then that

ϕ2(h) = h p
1 + p h2 = p2x2

where h2 = p(x2 − p p−2x1). Continuing in this manner and inducting on i , one may
deduce that for all i one has hi = pki . �

Remark 1.1.6. From this it follows that p = (0,1,0, . . .) inWFp
.

3. L’ind-schémaW
→

et

l’ind-schémaW
→
′

1.2. The ind-schemes cW and cW′. In addition toW, we may also make the following
dual definition:

Definition 1.2.1. Set cW to be the group ind-scheme

cW= colim
�

· · · →Wn
Tn−→Wn+1→ ·· ·

�

.

1This is also known as the décalage morphism.
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Remark 1.2.2. The underlying ind-scheme in sets is isomorphic to E(N): for all rings A,

cW(A) =A(N) = {(x1, x2, . . . , xn , . . .) ∈AN | xi = 0 except for finitely many indices}.

However, the additive structure of cW is not the usual structure on E(N).

There is a second inductive system given by interleaving the above with the Frobenius:

· · · →Wn
Tn Fn−−→Wn+1→ ·· · .

Using the identity Tn Fn = Fn+1Tn , we find the two systems to be related by

· · · Wn Wn+1 · · ·

· · · Wn Wn+1 · · · .

Tn

F n−1
n F n

n+1

Tn Fn

Definition 1.2.3. Set cW′ to be the ind-scheme

cW′ = colim
�

· · · →Wn
Tn Fn−−→Wn+1→ ·· ·

�

.

Remark 1.2.4. In characteristic 0, cW′ does not have a natural group structure, but in
characteristic p, cW′ is an ind-scheme in groups, and there is an additive homomorphism

u : cWFp
→cW′Fp

induced by the above map of systems. Note further that in characteristic p, the transition
morphisms T F in this second system are actually multiplication by p, since

T F R= F T R= F V = p.

Remark 1.2.5. If A is a perfect ring of characteristic p, then u induces an isomorphism

u(A) : cWFp
(A)→cW′Fp

(A)

because the same is true for each Fn(A).

4. L’anneau W

4.1

1.3. The ring W . In the case of a perfect field k of positive characteristic p, the k–points
ofW are of particular interest. In this setting, the ring

W =W(k) = lim
n

Wn = lim
n
Wn(k)

is a complete discrete valuation ring with residue field k and uniformizer p = (0,1,0, 0, . . .),
and there is an augmentation homomorphism given by the canonical projection W →
W1 = k [Ser62, Theorem II.6.7]. One may show that these properties characterize the
ring W up to unique isomorphism as the initial such ring [Ser62, Theorem II.5.3].2

Additionally, its fraction field K =W [1/p] is of characteristic zero.
The k–points of the dual construction are also of interest. Since k is perfect, the

homomorphism u defines an isomorphism of groups

u(k) : cW(k)→cW′(k).

2This result is sometimes known as “Cohen’s theorem”.
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The natural projection πn : W →Wn then defines an isomorphism

εn : W /pnW
∼−→Wn ,

and these participate in a commutative diagram

W W

W /pnW W /pn+1W

Wn Wn+1.

p=V F

πn πn+1
p

∼
εn

∼
εn+1

T F=F T

Using the natural isomorphism of W –modules

colim
�

· · · →W /pnW
p
−→W /pn+1W → ·· ·

�

=K/W ,

one deduces that cW′(k) is isomorphic to the dualizing module K/W . Since K/W is a
W –module and u is an isomorphism, we may inherit a W –module structure on cW (k) by
transport of structure.

Proposition 4.2 Proposition 1.3.1. This extends uniquely to an action of the ring of operators W on the
ind-scheme in groups

cWk = colim
�

· · · → (Wn)k
T−→ (Wn+1)k → ·· ·

�

by letting λ ∈W act on (Wn)k by multiplication by F 1−n(λ).

Proof. First, note that the element F 1−n(λ) ∈W is well defined: since k is perfect, F : W →
W is an isomorphism. Then, for a k–algebra A, we use the structure map k→A to induce
a map

W =W(k)
πn−→Wn(k)→Wn(A)

which allows us to interpret “multiplication by F 1−n(λ)” onWn(A), if not yet on cWk (A).
In order to extend this action tocWk , we must show that the action of λ ∈W commutes

with the morphisms T in the defining system. It suffices to show for V x ∈Wn(A) and
V λ′ ∈Wn+1(A) that

λ′T (x) = T (F R(λ′)x)

or, using the fact that R is a surjection, for V λ′, y ∈Wn+1(A) that

λ′V (y) =V (F (λ′)y).

Consider first the case that A is a perfect ring. In this setting, F is an isomorphism, and
so this relation follows from

F (λ′V (y)) = F (λ′)F V (y) = F (λ′)p y = p[F (λ′)y] = F V [F (λ′)y].

In the general case, note that λ′V (y) and V (F (λ′)y)may be expressed using polynomials
with coefficients in Z/pZ. If the variables take values in a perfect ring (e.g., the algebraic
closure of k), these polynomials evaluate the same, and from this we deduce that they are
equal in general.
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Finally, we must show that this action on cWk agrees with the previously defined action
on cW(k). One simply traces this through: using the isomorphisms

Wn
F n−1

−−→Wn
εn←−W /pnW ,

multiplication by F 1−n(λ) onWn(k) =Wn induces multiplication by λ on W /pnW .
This additionally proves the unicity of the structure on cWk . �

Remark 1.3.2. In general, there is not an action of the ring-schemeWk on cWk , only of
the ring W .

Remark 1.3.3. This construction is functorial in k and is valid for all perfect rings A (but
W(A) is not in general a discrete valuation ring).

5. Les morphismes
de Frobenius et de
Verschiebung d’un
schéma en groupes

1.4. The Frobenius and Verschiebung of a group scheme. In this section, we will
suppose that all schemes are lie over the prime field Fp .

5.1

Definition 1.4.1. For X an Fp–scheme, we define the absolute Frobenius on X

fX : X →X

to be the endomorphism of X which is the identity on the underlying space and which
sends a section s ∈ OX to the section s p .

Remark 1.4.2. For Y another scheme and g : X → Y a morphism, the following square
commutes:

X X

Y Y.

fX

g g

fY

One may thus think of f as an endomorphism of the identity functor on SchemesFp
.

5.2Definition 1.4.3. We may also consider a relative version of this construction by taking
S to be a base Fp–scheme and X to be an S–scheme. Denote by X (p/S), or simply by
X (p), the S–scheme given by the inverse image of X along the base-change map induced
by fS : S → S. Using the diagram above, there exists a unique arrow fX /S such that the
following diagram commutes:

X

X (p) X

S S.

fX /S
fX

fS

We name the morphism fX /S the relative Frobenius of X over S.

Remark 1.4.4. The assignment X 7→ fX /S determines a natural transformation from the
identity functor on SchemesS to the functor X 7→X (p/S). As this latter functor commutes
with finite projective limits, if X is an S–group then so is X (p/S), and fX /S is additionally a
group morphism.
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Remark 1.4.5. The construction of X (p/S) commutes with change of base: for all mor-
phisms T → S, we have

(X ×S T )(p/T ) ∼=X (p/S)×S T .

If S is the spectrum of the prime fieldFp , then we recover the absolute notions: X (p/S) =X
and fX /S = fX .

5.3 Definition 1.4.6 ([SGA72, VIIA, 4.2–3]). Let G be a flat commutative group scheme. It is
known that, functorially in G, there exists a canonical morphism of groups vG : G(p/S)→
G called the Verschiebung homomorphism of G over S . This construction has the following
properties:

fG/S ◦ vG = p, vG ◦ fG/S = p.

Remark 1.4.7. In many cases, the second formula suffices for calculating vG , as we now
describe. If G is smooth, then fG/S is a epimorphism. Moreover, if H embeds in a smooth
group G, vH is also determined because it is induced by vG . The majority of groups which
we will consider are finite and locally free over the base, and we will show later that they
embed canonically into a smooth group, and hence we may use the explicit presentation
of fG/S to calculate vG .

Remark 1.4.8. Not only is the morphism vG functorial in G, but it also commutes with
change of base. It also specializes to a previously discussed concept: for S = Spec(Fp ) and
G is the groupW of Witt vectors, the Frobenius and Verschiebung morphisms coincide
with those given in Section 1.1.

5.4 Before moving on, we also consider the effect of iterating these constructions. For
every n ≥ 1, there are schemes

X (p
n ) =X (p

n/S) = [X (p
n−1/S)](p/S),

which come equipped with an nth iterated relative Frobenius

fn
X /S : X

fX /S−→X (p)
f

X (p)/S−−→X (p
2)→ ·· ·

f
X (p

n−1/S)
−−−−→X (p

n ).

Similarly, if G is a flat commutative group scheme over S, we set the nth iterated Ver-
schiebung vn

G to be the composite

vn
G : G(p

n )
v

G(p
n−1)

−−−→G(p
n−1)→ ·· ·

vG−→G.

We then have the following analog of the above relations:

vn
G ◦ fn

G/S = pn , fn
G/S ◦ vn

G = pn .

In the non-relative case where the base S is the spectrum of the prime field Fp , these are
the iterated composites of fG/S and vG in the usual sense.

2. LOCALLY FREE FINITE GROUPS AND CLASSICAL DIEUDONNÉ THEORY

II. Groupes finis
localement libres et
theorie classique de
Dieudonné

In all that follows, all groups are commutative unless otherwise stated.
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1. Rappels généraux
sur les groupes finis lo-
calement libres

1.1

2.1. General reminders on locally free finite groups. Select a base scheme S, and let
G be a finite and locally free group scheme over S. Concretely, the scheme G may be
presented as G = SpecA, where A is a finite, locally free, quasicoherent OS–algebra, and
the group structure of G is described on A by homomorphisms of OS–algebras

∆ : A→A⊗OS
A, I : A→A, ε : A→OS

where∆, I , and ε respectively correspond to the composition law, the inversion, and to
the unit section. These morphisms satisfy various relations expressing assocativity and so
on. For example, these relations show that∆ intertwines with the algebra structure of A to
form a bialgebra. As a matter of terminology, the kernel J of ε is called the augmentation
ideal of the group G.

1.2Definition 2.1.1. For s ∈ S, we will refer to the rank of A⊗OS
k(s) over the residue

field k(s) as the rank of G over s . Considered as a function of s , the rank of G is locally
constant. If the rank is actually constant and equal to n, we say that G is a group of rank
n over S.

1.3. Exemples de
groupes finis locale-
ment libres

1.3.1

Example 2.1.2. Given an (abstract) group G of order n, we define Gn to be the constant
sheaf on S whose S ′–sections for S ′ an S–scheme is given by

GS (S
′) =G.

This sheaf is in fact a scheme, and GS is moreover a free group scheme of rank n over S
whose affine algebra is isomorphic to O n

S .

1.3.2Example 2.1.3. LetGm |S be the multiplicative group over S , defined for any S–scheme S ′

by
Gm |S (S

′) = Γ (S ′,OS ′)
∗.

For each n ≥ 1, there is a homomorphism

n : Gm |S →Gm |S ,

x 7→ xn .

We define µn |S , the group of nth roots of unity over S , to be the kernel of this homomor-
phism. This is a finite free group of rank n over S whose affine algebra is isomorphic to
OS[T ]/(T

n − 1).

1.3.3Example 2.1.4. LetGa |S be the additive group over S, defined for an S–scheme S ′ by

Ga |S (S
′) = Γ (S ′,OS ′).

If S is a scheme over the prime field Fp , then there is a Frobenius homomorphism

F : Ga |S →Ga |S ,

x 7→ x p .

We define αp |S to be the kernel of F , which is a finite free group of rank p over S, with
affine algebra isomorphic to OS[T ]/T p .

1.4. Dualité de CartierWe now describe a variant of Pontryagin duality for group schemes.
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Definition 2.1.5. For a commutative group S–scheme G, we define its Cartier dual to be

G∗ = GroupSchemes/S (G,Gm |S ).

This construction defines a contravariant endofunctor of GroupSchemes/S which com-
mutes with changes of base.

If G = Spec(A) is finite and locally free over S, this functor is given by linear duality:
G∗ = Spec(A∨)with A∨ =ModulesOS

(A,OS ), where the bialgebra structure on A∨ is defined
using the transposes of the morphisms ∆ and µ of Section 2.1 [SGA72, VIIA.3.3.1]. It
follows that G∗ is also a finite locally free group over S and of the same rank as G. Moreover,
in this same setting the isomorphism A∼= (A∨)∨ induces an isomorphism

G
∼−→ (G∗)∗,

from which it follows that Cartier duality restricts to an antiequivalence of the category
of finite locally free groups in S–schemes with itself.

Remark 2.1.6 ([SGA72, VIIA.4.3.3]). When S is an Fp–scheme, we defined in Section 1.4
the group scheme G(p/S), the relative Frobenius morphism fG/S , and the Verschiebung
vG . If G is finite locally free over S, then G(p/S) is as well, and one may then show that
Cartier duality exchanges the relative Frobenius and Verschiebung morphisms:

(vG)
∗ = fG∗/S , (fG/S )

∗ = vG∗ .

1.5. Exemples Example 2.1.7. Let GS be the finite group over S attached to a finite (abstract) group S
as in Example 2.1.3. One verifies easily that the affine algebra of (GS )

∗ is isomorphic to
OS[G], the group–algebra of G over OS , with diagonal induced by the diagonal function
G→G×G. Picking G =Z/nZ, we may explicitly compute

(Z/nZ)∗S =µn |S

at the level of affine algebras, though this also follows directly from the definitions. In
characteristic p, one may moreover show

(αp |S )
∗ = αp |S .

1.6. Quotients de
groupes finis locale-
ment libres

Definition 2.1.8 ([SGA72, V.4.1]). Let µ : G′→G be a monomorphism of finite locally
free group schemes over S , and let G′′ =G/G′ be the quotient sheaf for the fppf topology,
so that there is an exact sequence of sheaves

0→G′
µ
−→G

π−→G′′→ 0.

One may prove that G′′ is itself representable by a finite locally free group scheme over
S, giving rise to a notion of quotient group scheme. The morphism π can be shown to be
faithfully flat, from which it follows that G is finite and locally free over G′′, of relative
rank equal to the rank of G′. In terms of absolute ranks, this gives the equality

rank(G) = rank(G′) · rank(G′′).

Remark 2.1.9. Suppose that we have an exact sequence of sheaves as above and that G′

and G′′ are representable by finite locally free group schemes over S . It can be shown that
G is then also so-representable, i.e., an extension of finite locally free groups is again finite
and locally free.
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1.7 Definition 2.1.10. For ` a prime number, the `–primary component of a group G over S
is the largest subgroup of `–torsion in G:

G(`) = colim
�

· · · →G
`n

−→G→ ·· ·
�

.

Remark 2.1.11 ([SGA72, VIII.7.3]). If G is finite and locally free over S , one may prove that
G is locally annihilated by an integer n. It follows that each of its `–primary components is
locally annihilated by a power of `, i.e., G(`) is an `–group, and that G admits a canonical
decomposition (as an fppf sheaf) into its `–primary components:

G =
∐

`

G(`).

It follows that each G(`) is finite and locally free, since it appears as a direct factor in
such a group. If S is quasicompact, G is then annihilated by a fixed integer n, and this
decomposition is finite.

In the remainder of these lectures, we will primarily concern ourselves with groups for
which we have G =G(p), i.e., finite locally free groups over S which are locally annihilated
by a power of p. Note that if G is such a p–group, its dual G∗ is also a p–group.

2. Types particuliers
de groups

2.1

2.2. Particular types of groups. Let G be a finite locally free group over any base S.

Definition 2.2.1. We set out the following various subclasses of groups.

2.1.1

One says that G is infinitesimal3 (over S) if any of the following conditions is met:
• The augmentation ideal J of G is locally nilpotent.
• For all s ∈ S, Gs is connected.
• For all s ∈ S, Gs does not contain an isolated point.
• For all s ∈ S, Gs does not contain an isolated point.4

2.1.2One says that G is étale over S if any of the following conditions is met:
• The structure morphism G→ S is étale.
• For all s ∈ S, Gs is étale over the residue field k(s).
• For all s ∈ S, Gs is reduced.
• G is locally (for either the étale topology or the fppf topology) isomorphic to a

constant group.

2.1.3One says that G is unipotent if G∗ is infinitesimal.5

2.1.4
One says that G is of multiplicative type over S if any of the following conditions is met:
• G∗ is étale.
• For all s ∈ S, Gs is of multiplicative type.
• Locally in the étale topology, G embeds into (Gm |S )r .

2.1.5One says that G is bi-infinitesimal over S if it is both infinitesimal and unipotent (i.e.,
both G and G∗ are infinitesimal).

2.2Proposition 2.2.2. Suppose that the base scheme S be an Fp –scheme, that G is étale, and that
G is locally annihilated by a power of p. The dual group G∗ is then infinitesimal.

3Some authors call this property radical instead.
4Here Gs denotes the geometric fiber of G over s .
5See [SGA72, XVII] for a general definition of a unipotent group.
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Proof. Because G is étale, the fiber Gs over a point s ∈ S is isomorphic to the constant
group G(k)k , where k denotes the algebraic closure of the residue field at s . Following
Example 2.1.7, the affine algebra of (Gs )

∗ = (G∗)s may be identified with the algebra
k[G(k)] of the group G(k). Using this presentation, the fact that G(k) is annihilated by a
power of p, and the fact that k is of characteristic p, one verifies that the ideal I given by

I =

*

∑

g∈G(k)

λg g

�

�

�

�

�

�

∑

g
λg = 0

+

≤ k[G(k)]

is maximal and nilpotent. This shows (G∗)s to be reduced at a point, hence G∗ is infinites-
imal. �

Corollary 2.2.3. Over a base of characteristic p, all p–groups of multiplicative type are
infinitesimal. �

2.3 Remark 2.2.4. For an exact sequence of finite locally free group schemes:

0→G′
µ
−→G

π−→G′′→ 0,

G is infinitesimal (resp. étale, resp. unipotent, resp. of multiplicative type, resp. bi-
infinitesimal) if and only if G′ and G′′ are infinitesimal (resp. étale, resp. unipotent, resp. of
multiplicative type, resp. bi-infinitesimal). By reducing to the case where S is the spectrum
of an algebraically closed field, one easily checks this assertion in the infinitesimal and
étale cases; the others then follow by Cartier duality.

2.4. Exemples de p–
groupes en caractéris-
tique p

Example 2.2.5. The group scheme is (Z/pZ)S is étale over S, and µp |S = (Z/pZ)∗S is
thus of multiplicative type. On the other hand, the self-dual group αp |S = (αp |S )∗ is bi-
infinitesimal. Of these three groups, αp |S and (Z/pZ)S are the unipotent groups, whereas
the infinitesimal groups are αp |S and µp |S .

Our interest in these three particular examples stems from the following result:

Proposition 2.2.6. Let S be the spectrum of an algebraically closed field of characteristic p,
and let G be a finite group scheme over S which is annihilated by a power of p. There is then
a finite composition series

G ⊃G0 ⊃G1 ⊃G2 ⊃ · · · ⊃Gn−1 ⊃Gn = 0

where each stratum Gi/Gi+1 is isomorphic to one of the groups αp , µp , or Z/pZ. �

Corollary 2.2.7 ([SGA72, XVII.1.7 and 4.2.1]). A group scheme G in the above setting is
infinitesimal (resp. étale, resp. unipotent, resp. of multiplicative type, resp. bi-infinitesimal) if
and only if each of the factors Gi/Gi+1 in the above composition series is isomorphic to αp or
µp (resp. Z/pZ, resp. Z/pZ or αp , resp. µp , resp. αp ). �

While useful, the composition series is not the only way to determine these types. They
may also be read off from the relative Frobenius and Verschiebung as follows:

2.5 Theorem 2.2.8. Let S be an Fp –scheme, and let G be a finite locally free group over S with
relative Frobenius and Verschiebung maps fG/S and vG (cf. Section 1.4). Then:

(1) G is infinitesimal if and only if fG/S is locally nilpotent.
2.5.1–5
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(2) G is unipotent if and only if vG is locally nilpotent.
(3) G is bi-infinitesimal if and only if both fG/S and vG are locally nilpotent.
(4) G is étale if and only if fG/S is an isomorphism.
(5) G is of multiplicative type if and only if vG is an isomorphism.

Proof (sketch). It suffices to prove the interpretations for infinitesimal and étale, since the
others may then be deduced by Cartier duality.

Infinitesimal: We begin by considering G as a pointed scheme via its unit section
ε : S → G. The “kernel” of fn

G/S (i.e., the fiber of fn
G/S over ε) is defined by the

ideal Jn generated by the image of the augmentation ideal J through the morphism
F n : x 7→ x pn

. Since G is of finite type, we may then suppose that J has fewer than
pk generators for some k, hence

J pn+k ⊂ Jn .

The Jn then form a cofinal subsystem of J pn
, and we deduce that fG/S is locally

nilpotent if and only if J is locally nilpotent. For a finite locally free group over S ,
this is equivalent to being infinitesimal.

Étale: One may show in a general manner [SGA72, XIV] that if G is of locally finite
presentation over S, then fG/S is an isomorphism if and only if G is étale. �

3. Décomposition
d’un p–groupe fini lo-
calement libre sur une
base de caractéristique
p réduite à un point s

2.3. Decomposition of a finite locally free p–group over a point s of char. p.

3.1

Definition 2.3.1. Functorially in finite locally free groups G over S , there is a “connected-
étale” exact sequence:

0→G◦→G→Gét→ 0.

The group scheme G◦ is the connected component of G, and Gét is defined by Gét =G/G◦.
Since the subgroup G◦ is open in G [SGA72, VIB .3.9], it is thus finite and locally free
over S, and it in fact is the largest infinitesimal subgroup of G. The quotient group Gét

is étale [SGA72, VIA.5.5], and it is finite and locally free over S (cf. Definition 2.1.8).
Applying the same construction to G∗, one obtains a subgroup Gmult = (G∗/(G∗)◦)∗,
which is the largest subgroup of multiplicative type of G.

Remark 2.3.2. If k(s) is of characteristic p and if G is annihilated by a power of p, then
Proposition 2.2.2 shows Gmult to be infinitesimal, and we therefore have inclusions

0⊂Gmult ⊂G◦ ⊂G,

where G/G◦ =Gét is étale and where G◦/Gmult is bi-infinitesimal (because it is a quotient
of an infinitesimal group and its dual is identified with ((G◦)∗)◦). This composition series
is functorial in G, and it commutes with finite products.

3.2Remark 2.3.3. If S is the spectrum of a perfect field of characteristic p, the canonical
projection G→Gét induces an isomorphism Gred→Gét and the connected-étale exact
sequence therefore splits canonically [SGA72, XVII.1.6], i.e.,

G =G◦×Gét.

By the same token, the exact sequence

0→Gmult→G◦→G◦/Gmult→ 0
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is split because the dual is. One thus obtains a canonical decomposition, functorial in G:

G =Gmult×Gbi×Gét,

where Gmult, Gbi, and Gét are respectively of multiplicative type, bi-infinitesimal, and
étale. The unipotent part of G is thus Gbi×Gét and the infinitesimal part is Gmult×Gbi.

Corollary 2.3.4. For G a group scheme over S the spectrum of a perfect field of characteristic
p, there are the following equivalences:

• G is infinitesimal if and only if Gét = 0.
• G is étale if and only if Gmult =Gbi = 0.
• G is unipotent if and only if Gmult = 0.
• G is bi-infinitesimal if and only if Gmult =Gét = 0.
• G is of multiplicative type if and only if Gbi =Gét = 0. �

3.3 Remark 2.3.5. Over a perfect field, there is a well-known presentation of the category
of finite étale p–group schemes as the category of (abstract) finite p–groups on which
the fundamental group π1(k) =Gal(k/k) acts [Dem72]. Both sides of this equivalence
participate in dualities:

• By Cartier duality, the category of finite p–group schemes of multiplicative type
is equivalent to the opposite category of finite étale p–groups.
• By Pontryagin duality, the category of finite p–groups on which π1(k) acts is

equivalent to its opposite.
From these, one deduces a new equivalence between the category of finite p–group schemes
of multiplicative type and the category of (abstract) finite p–groups on which π1(k) acts.

4. Théorie de
Dieudonné sur un
corps parfait

4.1

2.4. Dieudonné theory over a perfect field. Let k be a perfect field of positive charac-
teristic p and let GroupSchemes

p,fin
/k be the category of finite group k–schemes which are

annihilated by a power of p. The goal of Dieudonné theory is to establish an antiequiva-
lence between this category and a certain module category which we will now define.

Definition 2.4.1. The Dieudonné ring D is the noncommutative ring W [F ,V ] generated
over the local ring W =W (k) (cf. Section 1.3) by the indeterminates F and V , subject to
the following relations:

Fλ= λσF , λV =V λσ , F V =V F = p,

for all λ ∈W and where λσ denotes the image of λ under the Frobenius morphism of W .

Definition 2.4.2. The category of Dieudonné modules is the category ModulesD;W l.f. of left
D–modules such that the underlying W –module is of finite length. In particular, such a
module is annihilated by a power of p.

Remark 2.4.3. An object of ModulesD;W l.f. may be equivalently expressed as a W –module
M of finite length equipped with two W –linear morphisms

FM : M σ →M , VM : M →M σ ,

where M σ denotes M with the W –module structure first twisted by the Frobenius σ , and
where FM and VM additionally satisfy

FM VM = p, VM FM = p.
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Théorème 4.2 Theorem 2.4.4 (Dieudonné). There is an equivalence of categories

D∗ : (GroupSchemes
p,fin
/k )

op '−→ModulesD;W l.f..

This equivalence interacts with the object-level Frobenius by

(D∗(G))σ ∼=D∗(G(p))

and with the Frobenius and Verschibung morphisms by

D∗(fG/k ) = FD∗(G), D∗(vG) =VD∗(G).

Corollaire 4.2.1Corollary 2.4.5. One has the following equivalences:

• G is infinitesimal if and only if F is a nilpotent operator on D∗(G).
• G is unipotent if and only if V is a nilpotent operator on D∗(G).
• G is bi-infinitesimal if and only if both F and V are nilpotent operators.
• G is étale if and only if F is invertible on D∗(G).
• G is of multiplicative type if and only if V is invertible on D∗(G). �

Construction of the functor from Theorem 2.4.4. For a complete proof of Theorem 2.4.4,
we refer to Gabriel and Demazure [DG70]; here we merely construct D∗ itself. In view
of Remark 2.3.3, we observe that the category GroupSchemes

p,fin
/k is equivalent to the

product of the full subcategories spanned by those objects which are unipotent and those
which are of multiplicative type. It thus suffices to construct D∗ separately on these two
subcategories.

4.3. Cas des groupes
unipotents

4.3.1

Construction of D∗ on unipotent groups. For every unipotent group over k, we set

D∗(G) = Groups/k (G,cW).

We know that W acts on cW (cf. Proposition 1.3.1) and that D∗(G) is a W –module of
finite length. The action of F and V on D∗(G) are defined for u ∈D∗(G) by

F u = F
cW ◦ u, V u =V

cW ◦ u,

where F
cW and V

cW are the Frobenius and Verschiebung endomorphisms of cW, defined by
passing to the limit of the corresponding morphisms onWn . By reviewing the definition
of the action of W on cW and using the properties of F

cW and V
cW, one finds that these

actions make D∗(G) into a D–module.
4.3.2We must now check that this definition of D∗ satisfies the desired properties: there

should be an isomorphism
D∗(G(p)) ∼−→ (D∗(G))σ

such that

D∗(fG/k ) = FD∗(G), D∗(vG) =VD∗(G).

Since k is perfect, change of base along the isomorphism σ : k → k induces a σ–linear
isomorphism

GroupSchemes(G,W) ∼−→ GroupSchemes(G(p),W(p)).
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However, because cW was defined over the prime field Fp and because the formation of
cW(p) commutes with change of base, we also have cW(p) =cW. On the other hand,

D∗(fG/k ) : GroupSchemes(G(p),cW)→ GroupSchemes(G,cW)
u 7→ u ◦ fG/k

is identified with FD∗(G) because u ◦ fG/k = f
cW ◦ u, and f

cW is identified with F
cW by

Remark 1.4.8. The assertion for D∗(vG) is established similarly. �

If G is unipotent, it follows from Theorem 2.2.8 that vG is nilpotent, and hence VD∗(G)
is nilpotent as well. More generally, one may show that D∗ defines an equivalence between
the category of affine unipotent p–group schemes over k and the category of D–modules
on which V is locally nilpotent, as in the following:

Corollaire 4.3.3 Corollary 2.4.6. There are equivalences of categories:
�

finite unipotent
p–groups over k

�op
D∗−→
�

subcat. of ModulesD;W l.f.
where V is nilpotent

�

,

�

finite étale
p–groups over k

�op
D∗−→
�

subcat. of ModulesD;W l.f.
where F is an iso.

�

,

�

finite bi-infinitesimal
p–groups over k

�op
D∗−→
�

subcat. of ModulesD;W l.f.
where F and V are nilpotent

�

.

Proof. Couple the preceding description of F and of V to Theorem 2.2.8. �

4.4. Cas des groupes
de type multiplicatif

Construction of D∗ on groups of multiplicative type. We would like to construct an equiv-
alence of categories

�

finite multiplicative-type
p–groups over k

�op
D∗−→
�

subcat. of ModulesD;W l.f.
where V is an iso.

�

.

The category on the right is equivalent to the category of W –modules of finite length
endowed with a W –linear isomorphism V : M →M σ .6 Using the invertibility of V , one
may instead present this as the category of W –modules of finite length endowed with an
isomorphism V −1 : M σ →M . This second category is antiequivalent via Corollary 2.4.6
to the category of finite étale p–group schemes over k, which is itself antiequivalent, by
Cartier duality, to the category of finite p–group schemes of multiplicative type over k.
To obtain the desired functor D∗ as the composite of all these equivalences with the correct
variance, we additionally insert the Pontryagin auto-antiequivalence of the category of
finite étale p–group schemes:

G 7→ GroupSchemes(G,Qp/Zp ).

This situation is recorded in the following diagram:

6The morphism F is then uniquely determined by the relation F V = p.
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�

finite p–groups
of multiplicative type

�op �

full subcat. of ModulesD;W l.f.
where V is invertible

�

�

étale
finite p–groups

� �

W –modules of finite length
with an isomorphism V : M →M σ

�

�

étale
finite p–groups

�op �

full subcat. of ModulesD;W l.f.
where F is invertible

�

.

D∗

Cartier duality

Pontryagin duality

D∗

�

4.5. Cas généralConclusion of Proof of Theorem 2.4.4. If G is any finite p–group, Remark 2.3.3 gives

G =Guni×Gmult,

where Guni and Gmult are respectively unipotent and of multiplicative type. Using this,
we set

D∗(G) =D∗(Guni)×D∗(Gmult).

Theorem 2.4.4 will then be proven if this determines an equivalence of categories

ModulesD;W l.f.
D∗−→
�

full subcat. of ModulesD;W l.f.
where V is nilpotent

�

×
�

full subcat. of ModulesD;W l.f.
where V is invertible

�

.

LemmeThis results from the following fact: all D–modules M of finite length over W decom-
pose uniquely (and functorially) as a direct sum

M =M ′×M ′′

such that V |M ′ is nilpotent and V |M ′′ is bijective. To see this, take N � 0 such that
⋃

n≥0

KerV n =KerV N ,
⋂

n≥0

ImV n = ImV N .

The map V |KerV N is then evidently nilpotent, V |ImV N is bijective, and

M =KerV N ⊕ ImV N . �

5. Corollaires et com-
pléments

2.5. Corollaries.

Corollaire 5.1

Corollary 2.5.1. The functor D∗ commutes with changes of base along perfect extensions K
of k: for an object G ∈ GroupSchemes

p,fin
/k , there is a functorial isomorphism

D∗(GK )
∼←−W (K)⊗W (k) D∗(G).

Proof, after Oda and Oort. There is an evident morphism. To see that it is an isomor-
phism, it suffices to consider the case where G is unipotent. By considering the composi-
tion series formed by Imvn

G ⊂G, we further reduce to the case where vG = 0.
For such a group G, we have

D∗(G) = GroupSchemes(G,cW) = GroupSchemes(G,Ga).
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On the other hand, there is an isomorphism

GroupSchemes(G,Ga)∼=Ker
�

H 0(G,OG)
∆∗−π∗1−π

∗
2−−−−−→H 0(G,OG)⊗k H 0(G,OG)

�

where ∆ : G×G→G denotes multiplication on G. By base change along k→ K , one
has an analogous isomorphism, from which the corollary follows. �

Corollaire 5.2 Corollary 2.5.2. For G a finite p–group scheme over k,

rank(G) = p lengthW (D
∗(G)).

Proof. It again suffices to consider the case where G is unipotent, and by Corollary 2.5.1
we may take k to be algebraically closed. Using this setting to apply Proposition 2.2.6, we
see that G admits a composition series without Z/pZ and αp . By establishing

D∗(αp ) = k =W /pW (with F =V = 0),

D∗(Z/pZ) = k =W /pW (with V = 0, F (λ) = λp),

the formula may be verified. �

5.3. Remarques

5.3.1

Remark 2.5.3. Formal groups and Barsotti–Tate groups can be considered as inductive
limits of finite p–group schemes, and by applying the Dieudonné functor to such a system
we find a projective limit of D–modules of finite length over W . Passing from the system
to its limit, we will later show (see Theorem 3.3.9) that there is an equivalence between
the category of Barsotti–Tate groups over k and the category of D–modules which are
free and of finite type over W .

5.3.2 Remark 2.5.4. For G a finite p–group scheme over k, there is a natural isomorphism of
D–modules

D∗(G∗) ∼−→ModulesW (D
∗(G),K/W ),

where K/W denotes the dualizing module of W (cf. Gabriel and Demazure [DG70]). The
D–module structure on the right-hand side is defined for all α ∈ModulesW (D

∗(G),K/W )
and x ∈D∗(G) by

Fα(x) = [α(V (x))]σ , V α(x) = [α(F (x))]σ
−1

.

6. Annexe: Construc-
tion du foncteur quasi-
inverse de D∗

2.6. Construction of a quasi-inverse to D∗. As an extended aside, we will now give an
explicit construction of a quasi-inverse to the equivalence D∗. Reviewing the construction
above, it will suffice to focus on Section 2.4 and to construct a quasi-inverse for the
restricted functor

D∗ :
�

unipotent
finite p–groups

�op

→
�

full subcat. of ModulesD;W l.f.
where V is nilpotent

�

.

In particular, we will construct a functor which we will show to be a left-adjoint to D∗;
because D∗ is an equivalence, it will then follow that we have constructed a quasi-inverse.

6.1 Let M be a D–module of finite length over W , and suppose that V is nilpotent on M .
We define a functor E(M ) from schemes over k to groups by

E(M )(S) =ModulesD (M ,cW(S)).

Our goals are to demonstrate that E(M ) is represented by a finite unipotent p–group and
to demonstrate that the functor E itself is left-adjoint to D∗.

6.2. E(M ) est
représentable par
un schéma affine



BARSOTTI–TATE GROUPS AND DIEUDONNÉ CRYSTALS 19

We begin by showing that E(M ) is, in fact, an affine scheme.

Definition 2.6.1. Choose N � 0 such that V N+1|M = 0, and consider the polynomials PN
and SN which respectively define the last coordinate of multiplication and of addition on
WN+1.7 We then define AM to be the quotient k–algebra of k[Tx , x ∈M ] by the following
relations:

(1) TF (x) = T p
x .

(2) Tx+y = SN (TV N (x), . . . ,Tx ;TV N (y), . . . ,Ty ).

(3) Tλx = PN (λ
p−N

1 ,λp−N

2 , . . . ,λp−N

N+1;TV N (x), . . . ,Tx ).

Lemma 2.6.2. The functor E(M ) is represented by Spec(AM ).

Proof. Since we have chosen N � 0 such that V N+1|M = 0, it follows that for any choice
of x ∈ M and u ∈ ModulesD(M ,cW(S)), we have V N+1(u(x)) = 0. Any particular such
element u(x) ∈cW(S) comes from the image of (y1, y2, . . . , yr ) ∈Wr (S) in the inductive
system defining cW(S), and the identity V N+1(y1, . . . , yr ) = 0 then forces y1 = y2 = · · ·=
yr−N−1 = 0. This implies that (y1, y2, . . . , yr ) comes from a unique element ofWN+1(S) via
the transition morphism T r−N−1, from which we deduce in turn that all homomorphisms
u ∈ModulesD (M ,W(S)) factorize uniquely through WN+1(S)→cW(S).

This reduces us to constructing the following isomorphism functorially in S:
Ed.’s Note: This is
typeset as homomor-
phisms of k–modules
in the original, not as
k–algebras.

ϕS : ModulesD (M ,WN+1(S))→ Algebrask (AM ,Γ (OS )).

For all u ∈ModulesD (M ,WN+1(S)), we set

ϕS (u) : AM → Γ (OS ),

Tx 7→ u(x)N+1

to be the morphism which sends Tx to the last coordinate of u(x) ∈WN+1(S) = Γ (OS )
N+1.

Using the relations on AM , it is clear that ϕS (u) is well-defined and that it is a morphism
of algebras. One may define an inverse function by sending u ∈ Algebrask (AM ,Γ (OS )) to
the D–module homomorphism

u : M →WN+1(S),

x 7→ (u(TV N (x)), . . . , u(Tx )). �

6.3. Le schéma E(M )
est un p–groupe fini
unipotent

Granting this, we see that E(M ) is a(n affine) scheme. We can say more: it is a group
scheme, since D–module homomorphisms may be added; and it is a finite scheme, as V is
nilpotent, hence M is annihilated by a power of p, hence E(M ) is annihilated by a power
of p as well, and so E(M ) is finite. We have tasked ourselves with showing a tiny bit more:

Lemma 2.6.3. The functor E factors through finite unipotent p–group schemes.

Proof. Let {x1, . . . , xr } be a system of generators for the W –module M . The relations
used to define the ring AM entail that we may find a system of monomials in the variables
Tx1

, . . . ,Txr
,TV x1

, . . . ,TV xr
, . . . ,TV N x1

, . . . ,TV N xr
of bounded degree such that this family

of monomials generates AM as a k–vector space.
Using Theorem 2.2.8, we may show vE(M ) = v is nilpotent in order to show that E(M )

is unipotent. As E(M ) is a subgroup of a smooth group (viz., affine space of dimension
7Recall that these are polynomials over Z in (2N + 2) variables.
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r (N + 1)), we may apply Remark 1.4.7 to determine v from the relation vfE(M )|k = p;
we therefore need only exhibit some morphism v satisfying this relation. The following
commutative diagram usefully presents fE(M )|k :

ModulesD (M ,Wn+1(S)) ModulesD (M ,WN+1(S,σ))

Algebrask (AM ,Γ (OS )) Algebrask (AM ⊗k (k ,σ),Γ (OS ))

α 7→α◦F

ϕS∼ ϕS,σ ∼
fE(M )|k (S)

where (S,σ) denotes the k–scheme S→ Spec(k)
σ
−→ Spec(k). We use the top horizontal

map (and the relation vfE(M )|k = p) to determine a formula for the Verschiebung:

v : ModulesD (M ,WN+1(S,σ))→ModulesD (M ,WN+1(S)),

u 7→ u ◦V .

As V is nilpotent on M , it follows that v is nilpotent and E(M ) is unipotent. �

6.4. Le foncteur E is
adjoint à gauche de D∗

To complete the argument, we must show that the functor E is left-adjoint to D∗, i.e.,
we require the following isomorphism, functorially in G and in M :

GroupSchemesk (G,E(M )) ∼−→ModulesD (M , D∗(G)).

There is a natural equivalence

D∗(G) = GroupSchemesk (G,cW) =Ker
�

cW(G)
∆∗−π∗1−π

∗
2−−−−−→cW(G×G)

�

=: Prim(G).

On the other hand, the definition of E(M ) gives a description of all maps of schemes:

Schemesk (G,E(M )) =E(M )(G) =ModulesD (M ,cW(G)).

If we can show that u ∈ModulesD(M ,cW(G)) defines a group morphism if and only if it
factors through Prim(G), then these will combine to give the desired isomorphism.

The description of GroupSchemesk (G,E(M ))may be interpreted at the level of affine
algebras as the subset of those α ∈ Algebrask (AM ,Γ (OG)) making the following diagram
commute:

AM Γ (OG)

AM ⊗AM Γ (OG)⊗ Γ (OG).

α

∆ ∆

α⊗α

We seek a formula for∆. Recall the previously discussed isomorphism

ϕS : ModulesD (M ,WN+1(S))
∼−→ Algebrask (AM ,Γ (OS )).

For u, u ′ ∈ModulesD (M ,WN+1(S)), that ϕS is a homomorphism can be expressed as

ϕS (u + u ′)(Tx ) = SN (u(x), u ′(x)).

Making the abbreviations u = ϕS (u) and u ′ = ϕS (u
′), the right-hand side may be written

SN (u(x), u ′(x)) = SN [u(TV n (x)), . . . , u(Tx ); u ′(TV N (x)), . . . , u ′(Tx )].

It follows that for x ∈ M , the action of ∆ : AM → AM ⊗AM on Tx ∈ AM is given by the
formula

∆(Tx ) = SN (TV N (x)⊗ 1, . . . ,Tx ⊗ 1;1⊗TV N (x), . . . , 1⊗Tx ).
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In turn, we see that u is a group isomorphism if and only if for all x ∈M we have

∆(u(Tx )) = SN [u(TV N (x))⊗ 1, . . . , u(Tx )⊗ 1;1⊗ u(TV N (x)), . . . , 1⊗ u(Tx )],

i.e.,∆(u(Tx )) agrees with the final coordinate inWN+1(Γ (OG)× Γ (OG)) of u(x)⊗ 1+ 1⊗
u(x).

The same reasoning applied in turn to the members of the sequence x,V (x), . . . ,V N (x)
and using V N+1|M = 0 shows that u defines a group morphism G→E(M ) if and only if
u(x) belongs to the kernel of

WN+1(Γ (OG))
∆∗−π∗1−π

∗
2−−−−−→WN+1(Γ (OG)⊗ Γ (OG))

which is itself contained in Prim(G).

3. BARSOTTI–TATE GROUPS

Chapitre III. Groupes
de Barsotti–Tate

1. Notations et défini-
tions préliminaires

3.1. Notation, preliminary definitions, and flatness and representability criteria. Se-
lect a base scheme S, and (for preliminary technical reasons8) select a topology τ on the
category Schemes/S which refines the fppf9 topology and is refined by the fpqc10 topol-
ogy [SGA72, IV.6.3]. In this section, we will say that G is a group when G is a sheaf in
commutative groups over Schemes/S for the topology τ.

Definition 3.1.1. For G a group and n ≥ 1 an integer, we set

Λn =Z/pnZ, G(n) =Ker
�

G
pnId
−−→G

�

, G(∞) = colimn G(n).

The subgroup G(n) is a Λn–module (i.e., a τ–sheaf in Λn–modules), and the subgroup
G(∞) is the largest p–torsion subgroup of G. These nest as G(n)(n′) =G(n′) whenever
n′ ≤ n ≤∞.

Remark 3.1.2. If we want to emphasize that a group G is annihilated by pn (i.e., that it is
a Λn–module), we may thus write G(n) in place of G.

2. Platitude et critère
de reprŕesentabilité

2.1

Definition 3.1.3. A Λn–module G is flat over Λn if the tensor product with G over the
constant sheaf Λn preserves monomorphisms.

2.2. Proposition

Proposition 3.1.4. Let G(n) be a group annihilated by pn . The following are equivalent:

(1) For all 1≤ i ≤ n, G(i) is a flat Λi –module.
(2) G(n) is a flat Λn–module.
(3) For all 1≤ i ≤ n− 1, pn−i G(n) =G(i).

(3’) For all 1≤ i ≤ n− 1, the function pn−i : G(n)→G(i) is an epimorphism.
(4) For some 1≤ i ≤ n− 1, pn−i G(n) =G(i).
(5) pG(n) =G(n− 1).

8The introduction of this topology is technical and is not essential for the final announcements (see Re-
mark 3.3.1).

9“Fidèlement plate et de preésentation finie”, or “faithfully flat and of finite presentation”.
10“Fidèlement plate et quasi compacte”, or “faithfully flat and quasi compact”.
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(6) The canonical morphism

γ : Λ1[T ]/T n ⊗Λ1
G(n)/pG(n)→ grp G(n) =

n−1
⊕

i=0

p i G(n)/p i+1G(N ),

where γ i : G(n)/pG(n)→ p i G(n)/p i+1G(n) is induced by multiplication by p i ,
is an isomorphism.

(7) The morphism

β : grp G(n)→Λ1[T ]/T n ⊗Λ1
G(1),

whereβi : p i G(n)/p i+1G(n)→G(1) is induced by multiplication by pn−i−1, is an
isomorphism.

Proof. We prove individual equivalences in turn.

(2)⇔ (3): For all 1≤ i < n, there are canonical commutative diagrams of constant
Λn–modules

p iΛn Λn

Λn/pn−iΛn .

ε

p i ∼
(p i )

By tensoring with G(n), these give

p iΛn ⊗G(n) Λn ⊗G(n)

Λn/pn−iΛn ⊗G(n) =G(n)/p i G(n).

ε⊗1

∼
(p i )

As the only ideals of Λn are the p iΛn , the module G(n) is flat if and only if ε⊗ 1
is injective for all i—that is, if and only if (p i ) is injective, which is equivalent to
condition (3).

(3)⇔ (1): We use the same tool: the ideals p iΛn of Λn tensor with G(n), a flat
Λn–module, to show pn−i G(n) =G(i), and because these are the only ideals of
Λn , these same equalities can be used to establish flatness of G(n).

(4)⇒ (5): Suppose that for some 1≤ i < n we have G(i ) = pn−i G(n). Consider the
following diagram, whose rows are exact sequences:

0 G(n− 1) G(n) pn−1G = p i−1G(i) 0

0 G(i) G(i + 1) p i G(i + 1) = p i−1G(i) 0

0 G(i + 1)/pn−i−1G(n) 0 0

0 0 0.

pn−i−1

pn−1

pn−i−1

p i

It follows directly that G(i + 1) = pn−i−1G(n).
(5)⇔ (6): For each 0≤ i < n− 1, we set λi to be the epimorphism

λi : p i G(n)/p i+1G(n)→ p i+1G(n)/p i+2G(n)
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induced by multiplication by p. Then, for each 1≤ i < n, we have

γ i = λi−1 ◦λi−2 ◦ · · · ◦λ0.

It follows that the epimorphism γ is an isomorphism if and only if γ n−1 is a
monomorphism, i.e., if (5) holds.

(5)⇒ (7)⇒ (3): Setting j to be the canonical injection pn−1G(n)→G(1) and other-
wise retaining the notation from above, we have the identity

βi = j ◦λn−2 ◦λn−3 ◦ · · · ◦λi .

We’ve just shown that (5) entails that all the λi are isomorphisms, and hence β is
a monomorphism.

We will show by induction that ifβ is a monomorphism, then (3) holds. Taking
β0 = j ◦ γ n−1 to be a monomorphism, we directly have pG(n) =G(n− 1). Next,
taking βi to be a monomorphism, we also have

[p i G(n)](n− i − 1) = p i+1G(n).

By inductive hypothesis, we have p i G(n) =G(n− i), from which we conclude
G(n− i − 1) = p i+1G(n).

Having established (3), it follows immediately that j (and thus β) are isomor-
phisms. �

2.4. PropositionProposition 3.1.5. Let G(n) be a group annihilated by pn and flat over Λn . Then G(n) is
representable by a finite locally free scheme over S if and only if the same is true for one for the
G(i), 1≤ i ≤ n.

2.3Proof. Let us now suppose that G(n) is a flat Λn–module, representable by a finite locally
free scheme over S . It follows that G(i ) is the kernel of multiplication by p i and that it is
representable, finite, and locally of finite presentation. Moreover, applying the fiber-by-
fiber criterion for flatness [DG67, IV.11.3.1] to the epimorphism pn−1 : G(n)→G(i ), we
deduce that G(i) is flat over S, hence locally free.

Conversely, if G(1) is representable by a finite locally free scheme over S and if G(n) is
Λn–flat, then G(n) admits a finite composition series p i G(n)/p i+1G(n)∼=G(1), and by
Definition 2.1.8 G(n) is representable by a finite locally free scheme. �

3. Groupes de
Barsotti–Tate tron-
qués d’échelon n

4. Groupes de
Barsotti–Tate

3.2. Barsotti–Tate groups, in full and truncated at stage n. We finally introduce the
definition of one of the main subjects of these notes, that of Barsotti–Tate groups. These
have also been called “ p–divisible groups” in the literature (e.g., by Tate [Tat67]), but we
reserve this alternative name for the following weaker definition:

4.1. Définition

Definition 3.2.1. We say that a group G (i.e., a τ–sheaf in groups) is p–divisible if
p : G→G is an epimorphism.

If G is p–divisible, then it follows from Proposition 3.1.4.(5) that G(n) is a flat Λn–
module, and the group of p–torsion G(∞) is also p–divisible. More generally, given a
co– p–adic system, i.e., an inductive system

G1→G2→ ·· · →Gn→Gn+1→ ·· ·

such that Gn is annihilated by pn and Gn(n−1) =Gn−1, in which Gn is a flat Λn–module,
then colimn Gn is a p–torsion p–divisible group.
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4.2. DéfinitionDefinition 3.2.2. A Barsotti–Tate ( p–)group (over S) is a τ–sheaf G valued in p–torsion
p–divisible commutative groups such that G(1) is a finite locally free group over S.

Remark 3.2.3. It is equivalent to say that any of the G(n) is a finite locally free scheme
over S (cf. Proposition 3.1.5).

3.1 It will also be convenient to consider truncated co– p–adic systems in which Gn is a flat
Λn–module, which one might naively called a truncated Barsotti–Tate group. However,
this condition is empty for n = 1, and we will find it necessary to substitute this with a
different condition in order to make the theory work out. Unfortunately, we have no a
priori justification for this extra condition, and so we now simply state the definition.

Let G be a commutative group scheme which is flat over S, let S0 be the closed Fp–
scheme of S defined by the ideal pOS , and let G0 be the scheme over S0 obtained by
base-change, which comes equipped with morphisms fG0/S0

and vG0
. Note that if G0 is a

Λ1–module, we have fG0/S0
vG0
= 0.

3.2. Définition Definition 3.2.4. Let n ≥ 1 be an integer. We define a Barsotti–Tate p–group truncated
at stage n (over S) to be a commutative group scheme G, finite and locally free over S,
annihilated by pn , and flat over Λn . If n = 1, we will further suppose that11

Ker fG0/S0
= ImvG0

.

3.3 Lemma 3.2.5. If G(n) is a Barsotti–Tate group truncated at stage n, then for each 1≤ i ≤ n,
G(i) is a Barsotti–Tate group truncated at stage i .

Proof. For i > 1, this follows from Proposition 3.1.5. For i = 1, we will show that the
extra condition is also satisfied. Over S0 ⊂ S , we have already remarked that the image of
vG(1)0

: G(1)(p)0 →G(1)0 is contained in the kernel K of fG(1)0/S0
: G(1)0→G(1)(p)0 , from

which we derive a commutative diagram

G(1)(p)0 K

G(1)0

G(2)(p)0 G(2)0.

vG(1)0

vG(2)0

Using G(2)(p)0 (1)
∼=G(1)(p)0 , it follows immediately that this diagram is Cartesian. On the

other hand, because vG(2)0
fG(2)0

= p has image G(1)0, it follows that the image of vG(2)0

contains G(1)0, from which we deduce that v : G(1)(p)0 →K is surjective. �

Remark 3.2.6. If G is a Barsotti–Tate group, then G(n) is a Barsotti–Tate group truncated
at stage n for each n ≥ 1. Over an algebraically closed field, the converse is also true: if G′

is a Barsotti–Tate group truncated at stage n, then there exists a full Barsotti–Tate group
G such that G′ =G(n).
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5. Sorites sur les
groupes de Barsotti–
Tate

3.3. Facts about Barsotti–Tate groups.

5.1Remark 3.3.1. We have seen that the category of Barsotti–Tate groups is equivalent to the
category of co–p–adic systems {Gn} where Gn is a finite locally free group scheme over
S which is a flat Λn–module. It follows that this notion is independent of the choice of
topology τ.

Remark 3.3.2. The category of Barsotti–Tate groups is additive.

Remark 3.3.3. If S ′ is a scheme over S and G is a Barsotti–Tate group over S, then we
can define the inverse image Barsotti–Tate group G′ over S ′: each of G(n)×S S ′ are is a
truncated Barsotti–Tate group, and we set G′ = colim(G(n)×S S ′).

5.2. PropositionProposition 3.3.4. Let 0 → G′ → G → G′′ → 0 be an exact sequence of group schemes.
Then

(1) If G′ and G′′ are Barsotti–Tate groups, then so is G.
(2) If G′ and G are Barsotti–Tate groups, then so is G′′.

Proof. For (1), an extension of p–divisible (resp. p–torsion) groups is p–divisible (resp.
p–torsion). Using the snake lemma, the exact sequence induces an exact sequence

0→G′(1)→G(1)→G′′(1)→G′/pG′→ ·· · .

However, as G′ is p–divisible, it follows that G(1) is an extension of finite locally free
groups and hence is one itself.

For (2), a quotient of a p–divisible (resp. p–torsion) group is p–divisible (resp. p–
torsion). Then, as before, G′′(1) is the quotient of two finite locally free group schemes,
which implies that G′′(1) is one itself. �

Remark 3.3.5. If G and G′′ are Barsotti–Tate groups, then it is in general false that the kernel
is a Barsotti–Tate group. For example, there is an exact sequence 0→G(1)→G

p
−→G→ 0,

where G(1) is not p–divisible!

5.3. Rang (ou “hau-
teur”) d’un groupe de
Barsotti–Tate

Definition 3.3.6. For a Barsotti–Tate group G, its first stage G(1) is a finite locally free
group which is annihilated by p. For every point s ∈ S, we thus have

rank(G(1)s ) = p r (s)

and the function r so-defined is locally constant in s . The exact sequences

0→G(1)→G(n)
p
−→G(n)→ 0

show in turn that
rank(G(n)s ) = (rank(G(1)s ))

n = pn r (s).
The integer r (s) is called the rank (or height) (at the point s ∈ S).

5.4Remark 3.3.7. We have described the category of Barsotti–Tate groups over S by using
co–p–adic systems, but we actually could have used p–adic systems. To a Barsotti–Tate
group G, we associate the p–adic system

Tp (G) =
�

· · · →G(n+ 1) =
G(n+ 1)

pn+1G(n+ 1)
p
−→

G(n+ 1)
pnG(n+ 1)

=G(n)→ ·· ·
�

,

11This condition may be verified fiber-by-fiber.
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where G(1) is annihilated by p, representable, and a finite locally free S–scheme.

5.5. Dual d’un groupe
de Barsotti–Tate

Definition 3.3.8. For a Barsotti–Tate group G, applying Cartier duality to the p–adic
system Tp (G) defines a co– p–adic system of groups G(n)∗. These groups are finite, locally
free, annihilated by pn , and flat over Λn , and so we use them to define the dual Barsotti–
Tate group G∗:12

G∗ = colimn G(n)∗.

Finiteness of the group schemes G(n) yields a natural equivalence with the double-dual
G
∼−→ (G∗)∗, and hence this construction determines a contravariant equivalence, compati-

ble with base change, between the category BTS of Barsotti–Tate p–groupes over S and
its opposite.

5.6. Module de
Dieudonné associé à
un groupe de BT sur
un corps parfait

Theorem 3.3.9 (cf. Remark 2.5.3). Recall the notation from Section 2.4, and use BTk to
denote the category of Barsotti–Tate p–groups over a perfect field k. There exists an equivalence
of categories

D∗ : BTop
k
∼−→
�

D–modules which are free and
of finite type over W

�

such that

[D∗(G)]σ ∼=D∗(G(p)), D∗(fG/k ) = FD∗(G), D∗(vG) =VD∗(G).

Construction. Let G be such a Barsotti–Tate group. We begin by setting M (n) =D∗(G(n)),
where D∗ is the “classical” functor defined in Section 2.4. As G(n) is annihilated by pn ,
M (n) is annihilated by pn and is thus a module over W /pnW =Wn . For each 1≤ i < n,
the epimorphisms p i : G(n)→G(n− i) determine monomorphisms

M (n)/pn−i M (n) =M (n− i)
p i

−→M (n),

which shows M (n) to be flat over Wn . Finally, the co– p–adic system defining G determines
a p–adic system built out of the modules M (n): the injections G(n)→G(n+ 1) define
surjections M (n+1)→M (n) which identify M (n) with M (n+1)/pn M (n+1). We make
the definition

D∗(G) = lim M (n).

The limit D∗(G) is a module over W = limW (n), and since the modules in the system
are flat, D∗(G) is itself flat over the local ring W , hence is free. As the modules M (n) are
finite, D∗(G) is itself of finite type. Finally, D∗(G) is endowed with semilinear morphisms
F and V induced by the corresponding morphisms on M (n). �

6. Exemples et types
particuliers de groupes
de Barsotti–Tate

3.4. Examples and particular types of Barsotti–Tate groups.

6.1

Example 3.4.1. Let A be an abelian scheme over S (i.e., a commutative group scheme,
proper and smooth over S, and with connected fibers) of dimension d . For any prime p,
the subgroup A(∞) = colimn A(n) is a Barsotti–Tate group of rank 2d .

12The dual satisfies the pleasant interchange law G∗(n) =G(n)∗.
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Construction. Every abelian scheme is p–divisible: this is well-known in the case where
S is the spectrum of an algebraically closed field [Mum70] and, if S is arbitrary, the
surjectivity of p : A→ A results from the algebraically closed case via the fiber-by-fiber
flatness criterion [DG67, IV.11.3.10]. Additionally, if d denotes the relative dimension of
A over S, then one may show that

rankA(1) = p2d .

The group A(1) is thus finite, it is evidently of finite presentation and, being flat, it is
locally free. �

Remark 3.4.2. There already exists a notion of duality for abelian varieties: writing A∗ for
the dual variety of the abelian variety A, one shows easily that its associated Barsotti–Tate
group A∗(∞) may be identified with the dual, in the sense of Barsotti–Tate groups, of
A(∞).

Remark 3.4.3. If all of the residual characteristics of S are different from p, one may show
that A(1) is étale over S, and one then says that A(∞) is ind-étale.

6.2Definition 3.4.4. We say that a Barsotti–Tate group over S is ind-étale if G(1) is étale.

Remark 3.4.5. As the groups G(n) admit a composition series whose factors are isomorphic
to G(1), it is equivalent to say that all the groups G(n) are étale.

Remark 3.4.6. The functor G 7→ Tp (G) defines an equivalence between the category of
ind-étale Barsotti–Tate groups and the category of twisted torsion-free constant p–adic
sheaves, i.e., p–adic systems of finite locally free groups Gn which are étale over S and flat
over Λn . If S is connected, the category of twisted torsion-free constant p–adic sheaves
is well-known. Choosing a geometric point s ∈ S, there is an equivalence between this
category and that of finite type free Zp–modules on which the fundamental group π1(S, s )
acts continuously. Namely, one sends a system (Gn)n≥1 to the Zp–module lim(Gn)s , with
π1(S, s) acting by monodromy on (Gn)s .

6.3. ExempleExample 3.4.7. We say that a group scheme T over S is a torus if locally isomorphic to
Gr

m,S in the étale topology. A torus T is p–divisible, and T (1) is a finite locally free group
of rank p r for r the relative dimension of T over S ,13 hence T (∞) is a Barsotti–Tate group
of rank r . As a particularly important example, the Barsotti–Tate group µ is defined by

µ=Gm,S (∞) = colimnµpn ,S .

6.4. ExempleExample 3.4.8. Let G be a group scheme over S given as an extension of an abelian scheme
A by a torus T . Since G is p–divisible, G(1) is finite and locally free over S and G(∞) is a
Barsotti–Tate group of rank 2d+ r (where d and r are respectively the relative dimensions
of A and of T over S). Moreover, there is an exact sequence

0→ T (∞)→G(∞)→A(∞)→ 0.

6.5Definition 3.4.9. Following Example 3.4.7, we will say that a Barsotti–Tate group G is
toroidal if G(1) is of multiplicative type. It is equivalent to say that all of the G(n) are of
multiplicative type, or equivalently that the dual G∗ is ind-étale.

13These properties are local and can be checked forGr
m,S .
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Remark 3.4.10. The functor G 7→ Tp (G
∗) defines an antiequivalence between the category

of toroidal Barsotti–Tate groups and that of twisted torsion-free constant p–adic sheaves.
Composing this functor with duality in twisted torsion-free constant p–adic sheaves

Tp (G
∗) 7→ GroupSchemes(G∗,Zp )

def= (GroupSchemes(G(n)∗,Λn))n≥1,

one obtains an equivalence rather than an antiequivalence. At the level of group schemes,
this composite equivalence behaves as

G 7→ GroupSchemes(µ,G) def= (GroupSchemes(µ(n),G(n)))n≥1.

6.6 Definition 3.4.11. One says that a Barsotti–Tate group G over S has connected fibers when
G(1) is infinitesimal, or, equivalently, when all of the groups G(n) are infinitesimal.

Corollary 3.4.12 (Proposition 2.2.2). If all the residual characteristics of S are equal to p,
the toroidal Barsotti–Tate groups have connected fibers. �

Remark 3.4.13. We will show later on that if p is locally nilpotent on S, then a Barsotti–
Ed. note: He does not
show this later on.

Tate group has connected fibers if and only if it is also a formal Lie group.

We will give here a first elementary definition of formal Lie groups and study under
what conditions a formal Lie group is a Barsotti–Tate group.

6.7 Definition 3.4.14. A pointed (or augmented) formal Lie variety (over S) is a τ–sheaf X
over S endowed with a section ε : S→X such that, Zariski–locally on X ,

X ' colimn SpecOSJT1, . . . ,Tr K/(T1, . . . ,Tr )
n .

Remark 3.4.15. One may make the local isomorphism explicit by saying that for all S ′→ S
with S ′ quasicompact, we have

X (S ′) = colimn SchemesS (S
′, SpecOSJT1, . . . ,Tr K/(T1, . . . ,Tr )

n)

= colimn{ f1, f2, . . . , fr ∈ Γ (S
′,OS ) | f n

i = 0,1≤ i ≤ r }.

In particular, X is the inductive limit of finite and radical schemes over S.

Definition 3.4.16. A formal Lie group (over S) is a sheaf in groups over S such that its
unit section gives it the structure of a formal Lie variety.

Remark 3.4.17. As the product of two formal Lie varieties is again a formal Lie variety, it
is equivalent to say that a formal Lie group is a group object in the category of formal Lie
varieties.

From here on, we assume all formal Lie groups to be commutative, and we take G to
be such a formal Lie group over S. One checks easily that if p is locally nilpotent on S,
then G is p–torsion, so that G =G(∞) = colimn G(n). Of course, G is a Barsotti–Tate
group if and only if the following two conditions are satisfied:

(1) G is p–divisible.
(2) G(1) is representable by a finite locally free scheme.

Remark 3.4.18. In the case where S is Artinian and local, with unique point s ∈ S, and
still assuming G to be a formal Lie group, then these two conditions are equivalent to each
other. They’re furthermore equivalent to the following pair of conditions, which involve
only the geometric fiber of G:
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(3) Gs is p–divisible.
(4) It is impossible to embed the formal additive groupGa (the formal completion of
Ga along its unit section) into Gs .

We suspect that conditions (1) and (2) are equivalent for formal Lie groups in general.
This would follow from the following conjecture, which is true in the Artinian local
case [SGA72, VII]:

Conjecture 3.4.19. Let u : G→G′ be an S–morphism of formal Lie varieties of the same
relative dimension over S. The following are then equivalent:

• u is an epimorphism.
• Ker(u) is representable by a finite scheme.
• Ker(u) is representable by a finite locally free scheme.

Remark 3.4.20. On the contrary, the fact that the formal Lie group G is a Barsotti–Tate
group does not in general imply that the fibers are Barsotti–Tate groups as well. For
example, the formal Lie group associated to the modular elliptic curve A over a curve S of
characteristic p fails this, because there are points s ∈ S where the Hasse invariant of As is
zero.

In turn, this example suggests the following conjecture:

Conjecture 3.4.21. For a formal Lie group G over S to be Barsotti–Tate, it is necessary
and sufficient for the fibers Gs to be Barsotti–Tate groups with locally constant rank as s
ranges in S.

7. Suite de composi-
tion d’un groupe de
Barsotti–Tate

3.5. Composition series of a Barsotti–Tate group.

7.1

Definition 3.5.1. Suppose that S is reduced at a point s . If G is a Barsotti–Tate group
over S, we set

G◦ = colimn G(n)◦, Gét = colimn G(n)/G(n)◦,

yielding an exact sequence
0→G◦→G→Gét→ 0.

Remark 3.5.2. One checks immediately that G◦ is a Barsotti–Tate group, hence Gét is
as well, and so G is obtained as an extension of an ind-étale Barsotti–Tate group from a
Barsotti–Tate group with connected fibers. This decomposition is canonical and functorial
in G.

7.2Definition 3.5.3. Suppose further that the residual characteristic of S is p, and define the
toroidal subgroup (which is itself a Barsotti–Tate group) to be

Gtor = colimn G(n)mult,

where G(n)mult denotes the largest subgroup of G(n) of multiplicative type. We thereby
obtain a filtration

{0} ⊂Gtor ⊂G◦ ⊂G.
We deduce from this that G◦/Gtor is an ind-unipotent Barsotti–Tate group (i.e., G◦/Gtor(1) =
G(1)◦/G(1)mult is unipotent) which also has connected fibers. This canonical composition
series is functorial in G, and it commutes with change of base and with passing to the dual.
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Remark 3.5.4. Using the same construction, one finds canonical isomorphisms

(G/G◦)∗ ∼= (G∗)tor, (G/Gtor)∗ ∼= (G∗)◦.

7.3 Remark 3.5.5. For an arbitrary base S, one cannot generally write a Barsotti–Tate group
G as an extension of an ind-étale Barsotti–Tate group G′′ by a Barsotti–Tate group G′

with connected fibers. However, if one has such an extension, one may then obtain an
exact sequence

0→G′(1)→G(1)→G′′(1)→ 0.

For each s ∈ S, consider the separable rank of G(1)s :

ranksep(G(1)s ) = |G(1)(s)|= ranksep(G′(1)s ) · ranksep(G′′(1)s ).

The separable rank of G′(1)s is 1 because G′(1) is infinitesimal, and the separable rank of
G′′(1)s is a locally constant function of s ∈ S because G′′(1) is étale over S . From this, we
deduce that the separable rank of G(1)s is a locally constant function of s ∈ S. However,
this is not true in general, as exemplified by the modular elliptic curve A over a curve S in
characteristic p, where there are isolated points where the Hasse invariant of As is zero.

Avoiding this kind of counterexample, one may deduce the following result:

7.4 Proposition 3.5.6 (cf. [Mes72, Proposition II.4.9]). Let G be a Barsotti–Tate group over S.
The following properties are equivalent:

(1) G is an extension of an ind-étale Barsotti–Tate group by a Barsotti–Tate group with
connected fibers.

(2) For all n ≥ 1, G(n) is an extension of a finite étale group by a finite infinitesimal
group.

(2’) G(1) is an extension of a finite étale group by a finite infinitesimal group.
(3) For all n ≥ 1, the function s 7→ ranksepG(n)s is locally constant.

(3’) The function n 7→ ranksepG(1)s is locally constant.

Proof. Given our work so far, the only implication left to prove is (3)⇒ (2). For this we
rely on the following:

Lemma 3.5.7 ([Mes72, Lemma II.4.8]). Let f : X → S be a finite locally free morphism
of schemes. For f to factorize as f ′ ◦ f ′′ for a radical and surjective morphism f ′′ and an
étale morphism f ′, it is necessary and sufficient that the function s 7→ ranksep(Xs ) is locally
constant. The factorization is then unique and functorial in f .14 �

4. CRYSTALS

Chapitre IV. Cristaux

1. Rappels sur les puis-
sances divisées

4.1. Reminders on divided powers.

1.1

Definition 4.1.1. Let A be a ring and J an ideal of A. One says that J is endowed with
divided powers if one is given for n ≥ 1 a family of functions γn : J → J satisfying the
following axioms:

(1) γ1(x) = x for all x ∈ J .
(2) γn(x + y) = γn(x)+

∑n−1
i=1 γn−iγi (y)+ γn(y) for all x, y ∈ J .

14Using the functoriality, one may show that if the source is a group scheme, then so is the target in the
factorization.
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(3) γn(xy) = xnγn(y) for all x ∈A, y ∈ J .
(4) γm ◦ γn(x) =

(mn)!
(n!)m m!γmn(x).

(5) γm(x)γn(x) =
(m+n)!

m!n! γm+n(x).

Remark 4.1.2. Iterating the fifth axiom gives the relation

γm1+m2+···+mp
(x) ·

(m1+m2+ · · ·+mp )!

m1!m2! · · ·mp !
=

p
∏

i=1

γmi
(x).

In particular, we have xn = (γ1(x))
n = n!γn(x). This last formula is the principle motivia-

tion for the introduction of divided powers.

Example 4.1.3. If the ring A is of characteristic 0 (i.e., if its unit is divisible by all primes),
then the formula γn(x) =

xn

n! shows that any ideal J has one and only one divided power
structure.

Definition 4.1.4. To more comfortably write certain series formulas, we make two
further notational defintitions:

• The zeroth power: γ0(x) = 1.
• A shorthand for the nth divided power: x (n) = γn(x).

Remark 4.1.5. Divided powers were introduced by H. Cartan for the study of Eilenberg–
Mac Lane spaces, and in abstract algebra by N. Roby in his thesis.

1.2. Exponentielle et
logarithme

4.1.1. The exponential and logarithm.

Definition 4.1.6. Let A be a ring, and let (J ,γn) be an ideal endowed with divided powers.
We may then define exponential and logarithm functions

exp: J → 1+ J , log: 1+ J → J ,

exp(x) =
∑

n≥0

x (n), log(1+ x) =
∑

n≥1

(−1)n−1(n− 1)!x (n)

where we suppose, for these functions to be defined, that x (n) (resp. (n− 1)!x (n)) is zero
for n sufficiently large.

If this nilpotence-like hypothesis is satisfied, then the usual proof shows that exp and
log are inverse isomorphisms between J+ and (1+ J )∗. In order to study their convergence
and inverse properties more generally, we introduce the following:

Definition 4.1.7. We define a filtration on J :

J = J (1) ⊃ J (2) ⊃ · · · ⊃ J (n) ⊃ · · · ,

where J (n) is the ideal generated by the monomials x (a1)
1 x (a2)

2 · · · x (ar )
r with

∑

i ai ≥ n.

Definition 4.1.8. One says that (J ,γn) is divided-power nilpotent if there exists an n with
J (n) = 0. In this case, x (n) = 0 for all x ∈ J , and the exponential and logarithm are thus
everywhere defined.

Definition 4.1.9. If there exists an n such that (n−1)!J (n) = 0, then at least the logarithm
is everywhere defined. This condition was introduced by P. Berthelot in his study of
crystalline cohomology, and so we will call this Berthelot’s condition.
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1.3. Quelques exem-
ples de structure de
puissances divisées

4.1.2. Some examples of divided power structures.

Ex. 1)

Example 4.1.10. If A is of characteristic 0, we have already seen that every ideal possesses
exactly one divided power structure: γn(x) =

xn

n! .

Ex. 2) Example 4.1.11. If A is a torsion-free ring, there exists at most one divided power structure
on J , as we may apply cancellation to the combined formula

n!γn(x) = xn = n!γ ′n(x).

Moreover, such a structure exists if and only if J ⊂ J ⊗Q ⊂ A⊗Q is stable under the
operations x 7→ xn/n!.

Ex. 3) Example 4.1.12. Let W =W (k) be the ring of Witt vectors for a perfect field k and let
J = pW . For n ≥ 0, define the p–adic expansion of n to be

n = a0+ a1 p + · · ·+ a` p`,

where 0 ≤ a j < p and 0 ≤ j ≤ `, and additionally define the digital sums sn =
∑`

j=0 a j .
The p–adic valuation of n! is given by the formula

νp (n!) =
n− sn

p − 1
≤ n− 1.

Hence we have γn(p) =
pn

n! ∈ pW , and there is thus a unique divided power structure on
pW . Moreover, one sees that for p > 2, pn

n! tends to 0 in W . Using completeness of W ,
we can thus define the exponential by

exp(p x) =
∞
∑

n=0

pn xn

n!
.

For p = 2, this is no longer true; for example, we have

22n

2n !
≡ 2 (mod 22).

Considering instead the truncated Witt vectors Wn =W /pnW , for p > 2 these divided
powers are nilpotent, and hence one may define the exponential and logarithm. For
p = 2, Berthelot’s condition is satisfied, hence one may define the logarithm—but not the
exponential.

Ex. 4) Extensions des
puissances divisées.

Définition

Example 4.1.13 (Berthelot’s extension examples). Given two rings together with ideals
with divided powers, (A, J ,γ ) and (A′, J ′,γ ′), a divided power homomorphism ϕ : (A, J ,γ )→
(A′, J ′,γ ′) is then a homomorphism of rings ϕ : A→ A′ such that ϕ(J ) ⊂ J ′ and for all
x ∈ J we have ϕ(γn(x)) = γ

′
n(ϕ(x)). If (A, J ,γ ) is a ring endowed with an ideal with divided

Définition
powers and if ϕ : A→ B is a morphism of rings, one says that γ extends to B if there exists
on J B a divided power structure γ ′ such that ϕ : (A, J ,γ )→ (B , J B ,γ ′) is a divided power
homomorphism.15

Proposition Let (A, J ,γ ) be a ring endowed with an ideal with divided powers. We claim that if
J is principle, then γ can always be extended. To see this, suppose that J = ( j ) and let

Démonstration 15This structure on γ ′ is then unique.
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ϕ : A→ B be a homomorphism. If γ extends to γ ′, we necessarily have

γ ′n(bϕ(J )) = b nϕ(γn( j )).

We claim that this determines a well-defined function γ ′n : first using the principle property
to write γn( j ) = an j , if bϕ( j ) = b ′ϕ( j ) then

b nϕ(γn( j ))− (b
′)nϕ(γn( j )) = c(b − b ′)ϕ( j ) = 0.

PropositionNext, let (A, J ,γ ) be a ring A with an ideal J endowed with divided powers γ . We claim
that any flat A–algebra B admits an extension of γ to J B .16 To construct γ ′n : J B→ J B , we

Démonstrationconsider the free module Z(J×B) on J ×B , and we define a function g ′n : Z(J×B)→ J B by

g ′n(a1( j1, b1)+ · · ·+ a`( j`, b`)) =
∑

i1+i2+···+i`=n
ik≥0

(a1b1)
i1γi1
( j1) · · · (a`b`)

i`γi`
( j`).

Using flatness, we have J ⊗A B ' J B , hence to show that γ ′n is well-defined it suffices to
define it on J ⊗A B , by passing to the quotient of g ′n . To do this, we must prove that we
have g ′n(β+α) = g ′n(α) for any α ∈ Z(J×B) and for any element β ∈ Z(J×B) which takes
one of the following forms:

(1) ( j ′+ j ′′, b )− ( j ′, b )− ( j ′′, b ),
(2) ( j , b + b ′)− ( j , b )− ( j , b ′),
(3) (a j , b )− ( j ,ab ).

This verification is left to the reader.

Ex. 5) Cas d’un anneau
de valuation discrète

Example 4.1.14. Let V be a discrete valuation ring of mixed characteristic, with maximal
ideal m and residual characteristic p, and let e be the absolute ramification index, given
by pV =me . The ideal m is then stable under divided powers if and only if e < p, and it
carries topologically nilpotent divided powers if and only if e < p − 1. These are both
immediate consequences of the formula recounted earlier above giving the valuation of n!.

Ex. 6)Example 4.1.15. If A is a Z(p)–algebra, then the operations γn are determined by the single
operation γp =π. Due to the invertibility of (p−1)! in A, the early divided powers γ0, γ1,
. . . , γp−1 are all fully determined. For a generic n, we take its p–adic expansion

n = a0+ a1 p + · · ·+ ar p r ,

with 0≤ ai ≤ p − 1 and ar 6= 0, from which we then calculate

γn(x) = cn xa0π(x)a1(π2(x))a2 · · · (πr (x))ar ,

where πi is the i th iterate of π and where

cn =
1
n!
(p!)

∑

i ai (1+p+···+p i−1)

is an invertible element of Z(p).

Pb.Question 4.1.16. What are some general conditions on π so that π is of the form γp? In
the specific case where J 2 = pJ = {0}, a function π : J → J to come from a divided power
structure if and only if π is additive and p–linear.
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2. Site cristallin d’un
schéma

4.2. The crystalline site of a scheme.

Definition 4.2.1. Let S be a scheme, I a quasi-coherent ideal of OS , and γ a divided power
structure on I for which Berthelot’s condition is satisfied: (n−1)!I (n) = 0 for n sufficiently
large. For an S–scheme X , we now give the definition of the crystalline site associated to
(X , S, I ,γ ).

2.1 Objects du site Objects: The objects consist of triples (U ⊆U ′,γU ′ )/S , where U is a Zariski open in
X , U ⊆U ′ is a nilimmersion,17 and γU ′ is a divided power structure on the ideal J
of OU ′ associated to the subscheme U ⊆U ′, satisfying an additonal compatibility
condition with the divided power structure γ on I , which we express locally in
affines X = SpecA, U = SpecB , and U ′ = SpecB ′:
(1) On I B ′, there exists a divided power structure which extends that of I .18

(2) The divided powers on I B ′ and on J coincide on the intersection J ∩ I B ′.
(Alternatively, there exist divided powers on J + I B ′ which are compatible with
the divided powers of J and of I .)

2.2 Morphismes du
site.

Morphisms: A morphism from (U , U ′) to (V ,V ′) is an inclusion U ⊆ V and a
commuting morphism of schemes U ′→V ′ such that the divided power structures
on the associated ideals are compatible.

2.3. Topologie du site. Topology: Finally, we place the “Zariski topology” on the crystalline site: the least
fine topology such that, for all objects U ⊆ U ′, the covering families are those
families of moprhisms (Ui , U ′i )→ (U , U ′) where U ′i →U ′ is a covering of U ′ by
Zariski opens and where Ui =U ×U ′ U ′i .

2.4 Definition 4.2.2. The topos associated to the crystalline site is called the crystalline topos.
We will denote it as (X |S , I ,γ )cris or, when no confusion is possible, as (X |S )cris or even as
Xcris.

2.5 Description
d’un objet du topos
cristallin.

Definition 4.2.3. Let F ∈Xcris be a sheaf of sets over the crystalline site. To every object
(U , U ′) of the crystalline site19 we associate a sheaf F(U ,U ′) for the Zariski topology on U ′

by setting
F(U ,U ′)(V

′) = F (U ×U ′ V
′,V ′)

for every open V ′ ⊆U ′. To every morphism (u, u ′) : (V ,V ′)→ (U , U ′), we associate the
morphism of sheaves

u\ : (u ′)∗F(U ,U ′)→ F(V ,V ′).

This construction respects composition, and u\ is an isomorphism if u ′ is an open im-
mersion. Conversely, giving such a family of sheaves F(U ,U ′) together with transition
morphisms u\ satisfying these properties determines a unique object of Xcris.

Remarque. Remark 4.2.4. There are other variants of the crystalline site, which we will mention only
in passing, since we will not make use of them: there is the infinitesimal topos, which is
the same definition but without divided powers, and there is the stratified topos, where one
takes as objects the thickenings U ⊆U ′ endowed with a retraction.

16In fact, it suffices just that J ⊗B→ J B be an isomorphism.
17One also says that U ⊆U ′ is a “(nilpotent) thickening”.
18This will hold, for example, if B ′ is A–flat or if I is principal.
19Of course, we are abbreviating (U ⊆U ′,γU ′ ).



BARSOTTI–TATE GROUPS AND DIEUDONNÉ CRYSTALS 35

2.6 Le faisceau
d’anneaux OX /S

Definition 4.2.5. By considering the sheaf OU ′ for each pair (U , U ′), Definition 4.2.3
defines a sheaf of local rings OX /S on Xcris. As usual, it may also be constructed as the sheaf
associated to the presheaf

(U , U ′) 7→ Γ (U ′,OU ′).

This gives rise to a notion of OX /S–modules on the crystalline site: such an OX /S–module
F is determined by giving OU ′–module structures on the sheaves F(U ,U ′), such that for
each u : (V ,V ′)→ (U , U ′) the morphism u\ induces a homomorphism of OV ′–modules
u\ : u∗F(U ,U ′) → F(V ,V ′).

20 A sheaf of modules on Xcris such that all the maps u\ are
isomorphisms is called a special sheaf of modules.

2.7. Cristaux

Définition

Definition 4.2.6. A special sheaf of modules F is called a crystal in modules. If the sheaves
F(U ,U ′) are additionally all quasicoherent (resp. locally free) OU ′–modules, then we say that
F is a quasicoherent (resp. locally free) crystal in modules.

Proposition.Proposition 4.2.7. An OX /S –module is quasicoherent (resp. locally free) if and only if it is a
quasicoherent (resp. locally free) crystal in modules, i.e., in these cases specialness is redundant.

�

2.8. F–Cristaux.Definition 4.2.8. More generally, let F be a category fibered over Sch/S . An F–crystal
assigns to every object (U , U ′) of the crystalline site an object F(U ,U ′) of ObF(U ′), where
F(U ′) denotes the fiber category of F over U ′, and it assigns to every morphism v : (V ,V ′)→
(U , U ′) an isomorphism

u : u∗F(U ,U ′)→ F(V ,V ′)

which altogether satisfy the usual transitivity conditions.

Remark 4.2.9. The notion of crystal is often more interesting than that of a crystalline
sheaf.

3. Relation entre
cristaux et vecteurs de
Witt

4.3. Relation between crystals and Witt vectors. Let S be a scheme over ΛN =Z/pnZ.
We will consider three topoi associated to S:

(1) The Zariski topos SZar.
(2) The crystalline topos Sn−cris := (S |Λn

, pΛn ,γ )cris, i.e., the ringed crystalline topos
(of Berthelot) of S relative to Λn at the ideal pΛn with the canonical divided power
structure.

(3) The “Witt topos”, which we now introduce. LetWn be the scheme of Witt vectors
of length n, and letWn(OS ) be the sheaf of rings

U 7→Wn(Γ (U ,OU ))

on SZar. The Witt topos Sn−Witt is then the ringed topos

Sn−Witt = (SZar,Wn(OS )).

Supposing that S is of characteristic p, we will now define morphisms of ringed topoi

ψn : Sn−Witt→ Sn−cris, ϕn : Sn−cris→ Sn−Witt

20Here, the inverse image is being calculated in the sense of modules.
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satisfying ϕnψn = F n
Wn

, by which we mean the identity morphism on the objects of Sn−Witt

and the nth power of the Frobenius endomorphism of (Wn)Fp
on the sections ofWn(OS ).

We will do this in several steps.

3.1 Lemme Lemma 4.3.1. There is a unique divided power structure on the augmentation ideal of
Wn(OZ(p)) over OZ(p) .

Proof. First, note that the Verschiebung induces an isomorphism

V : Wn(B)
∼−→ ker{Wn(B)→ B},

so to define γN on the augmentation ideal of (Wn)Zp
we may instead define the composite

γN ◦V on all ofWn . For an Z(p)–algebra B and a point x ∈Wn(B), we set

γN V (x) =
pN−1

N !
V (xN ),

which is well-defined because pN−1/N ! lies in Z(p) andWn(B) is a Z(p)–algebra.
To show that this defines a divided power structure and that it is unique, we consider

the homomorphism ϕ : Wn→O n used in Section 1.1 to define the ring structure ofWn .
This morphism satisfies

ϕ ◦V = p ·V ′ ◦ϕ,

where V ′ is the endomorphism (x1, . . . , xn) 7→ (0, x1, . . . , xn−1) in O n . Because this mor-
phism is also multiplicative, one may thus write

ϕγN V (x) = ϕ
�

pN−1

N !
V (xN )

�

=
pN−1

N !
ϕ(V (xN )) =

pN−1

N !
pV ′(ϕ(xN ))

=
pN

N !
[V ′(ϕ(x))]N =

1
N !
[p ·V ′(ϕ(x))]N = 1

N !
[ϕ(V (x))]N .

Setting y =V (x), this gives

ϕ(γN (y)) =
1

N !
ϕ(yN ),

which shows γN to satisfy the axioms of a divided power structure. As Zp is integral, this
equality uniquely determines

γN (y) = (0, g1, . . . , gN ) ∈Wn(B),

where the gi are polynomials with coefficients in Zp (and not merely inQ), and hence γN

determines a divided power structure on the augmentation ideal (rather than its rational-
ization). Since Z(p) is integral, this divided power structure is furthermore unique. �

Remark 4.3.2. It follows that if X is a scheme of characteristic p, one may consider
the scheme XWn

= SpecWn(OX ) = (X ,Wn(OX )) with the same topological space as X
but with structure sheaf Wn(OX ) as a thickening of X endowed with divided powers
compatible with those of Λn . For X an open of S , XWn

is then an object of the crystalline
site of S over Λn . Thus, every crystal in modules (resp. algebras, resp. . . . ) over S defines a
module (resp. algebra, resp. . . . ) over SWn

.



BARSOTTI–TATE GROUPS AND DIEUDONNÉ CRYSTALS 37

3.2 Définition de
ϕn : Sn−Witt→ Sn−cris

Definition 4.3.3. We define a functor

ψ∗n : Sn−cris→ Sn−Witt,

{F : (U , U ′) 7→ F (U , U ′)} 7→ {ψ∗n F : U 7→ F (U , UWn
)}

where (U , UWn
) is the natural thickening defined above.

Remark 4.3.4. The functor ψ∗n interacts with OSn−cris
according to

ψ∗nOSn−cris
: U 7→Wn(Γ (U ,OU )),

and the ring homomorphism

ψ∗nOSn−cris
→Wn(OS )

is the identity.

3.3 Définition de ϕn
Let A be a Λn–algebra, and let A→A0 a surjective ring homomorphism such for each

x in the kernel J and each 0≤ i ≤ n, we have p i x pn−i = 0.21 We then consider the ring
homomorphism

Φn+1 : Wn+1(A)→A,

(x1, x2, . . . , xn+1) 7→ x pn

1 + p x pn−1

2 + · · ·+ pn−1x p
n + pn xn+1.

This homomorphism is zero on V nWn+1(A) = ker{Rn : Wn+1(A)→Wn(A)}, and hence
it defines the following morphism ϕ′ = ϕn F on the quotient:

ϕ′ : Wn(A)→A,

(x1, . . . , xn) 7→ x pn

1 + p x pn−1

2 + · · ·+ pn−1x p
n .

Because of our standing assumption on the ideal J , it follows that ϕ′ is zero onWn(J ) and
thus that it factors through a homomorphism ξn,A : Wn(A0)→ A. The construction of
ξn,A is functorial in A.

Definition 4.3.5. We now use the above to define ϕn : Sn−cris→ Sn−Witt. The underlying
morphism of topoi is given by

ϕ∗n : Sn−Witt→ Sn−cris

{F : U 7→ F (U )} 7→ {ϕ∗n F : (U , U ′) 7→ F (U )}.

Using the notation of Definition 4.2.3), this expands to give ϕ∗n F (U , U ′) = i∗F /U , where
i denotes the nil-immersion U ⊆U ′. In particular,

ϕ∗nWn(OS ) : (U , U ′) 7→Wn(Γ (U ,OU )),

so that we may take for the ring homomorphism ξ : ϕ∗nWn(OS )→OSn−cris
the map

(U , U ′) 7→ (ξn,Γ (U ′,OU ′ )
: Wn(Γ (U ,OU ))→ Γ (U

′,OU ′)).

3.4 Study of
the composite
ϕnψn : Sn−Witt →
Sn−Witt

Lemma 4.3.6. These functors satisfy ϕnψn = F n
Wn

.

21For example, this condition is satisfied if J is an ideal with divided powers. To wit, if pn x = 0 for all x ∈ J ,
then p i x pn−i

= p i pn−i !x(p
n−i ) = pn y = 0.
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Proof sketch. It is clear that the underlying morphism of topoi ψ∗nϕ
∗
n is the identity, but

we must work to show that the ring homomorphism

ψ∗n F : Wn(OS ) =ψ
∗
nϕ
∗
nWn(OS )→ψ∗nOSn−cris

Id−→Wn(OS )

is given by

U 7→ {F n : Wn(Γ (U ,OU ))→Wn(Γ (U ,OU ))}.

To accomplish this, we will use the construction of ξn,A in the case where A0 is an Fp–
algebra, A=Wn(A0), and J is the augmentation ideal. Take ε to be the following multi-
plicative system of representatives:

ε : A0→A=Wn(A0),

ε : x 7→ (x, 0, . . . , 0)

In general, we lift (x1, x2, . . . , xn) ∈Wn(A0) as (ε(x1),ε(x2), . . . ,ε(xn)) ∈Wn(A), which
gives

ξn,A(x1, . . . , xn) =
n−1
∑

i=0

p iε(x pn−1

i+1 ) = (x
pn

1 , . . . , x pn

n ),

because, following Proposition 1.1.5, one has
n−1
∑

i=0

p iε(yi+1) = (y1, y p
2 , . . . , y pn

n ).

The remainder of the study of the composite ψnϕn on Sn−cris is left as an exercise. �

4. Cas d’un schéma
parfait

4.4. The case of a perfect scheme. In this section, we take S to be of characteristic p
and investigate the crystalline topos Scris = (S |Z(p) , pZ(p)) of S over Z(p). In fact, we may
work over either of Z(p) or Zp : for any nil-immersion (U , U ′), p is locally nilpotent on
U ′, so if U is furthermore quasicompact, then (U , U ′) is an object of the crystalline site
of S over Λn for some n� 0. We may thereby identify the crystalline sites of S over Z(p)
and over bZ(p) =Zp .

4.1. Notations Begin by considering a ring A and an ideal I of A. For every integer n ≥ 1, we define
an ideal In as

In = 〈p
i−1x pn−1 | x ∈ I , 1≤ i ≤ n〉.

These ideals form a descending sequence, and they are related to the original ideal by I1 = I ,
pn−1I ⊆ In . If the original ideal I carries divided powers, then this inclusion becomes the
equality pn−1I = In , as for each y ∈ I we then have

p i−1x pn−i
= p i−1 p!x (p

n−1) = pn−1y.

If we suppose moreover that p belongs to I , and hence pn belongs to In , we gain the
additional inclusions

pnA⊆ In = pn−1I ⊆ pn−1A.

4.2. Théorème Theorem 4.4.1. Let A be a ring and I ⊆ A an ideal. Suppose that A1 = A/I is of charac-
teristic p > 0 and perfect, and suppose that there is an equivalence A

∼−→ limA/In , i.e., A is
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separated and complete for the topology defined by the ideals In .22 There then exists a unique
homomorphism u : W(A1)→A, compatible with the augmentations of A and ofW(A1), with
the following additional properties:

(1) For all n, we have

u−1(In)⊇V nW(A1) = ker{W(A1)→Wn(A1)}.

(Consequently, u is continuous.)
(2) For ε : A1 → W(A1) a multiplicative section, the image R ⊆ A of uε is the set

of those x ∈ A such that for all n there is a y ∈ A with y pn = x. The set R is
stable under multiplication, and the function R→A1 induced by the augmentation
A→ A1 is bijective. Hence, it admits an inverse function α : A1→ R⊆ A which is
multiplicative.

(3) For x = (x1, x2, . . . , xi , . . .) ∈W(A1), one has

u(x) =
∑

i≥0

p iα(x p−i

i+1)

as a convergent series in A.

Proof. We will show first that every homomorphism u : W(A1)→A compatible with the
augmentations automatically possesses the other properties.

(1) Since A1 is of characteristic p, it follows that pn ∈ In . The map u then sends
pnW(A1) =V nW(A1) to In .

(2) Because the composition of uε : A1→ R with the augmentation is the identity, it
follows that u is injective and hence bijective. Using this, we define α= uε and
we turn to the characterization of it image. As A1 is perfect and isomorphic to R
by α, for every n we have R= Rpn

, from which it follows that the image of α is
contained in the claimed set. Conversely, we then consider an element x ∈A of
the desired type: for each n there is a choice of yn with y pn

n = x. Let x and yn be
the residue classes of x and of yn in A1, so that y pn

n = x. Appealing to perfection
yields yn = x p−n

, hence v = yn −α(x)p
−n ∈ I . From this we deduce

x = y pn

n = (α(x)p
−n
+ v)p

n
= α(x)+ v ′,

where v ′ = pn v+ · · · belongs to pn I ⊆ In+1. As A is separated, we at last conclude
x = α(x).

(3) Using α= uε and Proposition 1.1.5, one has

x = (x1, x2, . . . , xi , . . .) =
∑

i≥0

p iε(xi1
)p
−i

and hence

u(x) =
∑

i≥0

p iα(x p−i

i ).

22The second condition is satisfied when I is nilpotent, or when I has divided powers and A is separated and
complete for the p–adic topology.
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The second property uniquely determines α using the formula in the third property,
from which it follows that u is also unique. It remains to actually construct such a homo-
morphism u, and to accomplish this we define a family of morphisms

un : Wn(A1)→A/In

which are compatible with the transition morphisms and which satisfy u1 = Id(A1). As
the kernel I/In of A/In→A/I =A1 satisfies the condition in Section 4.3, we produce a
homomorphism

ξn,A/In
: Wn(A1)→A/In

obtained as a quotient of the homomorphism

ϕn F = ϕ′ : Wn(A/In)→A/In

ϕ′ : (x1, . . . , xn) 7→ x pn

1 + p x pn−1

2 + · · ·+ pn−1x p
n .

The morphism ξn,A/In
does not commute with the transition map, but one at least has the

following commutative diagrams:

Wn+1(A1) A/In+1

Wn(A1) Wn(A1) A/In .

ξn+1,A/In+1

R

F ξn,A/In

Again appealing to the perfection of A1, we may construct homomorphisms

un : Wn(A1)→A/In

compatible with the transition morphisms by setting un = ξn,A/In
◦ F −n . In particular, for

n = 1 we have u1 = Id(A1). �

4.3 Proposition Proposition 4.4.2. Rather than suppose A1 to be perfect, instead assume only the second
condition of Theorem 4.4.1. Then for all perfect rings B1 of characteristic p > 0 and for all
homomorphisms v1 : B1→A1, there exists a unique homomorphism v : W(B1)→A which is
compatible with v1 on the augmentation ideals. The homomorphism v is continuous and it
again satisfies

v−1(In)⊆V nW(B1) = ker{W(B1)→Wn(B1)}.

Proof sketch. This proof is a repeat of the preceding calculation after replacing the homo-
morphism un with the homomorphism

vn = ξn,A/In
◦Wn(v1) ◦ F −n : Wn(B1)→A/In . �

4.4 Corollaire Corollary 4.4.3. For S a perfect scheme of characteristic p, (S, SWn
) is the terminal object

of the crystalline site of S over Λn , where SWn
= Spec(Wn(OS )) denotes the thickening of

Lemma 4.3.1.

Proof. The claim is that for (U , U ′) any object of the crystalline site of S over Λn , there
exists a unique homomorphism (in the site)

f : (U , U ′)→ (S, SWn
).
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One deduces immediately from Theorem 4.4.1 that for every affine open V ′ = SpecA of
U ′, one may set V =V ′×U ′U = SpecA1 and thereby determine a unique homomorphism

U : Wn(Γ (V ,OV ))→ Γ (V
′,OV ′)

compatible with the augmentations. These homomorphisms glue to define the desired
unique homomorphism

u : f ∗Wn(OS ) =Wn(OU )→OU ′ ,

itself also compatible with the augmentations. �

4.5 PropositionProposition 4.4.4. For S be a perfect scheme of characteristic p, the category of crystals in
quasicoherent (resp. locally free) modules of the crystalline site of S over Λn is equivalent to the
category of those sheaves of quasicoherent (resp. locally free)Wn(OS )–modules.

Proof. We claim more generally that if F is a fibered category over Sch/Λn
, then the category

of F–crystals on S is equivalent to the fiber F(SWn
). Under this correspondence, a crystal

F is sent to the object F(S,SWn
) ∈ F(FWn

). Conversely, an object G of F(SWn
) is sent to the

crystal defined over every thickening (U , U ′) by the formula

G′(U ,U ′) = f ∗G,

where f : (U , U ′)→ (S, SWn
) is the canonical morphism. The particular case of quasico-

herent (resp. locally free) modules then follows from Proposition 4.2.7. �

4.6 PropositionProposition 4.4.5. Let S be a perfect scheme of characteristic p, and let F be a fibered category
over Sch/Z(p) which is “gluable for the Zariski topology”—i.e., for every scheme X , the restriction

of F to the site of Zariski opens of X is a stack.23 The category of F–crystals over S is equivalent
to the category limF(SWn

) of systems of objects Gn ∈ F(SWn
)which satisfy Gn = i∗Gn+1, where

i denotes the canonical immersion SWn
→ SWn+1

.

Proof. To the F–crystal F we associate the system Gn = F(S,SWn
) ∈ F(SWn

). Conversely,
given a system (Gn) ∈ limF(SWn

) and a thickening (U , U ′) in the site, we obtain F(U ,U ′) ∈
F(U ′) by gluing the objects F(V ,V ′) ∈ f ∗Gn , where V ′ is a quasicompact open of V (so
that pn = 0 for some n) and where f still denotes the canonical homomorphism

f : (V ,V ′)→ (S, SWn
). �

ExempleExample 4.4.6. The category crystals in locally free modules of finite type is equivalent to
the category of projectiveW(OS )–modules of finite type.

4.7We now generalize away from the case where S itself is perfect, supposing instead that
S is a scheme over a perfect field k of characteristic p. In this setting, we have W =W(k)
and Wn =Wn(k).

PropositionProposition 4.4.7. For (U , U ′) a thickening of the crystalline site of S over Λn , there exists
exactly one homomorphism

g : (U , U ′)→ (Spec k , SpecWn).

This homomorphism is additionally compatible with the divided power structures.
23Cf. Giraud, Cohomologie Non Abélienne.
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Proof. The proof is an immediate consequence of Proposition 4.4.2 and is also analogous
to Corollary 4.4.3. �

Corollaire Corollary 4.4.8. Let S be a scheme over a perfect field k. The crystalline sites of S over Z(p)
(resp. over Λn ) and over W (resp. over Wn ) are isomorphic. �

5. Cas d’un schéma re-
latif lisse

4.5. Case of a relatively smooth scheme. Let (S, I ,γ ) be as in Section 4.2, let X be an
S–scheme, and let F be a special module on the site NilCris(X /S, I ,γ ). We now aim to

Ed. note: NilCris

hasn’t been intro-
duced yet.

relate the data of a crystal, which is naively quite extensive and involved, to a more polite
presentation in terms of differential geometry.

Let∆1(X ) denote the first infinitesimal neighborhood of X in X ×S X . On the ideal
determining the closed subscheme X of∆1X , we may define divided powers by declaring
γ1 to be the identity and γn to be the zero map for n ≥ 2, thereby obtaining an object
X ⊆∆1(X ) of the nilpotent crystalline site. The commutative diagram

X X

∆1(X ).

IdX

π1

π2

interrelates the values of the special module F on X and on∆1X via the isomorphisms

π∗1(FX⊆X )
∼−→ FX⊆∆1X

∼←−π∗2(FX⊆X ).

Définition (5.1) Definition 4.5.1. A connection on an OX –module M is an infinitesimal descent datum

ϕ : π∗1(M )
∼−→π∗2(M )

which satisfies the usual cocycle condition for the diagram

∆1
2(X ) ∆1(X ) X ,

where∆1
2 is the first infinitesimal neighborhood of X in X ×S X ×S X .

Remark 4.5.2. Such a datum is equivalent to an S–linear morphism

∇ : M →Ω1
X /S ⊗OX

M

which, for any local section a of OX and any local section m of M , satisfies

∇(am) = da⊗m+ a∇m.

Definition 4.5.3. Recall that one says that a connection is flat when the OX –linear mor-
phism

∇ : M →Ω1
X /S ⊗OX

M

and the morphism

Ω1
X /S ⊗M →Ω2

X /S ⊗M

ω⊗ f 7→ dω⊗ f −ω⊗∇ f

compose to zero.

Définition (5.2) Definition 4.5.4. Let F and G be two modules with connections ϕF and ϕG respectively.
A morphism u : F →G is said to be horizontal when the following diagram commutes:
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π∗1F π∗2F

π∗1G π∗2G.

ϕF

π∗1(u) π∗2(u)

ϕG

Our discussion of∆1X defines a functor
�

crystals over X /S
in quasicoherent modules

�

→
�

modules over X
with a connection

�

.

Proposition (5.4)Proposition 4.5.5 (Berthelot). For X smooth over S, this functor becomes an equivalence of
categories between special quasicoherent modules on the nil-crystalline site of X over S and
quasicoherent OX –modules endowed with a flat connection. �

We also announce a second theorem of Berthelot, where the nilpotence condition on
the crystalline site is relaxed somewhat.

Proposition (5.5)Proposition 4.5.6 (Berthelot). For X smooth over S and p nilpotent on S, the same functor
induces an equivalence of categories between special modules on the Berthelot crystalline site
and the category of OX –modules endowed with a nilpotent connection of null curvature. �

We won’t prove these results, but we will sketch the significance of the nilpotence
condition on the connection. Let S0 be the closed subscheme of S defined by the ideal
pOS , let X0 be the restriction X0 =X ×S S0, and let F be an OX –module endowed with a
flat connection∇, which in turn induces a flat connection∇0 on the inverse image F0 of
F over X0. One associates to∇ (and to∇0) a morphism

∇ : DerS (OX ,OX )→ EndOS
(F , F ),

D 7→
�

F
∇−→Ω1

X /S ⊗ F
D⊗1−−→ F

�

.

This construction enjoys the following properties:

(1) ∇(D1+D2) =∇(D1)+∇(D2).
(2) ∇(aD) = a∇(D).
(3) ∇(D)(a f ) =D(a) f + a∇(D)( f ).

If X is smooth over S , the data of a∇ satisfying these properties is equivalent to that of a
connection, and the additional statement that the connection is flat corresponds to the
relation∇([D1, D2]) = [∇(D1),∇(D2)].

Over S0, we follow Katz and define the the p–curvature,

Ψ : DerS0
(OX0

,OX0
)→ EndS0

(F0, F0),

D 7→ ∇0(D
p )− (∇0(D))

p .

This function Ψ possesses the following properties:

(1) For all D , Ψ(D) is OX0
–linear.

(2) Ψ is additive.
(3) Ψ(aD) = a pΨ(D).
(4) Ψ(D),∇0(D), and∇0(D

p ) commute with each other.
(5) As D varies, all of Ψ(D) commute with one another.
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Définition (5.6)Definition 4.5.7. One says that the module F is nilpotent if the following equivalent
conditions are true, each of which is local for the Zariski topology:

(1) The endomorphisms∇0(Di ) are nilpotent for a suitable base {Di} of DerS (OX ,OX ).
(2) For all D , Ψ(D) is nilpotent.
(3) For all nilpotent D ,∇(D) is nilpotent.

6. Cristaux sur un
schéma sur un corps
parfait de caractéris-
tique p

4.6. Crystals on a scheme over a perfect field of characteristic p. Let k be a perfect
field of characteristic p, and let X be a k–scheme. Recall that in Corollary 4.4.8 we
found the sites Cris(X0/W(k)) and Cris(X0/Zp ) to be equivalent. Moreover, for a fibered
category F over Sch, recall also that there is an equivalence of categories

CrisF(X0/W(k))
∼−→ limCrisF(X0/Wn(k)).

Let us suppose that X0 is smooth over k and that for all n, X0 lifts to a smooth scheme Xn
overWn(k) such that Xn 'Xn+1⊗Wn—i.e., each of the following squares is a pullback:24

· · · Xn Xn+1 · · ·

· · · SpecWn(k) SpecWn+1(k) · · · .

The category of special modules on Cris(X0/W(k)) is then equivalent to the category of
gluable systems of modules Fn over Xn , each endowed with a compatible flat connection.
By passing to the limit, one produces an equivalence with the category of F –modules on
the formalW(k)–schemeX = colimXn , endowed with a “formal” flat connection.

We now consider the case where X0 is additionally proper over k and that it lifts to a
proper and flat scheme X overW(k), so that we might apply GAGA. The category of
special modules over Cris(X0/W(k)) is then equivalent to the category of OX –modules en-
dowed with a flat connection. Let K be the field of fractions ofW(k), select an embedding
K ⊆C. The data of an OX –module with a flat connection then defines an object of the
same type over XK —but, by GAGA, this is equivalent to a module with the same structure
over the complex variety X (C), which is in turn equivalent to giving a local coefficient
system.

Remark 4.6.1. In the case whereX is not algebraizable, one may instead consider Tate’s
rigid analytic space associated to X . Khiel [Kie67] has shown in this context that the
crystalline cohomology of X0 is essentially the same as the de Rham cohomology of this
rigid analytic space.

7. Indications sur la co-
homologie cristalline

4.7. Indications on crystalline cohomology. Let us return to fully general conditions
by suppoing that the ideal I over S satisfies Berthelot’s condition. Having set up the
crystalline site, we are naturally interested in the associated cohomology objects:

(1) The cohomology groups

H ∗cris(X /S) =H ∗cris(X /S, I ,γ ) :=H ∗((X /S, I ,γ )cris,OX /S ).

(2) The complex of crystalline cohomology sheaves

H cris(X /S) =H cris(X /S, I ,γ ) :=R( fcris)∗(OX /S ),

24For example, this will be the case when X0 is affine and smooth over k.
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where fcris : Xcris→ Scris is the morphism of topoi induced by f .
(3) The associated cohomology groups of the sheaves H ∗cris(X /S), which are crystals

in modules on the ringed topos Scris.
25

There are a number of indications that these give a “good” cohomology theory, primarily
when X0 =X ×S S0 is proper and smooth over S0 =Var(I ). For instance:

Invariance: There are canonical isomorphisms

H ∗cris(X /S) ∼−→H ∗cris(X0/S),

H cris(X /S) ∼−→H cris(X0/S).

Link with de Rham cohomology: If X is smooth over S, one has

H ∗cris(X /S) ∼−→H ∗dR(X /S) :=H ∗(X ,Ω∗X /S ),

H ∗cris(X /S)S
∼−→H ∗dR(X /S)S :=R∗ f∗(Ω

∗
X /S ),

where Ω∗X /S is the de Rham complex of X relative to S and

H ∗cris(X /S)S =R
∗( fcris)∗(OX /S )S

is the restriction of the complex of crystalline sheaves R∗( fcris)∗(OX /S ) to the
underlying Zariski site. The connection on R∗( fcris)∗(OX /S )S induces one on
H ∗dR(X /S), and it turns out to be the Gauss–Manin connection.

These comparison theorems prove in particular that if S is the spectrum of a
characteristic 0 field, then the crystalline cohomology of X gives the “good” Betti
numbers.26

Deligne’s results in characteristic 0: Just to pick one of many: if S is the spectrum
of the complex field, and if X is locally of finite type over S, then one has a
canonical isomorphism

H ∗cris(X /S) =H ∗(X (C),C).

Change of base (at the level of the derived category): Given a morphism of bases
u : (S ′, I ′,γ ′)→ (S, I ,γ ), then for X0 flat and coherent over S0 there is an induced
map

u∗(R( fcris)∗(OX /S ))
∼−→R( f ′cris)∗(OX ′/S ′),

where f ′ : X ′→ S ′ is the morphism deduced from f : X → S by base extension
from S to S ′.

Künneth formula: For two relatively coherent S–schemes X and X ′ with X0 and
X ′0 smooth,

R(( f ×S f ′)cris)∗(OX×S X ′/S )
∼−→R( fcris)∗(OX /S )

L
⊗R( f ′cris)∗(OX ′/S ).

Finiteness: If X0 is proper and smooth over S0, the complexR( fcris)∗(OX /S ) is perfect—
i.e., it is Zariski-locally isomorphic to a complex L∗ such that all the Li are locally
free and of finite type, and Li = 0 except for a finite number of i .

25One may also take cohomology with more general coefficients, for example with coefficients in a crystal
of quasicoherent modules. . . .

26In particular, this reduces to the case k =C, and from there one proceeds by the transcendent way, utilizing
a theorem of [Gro66].
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Chern classes: There exists a theory of crystalline Chern classes [BI70].
The case of a scheme over a field k of characteristic p: Let X0 be a scheme over

k, and let Λn =Z/pnZ. Then, by passing to the limit in the crystalline cohomolo-
gies relative to Λn , one obtains cohomology groups (and cohomology sheaves)

H ∗cris(X0) := lim H ∗cris(X0/Λn), H cris(X0) := lim H cris(X0/Λn).

Supposing further that k is perfect and that X0 is proper and smooth over k, then
H cris(X0) is a perfect complex of W =W(k)–modules (see [SGA72, p. 31-39])
whose cohomology objects are the H i

cris(X0). This cohomology is functorial,
commutes with base change, and satisfies a Künneth formula. Hence, modulo
torsion over W , one has

H ∗cris(X0)⊗H ∗cris(Y0)
∼−→H ∗cris(X0×k Y0).

If f0 : X0 → k lifts to f : X →W with f proper and smooth, then by setting
Xn =X ×W Wn one obtains isomorphisms

H ∗cris(X0) = lim H ∗cris(Xn/Wn)
∼−→ lim H ∗dR(Xn/Wn)

∼−→H ∗dR(X /W ),

and in the proper case one recovers the invariance of de Rham cohomology for
different lifts of X0.

It may be that one has a lift not to W but to a complete valuation ring V of
mixed characteristic and with residue field k. In this case, one has W ⊆V and,
writing L for the field of fractions of V ,

H ∗dR(XL)'H ∗cris(X0)⊗W L.

The groups H ∗dR(XL) are endowed with a natural filtration (provided by hyperco-
homology), and the lift gives a filtration on H ∗cris(X0)⊗W L.

Lacunes de la théorie Remark 4.7.1. There are many lacunae of this theory, certainly generally but also even for
schemes of finite type over a field k of characteristic p.

(1) If X0 is smooth over k but not proper (or vice versa), one finds pathological
invariants which do not satisfy any manner of finiteness. To correct this, I imagine
that one must apply the constructions of Monsky–Washnitzer and define an “M-
W-crystalline” site—but I fear that in this process we will lose torsion phenomena.

(2) Except in characteristic zero (i.e., the case treated by Deligne), I do not know what
will constitute a good finiteness condition for coefficients more general than the
structure sheaf, especially those which play the role of sheaves of transcendent
algebraically constructible complex vector spaces and which will be will be stable
under the usual operations. Even over C, the theory of Ri f∗ in Deligne’s regime
has not been developed in a purely algebraic fashion.

(3) Even in the case of a proper and smooth scheme over a perfect field k of positive
characteristic, we have not yet produced a duality theorem à la Gysin.

5. MAIN COURSE

Chapitre V. Pro-
gramme

We now turn to the main subject of these notes.
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Foncteur de
Dieudonné

5.1. The Dieudonné functor. Let S be a scheme on which p is locally nilpotent, and
let Scris be the crystalline topos of S relative to Z(p). We will sketch a defintion (cf.
Remark 5.4.7) of an additive functor

D∗ : BT (S)op→ CrisLocFree(S)

compatible with inverse images.27 Writing S0 for the reduction of S to characteristic p,
there is an equivalence of categories

CrisLocFree(S) ∼−→ CrisLocFree(S0)

which allows us to reduce to the characteristic p case, i.e., it is equivalent to define

D∗ : BT (S0)
op→ CrisLocFree(S0).

Let us therefore work over S0. Using fG0
, vG0

, and the compatibility of D∗ with inverse
images, we see that M =D∗(G0) is endowed with morphisms FM , VM

M (p) = f∗S (M ) M
FM

VM

which satisfy VM FM = p and FM VM = p.

Definition 5.1.1. Such a triple (M , FM ,VM ) is called an F –V –crystal or a Dieudonné
crystal. The functor

D∗ : BT (S0)
op→ CrisF ,V (S0)

that we are pursuing will then merit the name “Dieudonné functor”.

We will see that it commutes with change of base and, when S0 is the spectrum of a
perfect field, it coincides with the previous isomorphism with the usual Dieudonné functor.
In this latter case, we have noted already that this gives an equivalence of categories, so
that D∗(G0) can be used to reconstitute G0. It then follows in the general case that the
F –V –crystal M =D∗(G0) on S0 permits the recovery of the fibers of G0 over the perfect
fields over S0. This gives us the sense that we have grasped the essential parts of the family
of fibers (G0)s via the crystal M =D∗(G0). This also emboldens us to ask whether we will
have accomplished even more:

Problème 1Problem 5.1.2. Is the Dieudonné functor over a base S0 of characteristic p fully faithful?
Is its essential image formed of those F –V –crystals which are admissible (cf. Defini-
tion 5.3.1)?28

Problème 2Problem 5.1.3. Develop a Dieudonné theory for finite locally free p–groups over a base
S0 of positive characteristic p. If S0 is perfect, establish an antiequivalence between the
category of finite locally free p–groups over S0 which are flat over Λn and the category

27“Compatible with inverse images” here means a Cartesian functor on the category fibered in Barsotti–Tate
groups over bases where p is locally nilpotent.

28To give an answer, it seems that one must formulate Dieudonné theory for schemes in finite locally
free p–groups over S0, or at least for those which are flat over some Λn = Z/pnZ. This should give an
equivalence between the category of these groups and a category of F –V –crystals over S0 which are endowed
with supplementary structures (which are likely to be useless unless S0 is perfect). I have not managed to resolve
this, and it very probably involves giving a filtration on a certain object in a derived category. . .
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of locally freeWn(OS )–modules M , endowed with FM and VM which satisfy the usual
conditions.29

2. Filtrations asso-
ciées aux cristaux de
Dieudonné

5.2. Filtrations associated to Dieudonné crystals. For now, we return to the case of a
base scheme S on which p is locally nilpotent.

Definition 5.2.1. For a Barsotti–Tate group G over S , we define a filtration of the locally
free module D∗(G)S over S by a locally direct factor submodule30 Fil1 =ωG , giving rise
to an exact sequence

0→ωG→D
∗(G)S → t G∗ → 0.

This sequence is functorial in G and compatible with inverse images along S ′→ S.31

Definition 5.2.2. In general, we define a filtered F –V –crystal over S to be an F –V –crystal
M in locally free modules over S equipped with a specified filtration of MS by a locally
direct-factor submodule.

Remark 5.2.3. One may package both the Dieudonné module and this filtration into a
single functor

D∗ : BT (S)op→ CrisFilF ,V (S)
which is compatible with inverse images.

Remarque Remark 5.2.4. The knowledgeable reader should consider the above filtration to be equiv-
alent to the “Hodge filtration” on relative de Rham cohomology in dimension 1. We will
work to explain this later on.

Let S ′ be a thickening of S with divided powers, and let G be a fixed Barsotti–Tate
group over S . We propose to find all the (isomorphism classes of) embeddings of G into a
Barsotti–Tate group G′ over S ′ such that G′×S ′ S =G. There is a tight connection between
this problem and the filtration discussed above: by sending such a G′ to the filtration
on D∗(G′)S ′ = D∗(G)S ′ = D∗(G0)S ′ , one notes first that this extends the filtration on
D∗(G)S =D∗(G0)S and then that this assignment is a bijection between the isomorphism
classes of embedding and the set of filtration extensions. More precisely:

Théorème de déforma-
tion pour les groupes
de Barsotti–Tate

Theorem 5.2.5 (Deformation theory for Barsotti–Tate groups). Let S be a scheme with p
locally nilpotent, let S ′ a thickening of S with divided powers, and consider the functor

BT (S ′)→
�

(G ∈ BT (S), M ≤D∗(G)S )
�

�

�

�

�

M is a direct-factor submodule,
M prolongs the submodule Fil1D∗(G)S =ωG

�

.

This functor is an equivalence of categories if S ′ has nilpotent divided powers or if one restricts
to groups G, G′ are which are infinitesimal or ind-unipotent. �

Remarque Remark 5.2.6. If Problem 5.1.2 were to have an affirmative answer, then we could conclude
a description of the category of Barsotti–Tate groups over S in terms of filtered Dieudonné
crystals on S : noting that the ideal pOS is an ideal with divided powers, we may then apply

29An affirmative answer to this problem evidently gives an affirmative answer to the previous problem in
the case where S0 is a perfect scheme.

30It is thus locally free of finite type.
31In fact,ωG is the module of invariant differentials on the formal group G associated to G (which will be

constructed further on), and t G =ω
∨
G∗ is the Lie algebra associated to the Barsotti–Tate group G∗ dual to G.
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deformation theory to the case of the pair (S0, S). Note also that establishing a theory of
deformations in the general case (S, S ′) is equivalent to the particular case of a pair (S0, S)
due to the equivalence CrisLocFree(S) ∼−→ CrisLocFree(S0).

Problème 3Problem 5.2.7. Find a variant of deformation theory for finite locally free p–groups.

F –V –cristaux admissi-
bles en caractéristique
p

5.3. Admissible F –V –crystals in characteristic p. We return to the case of a scheme
of characteristic p. Based on the ideas sketched above, the reader might worry that
Problem 5.1.2 is definitely negative: since the Dieudonné crystalD∗(G0) is endowed with a
canonical filtration, perhaps one must instead work with a functor taking values in filtered
Dieudonné crystals. In fact, the filtration is uniquely determined by the Dieudonné crystal
structure itself, so that Problem 5.1.2 may be left as-stated, which we now explain.

Recall the morphisms of ringed topoi considered in Section 4.3:

(S0|Fp
) = (S0)1−cris (S0)Zar = (S0)1−Witt.

ϕ

ψ

Set M =D∗(G0), and let M0 be its restriction to the crystalline site relative to Fp . Using the
identities F V = p and V F = p, it follows that the composites in the following sequence
are zero:

M (p)
0

FM0−→M0

VM0−→M (p)
0

FM0−→M0.
In fact, more is true: for every Dieudonné crystal M and for every divided power thickening
of S0 of characteristic P , the preceding sequence is exact, hence one obtains subcrystals in
locally free modules:

KerVM0
= Im FM0

⊆M0, Ker FM0
= ImVM0

⊆M (p)
0 .

Setting MS0
=ψ∗(M0), we apply the results of Section 3.2 to deduce

ϕ∗(MS0
) = ϕ∗ψ∗M0 =M (p)

0 .

From this, we see
ϕ∗(Fil 1(MS0

)) =Ker FM0
(= ImVM0

)⊆M (p)
0 .

The faithfulness of ϕ and the preceding relation together completely determine the locally
direct-factor submodule Fil1 of MS0

.

Definition 5.3.1. We will say that an F –V –crystal in locally free modules M0 on the
crystalline site of S0 over Fp is admissible if there exists a locally direct-factor submodule
Fil1 of (M0)S0

such that the preceding relation is satisfied. This Fil1 is unique and determines
a filtration which we will call the canonical filtration. We also say that a Dieudonné crystal
M over S0 is admissible if its restriction M0 to the crystalline site relative to Fp is admissible.

Corollary 5.3.2. For a Barsotti–Tate group G over S0, M = D(G)S0
is admissible and the

filtration of MS0
envisioned in Section 5.2 is the canonical filtration. �

4. La théorie de défor-
mation pour les sché-
mas abéliens

5.4. Deformation theory for abelian schemes. Many of the considerations made thus
far for Barsotti–Tate groups in this Section apply just as well to abelian schemes. Abelian
schemes do not privilege any particular prime number, and so we must work with the
general nilpotent crystalline site. We seek a contravariant functor from the category of
abelian S–schemes to crystals on the nilpotent crystalline site of S, and repackaging the
ideas above yields the following:
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Definition 5.4.1. There is a functor

D∗ : AbSch(S)op→ CrisLocFreenil(S)

A 7→ R1( fcris)∗(OAcris
)

where fcris : Anilcris→ Snilcris is induced by f : A→ S.

Remark 5.4.2. A variant of the change-of-base theorem gives

D∗(A)S =H 1
dR(A/S) := R1 f∗(Ω

∗
A/S ).

In order to calculate D∗(A)S ′ for S ′ a locally nilpotent divided power thickening of S , one
selects an abelian variety A′ over S ′ into which A embeds [Mum65] and deduces

D∗(A)S ′ =H 1
dR(A

′/S ′).

The fact that H 1
dR(A

′/S ′) does not depend (up to isomorphism) on A′ is a consequence of
the “tapis of crystalline cohomology”.

The Hodge filtration on de Rham cohomology induces a filtration on D∗(A)S :

0 R0 f∗(Ω
1
A/S ) H 1

dR(A/S) R1 f∗(OS ) 0

0 t∨A D∗(A)S t A∗ 0,

where t∨A=ωA. The functor D∗ and the associated exact sequence are each functorial in A
and compatible with inverse images, so that there is a factorization

D∗ : AbSch(S)op→ CrisLocFreeFilnil(S)

through crystals in “filtered” (by two locally free stages) locally free modules. As before,
this construction sends an embedding of A into an abelian scheme A′ over S ′ in the
nilpotent crystalline site of S to the extension of the canonical filtration of D∗(A)S into
that of D∗(A)S ′ .

Théorème de déforma-
tion pour les schémas
abéliens

Theorem 5.4.3 (Deformation theory for abelian schemes). Let S be a scheme, and let S ′ be
a neighborhood with locally nilpotent divided powers of S. The functor

AbSch(S ′)→
�

(A∈ AbSch(S),Fil 1 ≤D∗(A)S ′)
�

�

�

�

�

Fil 1 a locally direct-factor submodule
prolonging Fil 1D∗(A)S =ωA

�

is an equivalence of categories. �

One may give a second interpretation of the functor D∗ on abelian schemes which
readily admits a quasi-inverse.

Definition 5.4.4. For an abelian scheme A over S, its universal vector extension is an
extension

0→ t∨A∗ → E(A)→A→ 0

which is universal among all extensions

0→V → E →A→ 0

with V a vector space.
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Lemma 5.4.5. There is a crystal E(A) in smooth groups on S such that E(A) =E(A)S .

Construction. Whatever the definition of E(A), it defines a functor

AbSch(S)→ CrisSmoothGpsnil(S)

which is compatible with base change. As the preceding isomorphism is also functorial
and compatible with change of base, one would like to define E(A) by

E(A) = S ′ 7→E(A)S ′ = E(A′)

for some abelian S ′–scheme A′ into which A embeds, but this hinges on finding a transitive
system of canonical isomorphisms between those groups obtained by different choices of
A′.

In the case where S is of characteristic 0 (which hints at the involvement of divided pow-
ers), this is particularly simple: there exists a unique isomorphism with a reference smooth
group scheme E ′ over the thickening S ′ into which E embeds.3233 In the general case, the
procedure is more delicate, but it can be managed by “the method of the exponential”,
which will be exposed in the context of Barsotti–Tate groups later in the seminar. �

Remark 5.4.6. One may also define E(A∗) by

E(A∗) =R1( fcris)∗((Gm)Acris
),

where Acris denotes the absolute (i.e., relative to Z) nilpotent crystalline topos. This
method may be be adapted to Barsotti–Tate groups.

Whichever method is used to define E(A), one deduces that there is an natural isomor-
phism

D∗(A) = Lie(E(A∗))
which is compatible with base change, and where the extension structure of D∗(A) is
inherited from that of Lie as induced by E(A)S = E(A).

Returning to the conditions of deformation theory, one can see that the data of a
Ed. note: The origi-
nal has a reference into
the unpublished part
of the manuscript on
the “method of the ex-
ponential”.

prolongation Fil1 ⊆D∗(A)S ′ = Lie(E(A∗)S ′) which is a locally direct-factor prolongation
of Lie(t A) = t A ⊆ D

∗(A)S = Lie(E(A∗)S ′ |S ) is equivalent to the data of a smooth vector
subgroup of E(A∗)S ′ which prolongs the subgroup t∨A of E(A∗)S . For such a subgroup L,
it is immediate that E(A∗)S/L is an abelian scheme over S ′, and hence the dual abelian
scheme is the desired A′.34

Remarque

Remark 5.4.7. In the context of Barsotti–Tate groups, one finds the same two constructions
of D∗(G) inspired by the above pair of constructions for abelian schemes: one “coho-
mological” and another via a “universal vector extension” E(G). The construction of
E(G) itself can also be obtained by two methods, one cohomological and the other by the
directly adapting the exponential to the proof of deformation theory.

5. Relations entre les
deux théories (pour
schémas abéliens
et pour groupes de
Barsotti–Tate

5.5. Relations between the two Dieudonné theories.
32N.B.: It suffices to do this even over a nil-thickening, as one sees by passing to the limit from the Noetherian

case.
33This result may be found in an old letter of Tate.
34N.B.: It would be more natural to work with D∗(A) = Lie(E(A)) ∼−→ D∗(A∗) than with D∗(A) for the

statements of deformation theory. The equivalence of the two points of view stem from a perfect pairing
D∗(A)⊗D∗(A∗)→OSnilcris

which is compatible with the filtrations.
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Theorem 5.5.1. Continue to suppose that p is locally nilpotent on S, and return to the
Berthelot crystalline site. For A an abelian S–scheme, there is a natural isomorphism

D∗(A(∞))'R1( fcris)∗(OAcris
)

which is compatible with base change and with the filtrations t∨A and t∨A∗ .
35 �

Remark 5.5.2. In fact, postulating such an isomorphism gives a useful heuristic for the
definition of D∗(G) for an arbitrary Barsotti–Tate group.

Corollary 5.5.3 (Serre–Tate). For a locally nilpotent thickening S ′ over S with divided
powers, there is an identification of the theories of infinitesimal prolongations of A and of
A(∞).36 �

6. INFINITESIMAL PROPERTIES AND DEFORMATIONS OF BARSOTTI–TATE GROUPS

Chapitre VI. Propri-
etes infinitesimales des
groupes de Barsotti–
Tate. Deformation de
groupes de Barsotti–
Tate.

1. Voisinages infinitési-
maux. Groupes de Lie
formels.

6.1. Infinitesimal neighborhoods and formal Lie groups.

1.1

Definition 6.1.1. Let S be a scheme, and let i : Y → X a monomorphism of sheaves37

over S . We define the k th infinitesimal neighborhood of Y in X to be the subsheaf Infk
Y (X )

of X generated by the images of morphisms X ′→X which participate in a commutative
diagram

Y ′ X ′

Y X

i ′

i

for i ′ : Y ′→X ′ a nilpotent immersion of order k of S–schemes.

Remark 6.1.2. When X is representable and Y is a closed subscheme defined by an ideal I
of OX , this recovers the notion of an infinitesimal neighborhood defined in EGA [DG67],
i.e., Inf k

Y (X ) =V (I k+1).

Remark 6.1.3. As k ranges, the subsheaves Infk define a sequence of subfunctors

Inf k
Y (X )→ Inf k+1

Y (X )→ ·· · → Inf∞Y (X ) = colimInf k
Y (X ).

The subsheaves Infk are also functorial in X , Y , and S.

Definition 6.1.4. A particularly important case is where X is pointed38 over S by a
section eX and Y is given by Y = eX (S). In this situation, we omit Y and denote this
subsheaf as Infk (X ), and we also write X = Inf∞(X ). When X = X , one says that X is
ind-infinitesimal.

Définition 1.2 35This indicated isomorphism is compatible with the isomorphism t A(∞) ' t A and similarly for A∗.
36One may also define a universal vector extension E(G) of a Barsotti–Tate group, and one will find a

canonical isomorphism
E(A(∞))' E(A)(∞)

giving rise, by the usual procedure, to a more general isomorphism of crystals in groups

E(A(∞))'E(A)(∞).

37Here “sheaf” is taken relative to any topology between the Zariski topology and the fpqc topology.
38For instance, one might take X to be a group scheme and eX to be the unit section.
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Definition 6.1.5. A pointed S–scheme G which is locally of finite presentation is said to
be smooth to order k if it satisfies the following equivalent conditions:

(1) (Zariski)-locally on S, Infk (G) is isomorphic to a scheme of the form

SpecOS[T1, . . . ,Tn]/(T1, . . . ,Tn)
k+1.

(1’) The conormal sheaf along the unit sectionωG,e := e∗(Ω1
G/S ) is locally free of finite

type, and Symi (ωG,e )→ gri
e
(OX ) is an isomorphism for i ≤ k.

(2) For every affine S–scheme X0, every infinitesimal neighborhood X ′ of order k of
X0, every subscheme X of X ′ containing X0, and every S–morphism f : X →G
with f |X0

factoring through S, there exists an S–morphism f ′ : X ′→G as in the
commutative diagram

X0 X ′

X

S G.

f ′

f

e

(2’) For every commutative Cartesian diagram of S–schemes

X X ′

X ∩X ′0 X0 X ′0

i

with i a nilpotent immersin of order k, and for every S–morphism f : X →G
with f |X0

factoring through S, there exists an S–morphism f ′ : X ′→ G which
extends f .

(2”) Like (2), with X ′ a neighborhood of order k of X .

Définition 1.3Definition 6.1.6. A sheaf X over S pointed by e is called a pointed formal varietyif it
satisfies the following conditions:

(1) X is ind-infinitesimal: X =X = Inf∞(X ).
(2) Each Infk (X ) is smooth to order k.

Remark 6.1.7. This notion does not depend upon the topology chosen on SchS provided
it lies between the Zariski and fpqc topologies.

Remark 6.1.8. One may define a formal variety over S (without a pointing) as a sheaf X
which (fpqc-)locally is isomorphic to the underlying sheaf of a pointed formal variety, but
we will not need this variant. As an aside, the elided section is not uniquely determined by
this condition.

Definition 6.1.9. A formal Lie group over S is a sheaf of groups such that the underlying
pointed sheaf is a pointed formal variety over S.

Remark 6.1.10. As the category of formal varieties admits finite products, one may in-
terpret this as a group object in this category. It follows that this notion again does not
depend on the topology.
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Because of our intense interest in p–power torsion groups, the following result will
cause us to limit ourselves to commutative formal Lie groups:

Proposition 1.4 Proposition 6.1.11. Suppose that p is locally nilpotent on S. If G is a commutative ind-
infinitesimal group on S such that the Infk (G) are representable (e.g., if G is a formal Lie
group), then G is p–power torsion. �

6.2. Results special to characteristic p. Now assume that the base scheme S is of positive
characteristic p.

Definition 6.2.1. For every commutative group S–scheme G and for every integer i ≥ 0,
we set

G[i] =Ker{ f i
G/S : G→G(p

i )}.

Remark 6.2.2. For each n there is an interchange law G(p
n )[i] = (G[i])(pn ). These sub-

schemes relate to the infinitesimal neighborhoods by Infi G ⊆G[i]. Additionally, if G is
flat over S, these subschemes relate to the p i –torsion components through G[i]⊆G(i),
by way of the identity p i = vi

G◦f
i
G/S .

Definition 6.2.3. For each 0≤ i ≤ n, the Frobenius fi
G/S induces a morphism

fi : G[n]→G[n− i](p
i ).

A group scheme G is of f-regular filtration of stage n when G =G[n] and when fi is an
epimorphism of τ–sheaves, τ some topology on Sch/S between fppf and fpqc.

Proposition 2.1 Proposition 6.2.4. Let G be a finite locally free group over S such that G = G[n]. The
following statements are equivalent:

(1) G is of f–regular filtration of stage n.
(1’) The morphisms fi are flat39 for 0≤ i ≤ n.
(2) For some 1≤ i ≤ n− 1, fi is an epimorphism.

(2’) For some 1≤ i ≤ n− 1, fi is flat.
(3) Define the τ–sheaf grf

i (G) by grf
i (G) =G[i]/G[i − 1]. For 0≤ i < n, the homomor-

phisms θi : grf
n(G)→ [grf

n−i (G)]
(p i ) induced by fi are all isomorphisms.

(4) The groups G[i] are finite locally free and, defining grf
i (G) in the category of flat

group schemes over S, the homomorphisms θi are again isomorphisms.
(5) Zariski locally, the augmented algebra A of G is isomorphic to

OS[T1, . . . ,Td ]/(T
pn

1 ,T pn

2 , . . . ,T pn

d ).

(6) Zariski locally, A is isomorphic as an augmented algebra to SymOS
(ω)/(ω(pn )), where

the conormal bundle ω of G along its unit section is a locally free module of finite
type over S and (ω(pn )) denotes the ideal generated by the elements of homogeneous
degree pn .

(6’) The previous condition is satisfied on the geometric fibers of G.

39Hence faithfully flat.
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Proof. (1) and (2) respectively imply (1’) and (2’) using fiber-by-fiber flatness criteria [DG67,
11.3.10]. Conversely, (1’) and (2’) respectively imply (1) and (2), as fi is a morphism of
finite presentation.

To show that (1), (2), and (3) are equivalent, we reason along lines similar to those
of Proposition 3.1.4. Note first that if fi is an epimorphism, then so is fi+1. Since θn−1
factorizes into (n− 1)monomorphisms

α : G[i]/G[i − 1](p
n−i )→G[i − 1]/G[i − 2](p

n−i+1),

it suffices that fn−1 be an epimorphism in order for all the morphismsα to be isomorphisms,
which is equivalent to (3). Finally, if all the α are isomorphisms, it follows by induction
on i that the morphisms f : G[i](pn−i )→G[i − 1](pn−i+1) are all epimorphisms.

To show that (3) implies (4), note that the fiber-by-fiber criterion for flatness applies to
show that G[i] is flat over S, and hence it is also finite and locally free. This is then also
true for grf

i (G)≈ grf
1(G) =G[1], which are thus quotients in the category of flat groups

over S. The converse that (4) implies (3) holds trivially.
In showing that (5) through (6’) are equivalent, we may suppose that S is affine. It is also

trivial that (6) entails (5). To see that (5) entails (6), letω be the indicated conormal bundle
of G along its unit section. Since S is affine and the hypothesis (5) implies thatω is locally
free, one may choose a section ω→ J of the canonical morphism J →ω = J/J 2, from
which we gain a surjective morphism of augmented algebras t : Sym(ω)/(ω(pn ))→A . It
follows from (5) that this is an isomorphism.

To see that (5) implies (2’), let J [p] denote the ideal of A generated by the p th powers of
local sections of J . Noting that G[n] =G is equivalent to x pn = 0 for all local sections
of J , if A is as in (5) then the homomorphism (A/J [p])(pn−1) → A induced by x 7→ x pn−1

makes A a flat algebra over (A/J [p])(pn−1). This exactly shows that fn−1 is flat.
To finish the proof, we will show that (2’) implies (6).40 Let us suppose first that S is

the spectrum of a perfect field k. By the Hopf–Borel–Dieudonné theorem [SGA72, VIIB
5.4], we learn that the affine algebra of the infinitesimal group G =G[n] is of the form

A' k[T1, . . . ,Td ]/(T
pn−1

1 , . . . ,T pnd

d ).

The assumption J [p
n] = 0 yields the upper bound ni ≤ n. To show ni = n, note that if

ni < n fails to meet the upper bound, then the homomorphism t will not be surjective,
contradicting the faithfully flat hypothesis.

The general case will follow immediately from the local case where S = SpecB , B a
local ring with residue field k. Let ω be the conormal bundle, and let d = dimk ω⊗ k.
Select a sequence (T1, . . . ,Td ) of elements of J whose images in ω⊗ k form a basis, and
consider the resulting homomorphism

B[T1, . . . ,Td ]/(T
pn

1 , . . . ,T pn

d )→A.

This is a surjective morphism of free B–modules, and hence to prove that it is an isomor-
phism it suffices to prove that these two B–modules have the same rank. To see this, we
base-change from S to a perfect closure of k, where A has the correct rank pnd . �

Corollaire (2.2)40The equivalence with (6’) is also captured by this proof, because (2’) is the same condition applied to
geometric fibers.



56 ALEXANDRE GROTHENDIECK

Corollary 6.2.5. If G is a finite locally free group of f–regular filtration of stage n, then G is
smooth to order pn − 1 along its unit section.

Proof. This is clear from an explicit presentation of G. �

Proposition (2.3) Proposition 6.2.6. Let G =G(n) be a Barsotti–Tate group over S truncated at stage n. Then

(1) G[n]⊆G is of f–regular filtration of stage n.
(2) G[n] =Ker fn

G = Imvn
G and Kervn

G = Im fn
G .

(3) G[n] is flat (hence finite and locally free) over S, and so it satisfies the conditions of
Proposition 6.2.4.

Proof. We treat each consequence in turn.

(1) Consider the following diagram:

G ×
G(pi )

G[n− i](p i ) G[n] G[n− i](p i )

G ×
G(pi )

G(n− i)(p i ) G(n− i)(p i )

G(p
i ) G G(p

i ).

fi

h

vi
G fi

G

By assumption, fi
G ◦ vi

G = p i has image G(n − i)(p i ). It follows that h is an
epimorphism, hence fi : G[n]→G[n− i](p i ) is also.

(2) For n = 1, this is the definition of a Barsotti–Tate group truncated to stage 1.
For n ≥ 2, we saw in Lemma 3.2.5 that G(1)⊆G(n) =G satisfies (2), and hence
we may induct to show G(i) ⊆ G. Because fn

G ◦ vn
G = pnIdG(n) = 0, we have

Imvn
G ⊆G[n], giving a commutative diagram

G(n)(pn ) G[n]

G(n− 1)(pn ) G[n− 1](p).

vn
G

p f

vn−1
G

If we suppose that G(n − 1) satisfies (2), it follows that vn
G is an epimorphism

modulo Ker f=G[1]. It thus suffices to show that G[1] is contained in the image
of vn

G , as in

G[1] = v(G(1)(p)) = v(pn−1G(n)(p)) = vn[fn−1G(n)(p)]⊆ vn[G(n)(p
n )].

By the same methods, one proves that Kervn
G = Im fn

G .
(3) Because G[n] = Imvn

G , the fiber-by-fiber criterion shows G[n] to be flat. If G is a
Barsotti–Tate group, then G[n] =G(n)[n], hence G(i )[n] =G[n] for i ≥ n. �

Corollaire (2.4) Corollary 6.2.7. Let G be a Barsotti–Tate group over S. For all n ≥ 1, G(n) is smooth to
order pn − 1 over S, and Infk G ⊆G[n] for k ≤ pn − 1.

Proof. We will show this last inclusion. One has Infk (G) = colimn Infk (G(n)) and
Infk (G(n)) ⊆ G(n)[k] = G[k] for n ≥ k. Hence, for k ≤ pn − 1 we have Infk (G) ⊆
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G[pn − 1] and, by applying Proposition 6.2.4 and referring tp the explicit structure of
G[pn − 1], one sees Inf k G ⊆G[pn − 1][n] =G[n]. �

2.5 Groups de Lie
formels en caractéris-
tique p

6.3. Formal Lie groups in characteristic p. Suppose that G = colimk Infk (G) is a for-
mal Lie group over S , so that G[n] = colim(Infk (G))[n]. Since Infk G is smooth to order
k, it follows for k sufficiently large that (Infk G)[n] is finite and locally free of f–regular
filtration of stage n. Zariski-locally on S, for k ≥ d pn , one has

G[n] = (
k

InfG)[n] = SpecOS[T1, . . . ,Td ]/(T
pn

1 , . . . ,T pn

d ),

where d is given by the rank of the conormal module ω of G.41 Since Infk G ⊆ G[k],
cofinality gives G = colimn G[n], hence fG/S : G→G(p) is an epimorphism.

Definition 6.3.1. From all this, we see that a formal Lie group G gives rise to a system

{G[n]→G[n+ 1]→ ·· · }

of finite locally free groups of f–regular filtration of stage n. By analogy with p–coadic
systems, such a system will be called f–coadic.

Proposition (2.6)Proposition 6.3.2. The category of (commutative) formal Lie groups G over S of characteristic
p is equivalent to the category of f–coadic systems of finite locally free group schemes G[n] of
f–regular filtration of stage n.

Proof. One direction is the construction given above. For the converse, an f–coadic system
of finite locally free groups G[n] which are annihilated42 by fn gives rise via an inductive
limit to a formal Lie group. �

Théorème (2.7)Theorem 6.3.3 (Construction of a formal Lie group associated to a Barsotti–Tate group
in characteristic p). Let G be a Barsotti–Tate group over S. The group

G = Inf∞G = colim j Inf k (G)

is formal Lie with G = colimG[n], G[n] =G(n)[n], G[n] =G[n], and

Inf k G = Inf k G = Inf k G(n)⊆G[n]⊆G(n), k ≤ pn − 1.

Proof. This is the cumulation of the above results. �

3. Groupe de Lie
formel assoié à un
groupe de B.–T
sur une base non
nécessairement de
caractéristique p

6.4. The Formal Lie group of a Barsotti–Tate group where p is locally nilpotent.
Theorem 6.3.3 generalizes to the case where p is locally nilpotent on S:

Théorème (3.1)

Theorem 6.4.1. Let G be a Barsotti–Tate group on S with p locally nilpotent on S. Then:

(1) G = limk Infk (G)⊆G is a formal Lie group over S. One says that G is the formal
Lie group associated to G. Its formation is functorial in G and commutes with change
of base.

(2) G is formally smooth over S for nil-immersions (i.e., not only for nilpotent immersions).
Explicitly, for all nil-immersions X0 → X ′ and all S–morphisms f : X → G such
that X0→X →X ′ and f |X0

factor through S, there exists an map f ′ : X ′→G of f
over S as in the following diagram:

41In particular, d is a locally constant function of s ∈ S.
42Hence of f–regular filtration of stage n.
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X0 X X ′

S G.

f
f ′

e

One proves this theorem by dévissage to the characteristic p case, a maneuver which
requires the relative cotangent complex formalism. Since this formalism is also used in the
theory of deformations, we will announce the principle result before giving indications
on the underlying theory.

4. Déformations
infinitésimales des
groupes de Barsotti–
Tate (énoncé)

6.5. Infinitesimal deformations of Barsotti–Tate groups (announcements).

Théorème (4.1)

Theorem 6.5.1. Let i : S0→ S be a nil-immersion with S affine, and let G0 be a Barsotti–
Tate43 group over S0.

(1) There exists a Barsotti–Tate group G over S which deforms G0.
(2) If one denotes E(G0, S) (resp. E(G0(n), S)) the set of such deformations up to isomor-

phism, the natural function E(G0, S)→ E(G0(n), S) is surjective.
(3) If the immersion i is nilpotent of order k and if pN = 0 on S0, then the above function

is bijective for all n ≥ kN.
(4) If S is an infinitesimal neighborhood of first order of S0 (i.e., if k = 1) and if p is

nilpotent on S0, then E(G0, S) is a torsor under t G∗0
⊗ t G0

, where t G0
denotes the Lie

algebra of the formal Lie group G0 associated to G0.

5. Complexe cotan-
gent relatif

6.6. The relative cotangent complex. We now give a brief description of the relative
cotangent complex and explain how its theory applies to the study of certain deformation
problems. In particular, we will use it to study the deformation problems for group
schemes and for Barsotti–Tate groups. The local definition of the relative cotangent
complex is due to M. André [And67] and to D. Quillen [Qui67] and the global definition
is due to L. Illusie [Ill72], who applied it to all sorts of deformation problems. The study
of the deformation of flat group schemes over S is due to P. Deligne and to L. Illusie.

Let X be an S–scheme. The relative cotangent complex LX /S
∗ of X over S is an object

of the derived category D−(OX ), presentable by a complex of OX –modules as in

LX /S
∗ = {· · · → L2→ L1→ L0→ 0}.

It is functorial in the following sense: for all Cartesian diagrams

X ′ X

S ′ S

f

there is a natural D−(OX ′)–morphism L f ∗(LX /S
∗ )→ LX ′/S ′

∗ .

Complex cotangent
tronqué

Definition 6.6.1. The truncation of complex to order 1,

τ≤1(L
X /S
∗ ) = {0→ L′1→ L0→ 0}

43In the case where G0 is a formal Lie group, this deformation theory is due to Lazard, who has determined
the moduli space of formal Lie group laws.
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with L1 replaced by L′1 = Im L2, is also of interest. It has the same cohomology objects as
LX /S
∗ at orders 0 and 1, and these have previously been studied by A. Grothendieck [Gro68].

One may give a direct construction of this truncated complex whenever there is an
embedding of X into an S–scheme X ′ which is formally smooth over S (which is always
locally true): writing I be the ideal of OX defining the immersion X ⊆X ′, the defining
formula is then

τ≤1(L
X /S
∗ )≈ {0→ I/I 2→Ω1

X ′/S ⊗OX ′
OX → 0}.

In this case, L0 =Ω
1
X ′/S ⊗OX ′

OX is a locally free OX –module of finite type.

Remark 6.6.2. It follows that the sheavesH i (LX /S
∗ ) are quasicoherent for i = 0,1. In fact,

this property is true for all i .

Remark 6.6.3. If S is Noetherian and if X is locally of finite type, thenH i (LX /S
∗ ) is even

coherent for i = 0 and i = 1. This property is also true for all i .

Example 6.6.4. If X is a relative complete intersection,44 thenH i (LX /S
∗ ) = 0 for i ≥ 2,

so that the complex LX /S
∗ is isomorphic in the derived category to the truncated version.

Moreover, as the immersion X ⊆ X ′ defining the complete intersection is regular, the
quotient I/I 2 is a locally free OX –module, and hence cotangent complex is a perfect
complex of perfect amplitude in [−1,0].

Remark 6.6.5. Even when these conditions are satisfied, the large complex LX /S
∗ remains

relevant, as it enjoys far superior functoriality and transitivity properties. Letting f : X →
Y and g : Y → S be two morphisms of schemes, there is an exact triangle

LX /Y
∗

L f ∗(LY /S
∗ ) LX /S

∗

degree + 1

which generalizes the exact sequence of differentials

f ∗Ω1
Y /S →Ω

1
X /S →Ω

1
X /Y → 0

viaH 0(LX /S
∗ )'Ω1

X /S .

Example 6.6.6. One may check this isomorphism in the case of a complete intersection
using the exact sequence

I/I 2→Ω1
X ′/S ⊗OX ′

OX →Ω
1
X /S → 0.

Making the further definition

NX /S =Ker(I/I 2→Ω1
X ′/S ⊗OX ′

OX ),

the above exact triangle gives rise to a long exact squence of cohomology

f ∗NY /S →NX /S →NX /Y → f ∗Ω1
Y /S →Ω

1
X /S →Ω

1
X /Y → 0.

In the case where X is a complete intersection relative to Y , one has an exact sequence
with six terms.

44That is, if X is of finite presentation over S and if there exists a regular immersion of X into an X ′ which
is formally smooth over S
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As for change of base, there is the following result:

Proposition Proposition 6.6.7. Consider a Cartesian diagram of schemes:

X ′ X

S ′ S.

f

If X and S ′ are “Tor–independent”,45 then the morphism L f ∗(LX /S
∗ )→ LX ′/S ′

∗ is an isomor-
phism. This hypothesis holds when X is S–flat or when S ′ is S–flat. �

Problèmes de déforma-
tion typiques

6.7. Example deformation problems. We now describe the application of the relative
cotangent complex to some common deformation problems, as exposited more fully in
[Gro68, Ill69a, Ill69b, Ill72].

1o) Classification des
voisinages infinitési-
maux du premier
ordre

Example 6.7.1. For X an S–scheme and J a quasicoherent OX –module, we seek a classifica-
tion of the infinitesimal neighborhoods X ⊆X ′ in S–schemes, such that X is defined by
the square-zero ideal J of OX ′ , i.e., there is an exact sequence

0→ J →OX ′ →OX → 0.

Such neighborhoods are thus classified by Ext1
OS
(OX , J ), and hence there is an isomorphism

Ext1
OS
(OX , J )' Ext1

OX
(LX /S
∗ , J )'HomD(OX )

(LX /S
∗ , J [1]),

and the set of solutions is a torsor under

Ext0
OX
(LX /S
∗ , J )'Hom(Ω1

X /S , J ).

2o) Déformation de
morphismes de sché-
mas

Example 6.7.2. Let X and Y be two S–schemes, and let Y0 be a subscheme of Y defined
by a square-zero ideal J of OY . Given an S–morphism f0 : Y0→X be an S–morphism, we
seek a classification of the morphisms f : Y →X which prolong f0:

X Y0 V (J )

S Y.

f0

f

The obstruction to such a prolongation is given by

∂ f0 ∈ Ext1
OY
(L f ∗0 (L

X /S
∗ ), J ),

and the set of solutions to ∂ f0 = 0 is a torsor under

Ext0
OY
(L f ∗0 LX /S

∗ , J )'Hom( f ∗0 Ω
1
X /S , J ).

3o) Déformation des
schémas plats

Example 6.7.3. Let S be a scheme, S0 a subscheme of S defined by a square-zero ideal J ,
and X0 a flat S0–scheme. We seek a classification of the flat S–schemes X which prolong
X0, i.e., which participate in a Cartesian diagram

X0 X

S0 S.

45That is, if for all i > 0 one has TorOS
i (OX ,OS ′ ) = 0.
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The obstruction to the existence of such a scheme is

∂ (X0, S) ∈ Ext2
OX0
(LX0/S0
∗ , J ⊗OS0

OX0
).

If this class is null, the set of solutions in thus a torsor under

Ext1
OX0
(LX0/S0
∗ , J ⊗OS0

OX0
),

and the group of automorphisms of any solution is isomorphic to

Ext0
OX0
(LX0/S0
∗ , J ⊗OS0

OX0
)'Hom(Ω1

X0/S0
, J ).

APPENDIX A. A LETTER FROM M. A. GROTHENDIECK TO BARSOTTI

Dear Barsotti,

I would like to tell you about a result on specialization of Barsotti–Tate groups in
characteristic p, although you have perhaps known it for a long time, as well as a corre-
sponding conjecture (or, rather, question), whose answer you may again already know
well.

First, some terminology. Let k a perfect field of characteristic p > 0, W the ring of
Witt vectors over k, and K its field of fractions. For us, an F –crystal over k will mean a free
module M of finite type over W , together with a σ–linear endomorphism FM : M →M
(where σ : W →W is the Frobenius automorphism) such that FM is injective.46 I am
interested in considering F –crystals up to isogeny, an equivalence class of which I will
call an F –iso–crystal. Such an F –iso–crystal can be interpreted as a finite dimensional
K–vector space E and a σ–linear automorphism FE : E → E ; an F –isocrystal we will
additionally call effective when there exists a lattice M ⊂ E mapped into itself by FE . The
category of F –isocrystals is obtained from that of effective F –isocrystals and its natural
internal tensor product by formally inverting formally the Tate crystal,

K(−1) = (K , FK(−1) = pσ).

This is to say that the isocrystals (E , FE ) such that (E , pn FE ) is effective (i.e., those for
which the set of iterates of (pn FE ) is bounded in the natural norm structure) are precisely
those of the form E0(n) = E0⊗K(−1)⊗(−n), with E0 an effective F –isocrystal.

Let us now assume k to be algebraically closed. As presented in Manin’s report,
Dieudonné’s classification theorem states that the category of F –isocrystals over k is
semi-simple and that the isomorphism classes of simple objects can be indexed by Q—
equivalently, by pairs of relatively prime integers r, s ∈Z, r ≥ 1, (s , r ) = 1. Over Fp , such
a pair is sent to the simple object Es/r =Er,s of rank r given by the formula as

Es/r =

(

Qp[Fs/r ]/(F
r

s/r − p s ) s > 0,

E−λ = (Eλ)
∨ s ≤ 0,

where (−)∨ denotes the linear-algebraic dual endowed with the contragredient F automor-
phism. In Manin’s report, only effective F –crystals are considered—and then only those
such that FE is topologically nilpotent—but the observation about the Tate twist implies
the result as I state it now.

46That is, F (M ) contains pn M for some n ≥ 0.
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Indexing by Q rather than by pairs (s , r ) has the advantage that we have the simple
formula

Eλ⊗ Eλ′ = Eλ+λ′ .

More generally, if we decompose each crystal in its isotypic component corresponding to
the various “slopes”47 λ ∈Q, this gives a natural grading on it over the groupQ, and this
grading is compatible with the tensor product structure in the following sense:

E(λ)⊗ E ′(λ′)⊂ (E ⊗ E ′)(λ+λ′).

Let’s define the sequence of slopes of a crystal (E , FE ) by its isotypic decomposition, where
each λ appears rank E(λ) many times (bearing in mind that if λ = s/r with (s , r ) = 1,
then rank E(λ) is a multiple of r ). It is also convenient to give an increasing order to this
sequence. This definition is still appropriate even if k is not algebraically closed: by passing
over to the algebraic closure of k, we can produce this sequence of numbers, but in fact
the isotypic decomposition over k descends to k, so we even get a canonical “iso-slope”48

decomposition over k:49

E =
⊕

λ∈Q
E(λ).

If we further specialize to k = Fq = Fpa , and if (E , FE ) is a crystal over k, then F a
E is

a linear endomorphism of E over K , and the slopes of the crystal are the valuations
of the proper values of F a

E , using the valuation of Qp normalized so that v(q) = 1 (i.e.,
v(p) = 1/a).50 Thus, the sequence of slopes of the crystal defined above is just the sequence
of slopes of the Newton polygon of the characteristic polynomial of the arithmetic Frobenius
endomorphism F a

E , and that data is equivalent to the data of the p–adic valuations of the
proper values of the Frobenius!

Let us return to a generic perfect field k. The effective crystals are those whose slopes
are positive, and those which are Dieudonné modules51 are those whose slopes are in the
closed interval [0,1]. Those of slope zero corresponds to ind–étale groups, and those of
slope one correspond to multiplicative groups. Moreover, an arbitrary crystal decomposes
canonically into a direct sum

E =
⊕

i∈Z
Ei (−i),

where (−i) are Tate twists52 and the Ei have slopes 0≤ λ < 1 (or, if we prefer 0< λ≤ 1),
hence correspond to isogeny classes of Barsotti–Tate groups over k without multiplicative
component (resp. which are connected). This remark is interesting because if X is a proper
and smooth scheme over k, then the crystalline cohomology groups H i (X ) can be viewed

47The terminology “slope” here, as well as the sequence of slopes occuring in any crystal, is I believe due
to you, as you presented for formal groups in Pisa about three years ago. I did not appreciate then the full
appropriateness of the notation and of the terminology.

48In French: isopentique.
49N.B. This is true only because we assumed k perfect. There is a reasonable notion of F –crystal when k is

not perfect, but then we should get only a filtration of a crystal by increasing slopes. . .
50This is essentially the “technical lemma” in Manin’s report, without his unnecessary restrictive conditions.
51That is: those which correspond to (not necessarily connected) Barsotti–Tate groups over k.
52This corresponds to multiplying the F endomorphism by p i .
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as F –crystals, where H i has slopes between 0 and i ,53 and hence this defines a whole
avalanche of (isogeny classes of) Barsotti–Tate groups over k. Moreover, these are quite
remarkable invariants whose knowledge should be thought as essentially equivalent with
the knowledge of the characteristic polynomials of the “arithmetic” Frobenius, acting on
(any reasonable) cohomology of X .54

Now the result about specialization of Barsotti–Tate groups. Select a Barsotti–Tate
group G and a second group G′ which is a specialization of G. Let λ1, . . . ,λh (h = “height”)
be the slopes of G, and λ′1, . . . ,λ′h the ones for G′. Then we have the equality

∑

λ′i =
∑

λi (= dimG = dimG′)

as well as the inequalities
j
∑

i=1

λi ≤
j
∑

i=1

λ′i .

In other words, the “Newton polygon” of G (i.e., of the polynomial
∏

i (1+ (p
λi )T )) lies

below the one of G′, and they have the same endpoints: (0,0) and (h,N ).
I arrived at this result through a generalization of Dieudonné theory for Barsotti–Tate

groups over an arbitrary base S of characteristic p, which allows me to manufacture an
F –crystal over S , heuristically thought of as an S–family of F –crystals in the sense outlined
above. Using this, the result just stated is but a particular case of the analogous statement
about specialization of arbitrary crystals. Now this latter statement is not hard to prove
at all: passing to

∧h E and
∧h E ′, the equality is reduced to the case of a family of rank

one crystals, and even further to the statement that such a family is just a twist of some
fixed power of the (constant) Tate crystal. The general inequality (2) is reduced, passing
to
∧ j E and

∧ j E ′, to just the first inequality λ1 ≤ λ′1. Raising both E and E ′ to an r th

tensor power such that rλ1 is an integer, we may assume that λ1 is an integer, and a Tate
twist allows us to assume that λ1 = 0, so the statement boils down to the following: if
the general member of the family is an effective crystal, so are all others. This is readily
checked in terms of the explicit definition of a crystal over S.

The conjecture I have in mind is as follows: the equality and inequality family above are
necessary conditions for G′ to be a specialization of G, and I would like them to also be
sufficient. More explicitly, start with a Barsotti–Tate group G0 =G′, and take its formal
modular deformation in characteristic p (over a modular formal variety S of dimension
d d ∗, d = dimG0, d ∗ = dimG∗0 ). For the Barsotti–Tate group G over S so-obtained,
we want to know if every sequence of rational numbers λi , lying between 0 and 1 and
satisfying the equality and inequality family, occurs as the sequence of slopes of a fiber of
G at some point of S . This does not seem too unreasonable, as the set of all (λi ) satisfying
these conditions is finite, as is the set of slope-types of all possible fibers of G over S.

I should mention that the inequality family was suggested to me by the following
beautiful conjecture of Katz: if X is smooth and proper over a finite field k, with Hodge
numbers in dimension i given by h0 = h0,i , h1 = h1,i−1, . . . , h i = h i ,0, and if we consider
the characteristic polynomial of the arithmetic Frobenius F a operating on some reasonable

53This is not proved now in complete generality, but is proved in X lifts formally to characteristic zero, and I
certainly believe it to be true generally.

54However, the arithmetic Frobenius is not really defined, unless k is finite!
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cohomology group of X (say, `–adic for ` 6= p, or crystalline), then the Newton polygon
of this polynomial should be above the one of the polynomial

∏

i (1+ p i T )h i . In a very
heuristic and also very suggestive way, this could now be interpreted (without needing to
assume k finite) as stating that H i

cris(X ) is a specialization of a crystal whose sequence of
slopes is 0 h0 times, 1 h1 times, . . . , i h i times. If X lifts formally to characteristic 0, then
we can introduce also the Hodge numbers of the lifted variety, which satisfy

(h ′)0 ≤ h0, . . . , (h ′)i ≤ h i ,

and one should expect a strengthening of Katz’s conjecture to hold, with the (h ′) j replaced
by the h j . Thus the transcendental analog of an F –crystal in characteristic p seems to
be something like a Hodge structure of a Hodge filtration, and the sequence of slopes of
such a structure should be defined as the sequence in which j enters with multiplicity
(h ′) j = rankgr j .55 I have some idea how Katz’s conjecture with the h i s (not the (h ′)i s, at
least for the time being) may be attacked by the machinery of crystalline cohomology, at
least at the level of the first inequality among the family. At the same time, the formal
argument involving exterior powers, outlined afterwards, gives the feeling that it is really
the first inequality λ1 ≤ λ′1 that is essential, and the others should follow once we have a
good general framework.

I would very much appreciate your comments on this general nonsense—again, I
imagine that most of it is quite familiar to you, under a different terminology.

Very sincerely yours,

A. Grothendieck
Bures May 11, 1970

55N.B.: Katz made his conjecture only for global complete intersections. However, I would not be as cautious
as he!
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