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Abstract

Monomial statistical models of on finite integer sample space have many
applications. The case more commonly discussed is exponential families,
but many other examples are known. We discuss algebraic statistical
models with a monomial parameterization and linear constrains. We give
simple examples of

Markov chains,

reversible Markov chains,

DAG models,

together with examples of

the border of such models and its relation with manipulation,

differential equations satisfied by the normalizing constant.

The talk is based on joint work in progress with L. Malagò,
E. Riccomagno, M.-P Rogantin, H. Wynn.



A-models: a definition?

Let be given a nonnegative integer matrix A ∈ Zm+1,n
≥ . The elements are

denoted by Ai (j), i = 0 . . .m, j = 1 . . . n. We assume the row A0 to be the
constant 1. Each row of A is the logarithm of a monomial term denoted

tA(j) = t0t
A1(1)
1 · · · tAm(j)

m .

On a finite sample space X we consider unnormalized probability densities

q(x ; t) = tA(x), x ∈ X , t ∈ Rm+1
≥ .

For each reference measure µ on X we define the probability density

p(x ; t) =
tA(x)∑

x∈X tA(x) µ(x)
, x ∈ X ,

for all t ∈ Rm+1
≥ such that qt is not identically zero.

The parameter t0 cancels out, i.e the density is parameterized by t1 . . . tm
only. The unnormalized density is a projective object.



C -constrained A-model; identification

In some applications the statistical model is further constrained by a matrix
C ∈ Zk,n. {

q(x ; t) = tA(x),∑
x∈X Ci (x)q(x ; t) = 0,

for x ∈ X , t ∈ Rm+1
≥ , i = 1 . . . k .

Assume s, t ∈ Rm
> and ps = pt . Denote by Z the normalizing constant.

Then pt = ps if, and only if,

Z (s)tA(x) = Z (t)sA(x), x ∈ X

hence

m∑
i=0

(log ti − log si )Ai (x) = log Z (t)− log Z (s), x ∈ X .

The confounding condition is

δTA = 1, δi = (log ti − log si )/(log Z (t)− log Z (s)),

so that δ ∈ e0 + ker AT .



Toric ideals; closure of the A-model

The ker of the ring homomorphism

k[q(x) : x ∈ X ] 3 q(x) 7→ tA(x) ∈ k[t0, . . . , tm]

is the toric ideal of A, I(A). It has a finite basis made of binomials of the
form ∏

x : u(x)>0

q(x)u
+(x) −

∏
x : u(x)<0

q(x)u
−(x)

with u ∈ ZX , Au = 0.

As
∑

x∈X u(x) = 0, all the binomials are homogeneous polynomials so that
all densities pt in the A-model satisfy the same binomial equation.

Theorem

The nonnegative part of the A-variety is the (weak) closure of the A-model.

Let H be the Hilbert basis of Span (A0,A1, . . . ) ∩ ZX≥ . Let H be the matrix
whose rows are the elements of H of minimal support.



Example: 3 binary identical RVs, no-3-way-interaction

X = {+,−}3. Matrix A is

+++ -++ +-+ --+ ++- -+- +-- ---

I 1 1 1 1 1 1 1 1

1 0 1 0 1 0 1 0 1

2 0 0 1 1 0 0 1 1

3 0 0 0 0 1 1 1 1

12 0 1 1 0 0 1 1 0

13 0 1 0 1 1 0 1 0

23 0 0 1 1 1 1 0 0

Constrain matrix C is

+++ -++ +-+ --+ ++- -+- +-- ---

1=2 0 1 -1 0 0 1 -1 0

1=3 0 1 0 1 -1 0 -1 0



The toric ideal I(A) is generated by
q(+++)q(−−+)q(−+−)q(+−−)−q(−++)q(+−+)q(++−)q(−−−).

Matrix H is quadratic

1 0 0 0 0 0 0 1

0 0 0 0 1 0 1 0

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

0 1 0 0 0 0 1 0

0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 1

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 0 0 0 1 0 0 0

0 1 0 1 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 1 1 0 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 1 0 0

0 0 0 0 1 1 0 0



Toric and Weyl

Consider the design D ⊂ Zd
+ with reference measure µ. Let I (D) be the

ideal of points. Consider the statistical model

q(x ; t) =
d∏

i=1

txii , x ∈ D, tj ≥ 0, j = 1, . . . , d ,

with normalizing constant

Z (t) =
∑
x∈D

txµ(x)

It is the A-model with Ai (x) = xi , i = 1, . . . ,m.

In the Weyl algebra C〈t1 . . . td , ∂1 . . . ∂d〉 define the operators

A(i , x) = ti∂i − xi = ∂i ti − (1 + xi ), i = 1, . . . , d , x ∈ D,

where the second equality follows from the commutation relation
∂i ti = 1 + ti∂i . For all x ∈ D we have

A(i , x) • tx = ∂i • (ti t
x)− (1 + xi )tx = 0,

so that ti∂i • tx = xi t
x and, by iteration, (ti∂i )

α • tx = xαi tx , α ∈ N.



The operator (ti∂i )
α applied to the polynomial Z (t) ∈ C[t1, . . . , tm] gives

(ti∂i )
α • Z (t) =

∑
x∈D

(ti∂i )
α • tx =

∑
x∈D

xαi tx (µ(x) = 1).

Note the commutativity

(ti∂i )(tj∂j) = (tj∂j)(ti∂i ),

hence

d∏
i=1

(ti∂i )
αi • Z (t) =

∑
x∈D

d∏
i=1

(ti∂i )
αi • tx =

∑
x∈D

(
d∏

i=1

xαi

i

)
tx .

By dividing by the normalizing constant we obtain he following expression
for the moments:

Z (t)−1
d∏

i=1

(ti∂i )
αi • Z (t) = Z (t)−1

∑
x∈D

d∏
i=1

(ti∂i )
αi • tx = Et [Xα] .



From the ring homomorphism A :

{
C[x ] → C〈t1 . . . td , ∂1 . . . ∂d〉

xi 7→ ti∂i
we have

A(f (x)) • Z (t) =
∑
x∈D

f (x)tx .

Theorem

1 Let xα, α ∈ M, be a monomial basis for D. Then Z (t) satisfies the following
system of #M = #D linear non-homogeneous differential equations:

A(xα) • Z (t) =
∑
x∈D

xαtx , α ∈ M.

2 Let fa(x) be the (reduced) indicator polynomial of a ∈ D. Then Z (t)
satisfies the following system of #D linear non-homogeneous differential
equations:

A(fa(x)) • Z (t) = ta, a ∈ D

3 Let g(pa : a ∈ D) be a polynomial in the toric ideal of the monomial
homomorphism pa 7→ ta. Then

g (A(fa(x)) • Z (t) : a ∈ D) = 0



Directed Acyclic Graphs DAGs

A famous model is

Carcinogenic genotype U −−−−→ Y Lung cancery x
Smoking X −−−−→ Z tar deposit on lungs

where U is unobservable, X , Y , Z are observable.

The DAG, together with the ordering

U ≺ X ≺ Z ≺ Y

encodes the factorization of probability

p(u, x , z , y) = p1(u)p2(x |u)p3(z |x)p4(y |u, z),

which, in turn, is equivalent to the following two statements of conditional
independence

U �Z |X X �Y |U,Z

It is a constrained A-model.



Intervention

Assume we force the population to avoid smoking. The intervention hides
the influence of U on Z , producing the new DAG U −→ Y ←− X . The new
factorization is

p(u, z , y‖X = 0) =

{
p1(u)p3(z |0)p4(y |u, z) on {X = 0}
0 on {X = 1}

The conditional independence statements are equivalent to

U �Z |X

{
p(u, x , z ,+)p(u′, x , z ′,+)− p(u, x , z ′,+)p(u′, x , z ,+) = 0

u, u′ ∈ Ω1, x ∈ Ω2, z , z
′ ∈ Ω3 u 6= u′ and z 6= z ′

X �Y |U,Z

{
p(u, x , z , y)p(u, x ′, z , y ′)− p(u, x , z , y ′)p(u, x ′, z , y ′) = 0

u ∈ Ω1, x , x
′ ∈ Ω2, z ∈ Ω3, y , y

′ ∈ Ω4 x 6= x ′ and y 6= y ′

Does the intervention rule derive from the equations?



Binary case

Before intervention:

U �Z |X

{
p(0, 0, 0,+)p(1, 0, 1,+)− p(0, 0, 1,+)p(1, 0, 0,+) = 0

p(0, 1, 0,+)p(1, 1, 1,+)− p(0, 1, 1,+)p(1, 1, 0,+) = 0

X �Y |U,Z



p(0, 0, 0, 0)p(0, 1, 0, 1)− p(0, 0, 0, 1)p(0, 1, 0, 0) = 0

p(0, 0, 1, 0)p(0, 1, 1, 1)− p(0, 0, 1, 1)p(0, 1, 1, 0) = 0

p(1, 0, 0, 0)p(1, 1, 0, 1)− p(1, 0, 0, 1)p(1, 1, 0, 0) = 0

p(1, 0, 1, 0)p(1, 1, 1, 1)− p(1, 0, 1, 1)p(1, 1, 1, 0) = 0

After intervention:

U �Z |Y

{
p(0, 0, 0, 0)p(1, 0, 1, 0)− p(0, 0, 1, 0)p(1, 0, 0, 0) = 0

p(0, 0, 0, 1)p(1, 0, 1, 1)− p(0, 0, 1, 1)p(1, 0, 0, 1) = 0

{X = 1}

{
p(u, 1, z , y) = 0

for u, z , y = 0, 1



Markov Chains MCs

In a Markov chain with state space V , initial probability π0 and stationary
transitions Pu→v , u, v ∈ V , the joint distribution up to time T on the
sample space ΩT is

P(ω) =
∏
v∈V

π0(v)(X0(ω)=v)
∏
a∈A

PNa(ω)
a , (M)

where (V ,A) is the directed graph defined by u → v ∈ A if, and only if,
Pu→v > 0.

A MC is an instance of the A model with m = #V + #A, n = #ΩT and
rows

A0(ω) = 1,Av (ω) = (X0(ω) = 1),Aa(ω) = Na(ω)

i.e the unnormalized density is

q(ω; t) = t0
∏
v∈V

t(X0(ω)=v)
v

∏
a∈A

tNa(ω)
a (A)

The (MC) model is derived from the (A) model by adding the constrains∑
v∈V

tv =
∑

v : u→v∈A
qu→v , u ∈ V .



A-model of a MC

The unconstrained A-model of the MC is a Markov proces with
non-stationary transition probabilities.

The unconstrained model is described probabilistically as follows. Define
a(v) =

∑
v→w∈A tv→w ; hence Pu→v = tv→w/a(v) is a transition probability.

Also ν(v) = a(v)/
∑

v a(v) is a probability. Consider the change of
parameters

bπ(v) = tv , aν(v)Pv→w = tv→w ,

to get

q(ω; ) = t0
∏
v∈V

(bπ(v))(X0(ω)=v)
∏

v→w∈A
(aa(v)Pv→w )Nv→w (ω)

= t0baN
∏
v∈V

π(v)(X0(ω)=v)
∏
v∈V

ν(v)Nv+

∏
v→w∈A

PNv→w (ω)
v→w

It is a change in reference measure.



Example: binary state space V = {+1,−1}

For e1, e2 = ±1 we have

Ne1→e2 =
1

4

T∑
t=1

(1 + e1Xt−1)(1 + e2Xt)

=
T

4
+

e1
4

X0 +
e2
4

XT +
e1 + e2

4

T−1∑
t=1

Xt +
e1e2

4

T∑
t=1

Xt−1Xt

The orthogonal space to (X0 = ei ) and to all the transition’s counts is
orthogonally generated by

1 all monomial terms Xα, α ∈ {0, 1},
∑
α ≥ 3, i.e. the interactions of

order at least 3;
2 all terms XsXt , s + 1 < t, i.e. all binary non consecutive interactions;
3 all differences Xt − Xt−1, t = 1, . . . ,T , i.e the standard basis of

contrasts;
4 the final value XT .



Detailed balance

Consider a simple graph (V ,A).

A transition matrix Pv→w , v ,w ∈ V , satisfies the detailed balance
conditions if κ(v) > 0, v ∈ V , and

κ(v)Pv→w = κ(w)Pw→v , v → w ∈ A.

It follows that π(v) ∝ κ(v) is an invariant probability and the Markov chain
Xn, n = 0, 1, . . . , has reversible two-step joint distribution

P (Xn = v ,Xn+1 = w) = P (Xn = w ,Xn+1 = v) , v ,w ∈ V , n ≥ 0.



Example: 6 vertexes, 8 edges

1

6

2

5

3

4

Γ =



{1, 2} {2, 3} {1, 6} {2, 5} {3, 4} {5, 6} {4, 5} {3, 6}
1 1 0 1 0 0 0 0 0
2 1 1 0 1 0 0 0 0
3 0 1 0 0 1 0 0 1
4 0 0 0 0 1 0 1 0
5 0 0 0 1 0 1 1 0
6 0 0 1 0 0 1 0 1





CoCoA elimination
1

6

2

5

3

4

Use S::=Q[t,k[1..6],p[1..6,1..6]];

Set Indentation;

NI:=6; M:=[];

Define Lista(L,NI);

For I:=1 To NI Do

For J:=1 To I-1 Do

Append(L,k[I]p[I,J]-k[J]p[J,I]); EndFor;

EndFor; Return L; EndDefine;

N:=Lista(M,NI);

LL:=t*Product([k[I]|I In 1..NI])-1; Append(N,LL);

P0:=[p[1,3],p[1,4],p[1,5],p[2,4],p[2,6], p[3,1],p[3,5],

p[4,1],p[4,2],p[4,6],p[5,1],p[5,3],p[6,2],p[6,4]];

N:=Concat(N,P0);

E:=Elim(k,Ideal(N)); GB:=ReducedGBasis(E); GB;



CoCoA output

GB;

[

p[1,3], p[1,4], p[1,5], p[2,4], p[2,6], p[3,1], p[3,5],

p[4,1], p[4,2], p[4,6], p[5,1], p[5,3], p[6,2], p[6,4],

p[2,3]p[3,4]p[4,5]p[5,2] - p[2,5]p[3,2]p[4,3]p[5,4],

p[1,2]p[2,3]p[3,6]p[6,1] - p[1,6]p[2,1]p[3,2]p[6,3],

p[1,2]p[2,5]p[5,6]p[6,1] - p[1,6]p[2,1]p[5,2]p[6,5],

p[2,5]p[3,2]p[5,6]p[6,3] - p[2,3]p[3,6]p[5,2]p[6,5],

p[3,4]p[4,5]p[5,6]p[6,3] - p[3,6]p[4,3]p[5,4]p[6,5],

p[1,2]p[2,5]p[3,6]p[4,3]p[5,4]p[6,1] -

p[1,6]p[2,1]p[3,4]p[4,5]p[5,2]p[6,3],

p[1,2]p[2,3]p[3,4]p[4,5]p[5,6]p[6,1] -

p[1,6]p[2,1]p[3,2]p[4,3]p[5,4]p[6,5]]



Reversibility on trajectories
Let ω = v0 · · · vn be a trajectory (path) in the connected graph G = (V , E) and
let rω = vn · · · v0 be the reversed trajectory.

Proposition

If the detailed balance holds, the the reversibility condition

P (ω) = P (rω)

holds for each trajectory ω.

Proof.

Write the detailed balance along the trajectory,

π(v0)Pv0→v1 = π(v1)Pv1→v0 ,

π(v1)Pv1→v2 = π(v2)Pv2→v1 ,

...

π(vn−1)Pvn−1→vn = π(vn)pvn→vn−1 ,

and clear π(v1) · · ·π(vn−1) in both sides of the product.



Kolmogorov’s condition

We denote by ω a closed trajectory, that is a tra-
jectory on the graph such that the last state co-
incides with the first one, ω = v0v1 . . . vnv0, and
by rω the reversed trajectory rω = v0vn . . . v1v0

1 2

4 3

1 2

4 3

Theorem (Kolmogorov)

Let the Markov chain (Xn)n∈N have a transition supported by the connected
graph G.

If the process is reversible, for all closed trajectory

Pv0→v1 · · ·Pvn→v0 = Pv0→vn · · ·Pv1→v0

If the equality is true for all closed trajectory, then the process is reversible.

The Kolmogorov’s condition does not involve the π.

Detailed balance, reversibility, Kolmogorov’s condition are algebraic in
nature and define binomial ideals.



Transition graph

From G = (V , E) an (undirected simple) graph, split each edge into two
opposite arcs to get a connected directed graph (without loops)
O = (V ,A). The arc going from vertex v to vertex w is (v → w). The
reversed arc is r(v → w) = (w → v).

1 2

4 3

1 2

4 3

A path or trajectory is a sequence of vertices ω = v0v1 · · · vn with
(vk−1 → vk) ∈ A, k = 1, . . . , n. The reversed path is rω = vnvn−1 · · · v0.
Equivalently, a path is a sequence of inter-connected arcs ω = a1 . . . an,
ak = (vk−1 → vk), and rω = r(an) . . . r(a1).



Circuits, cycles

A closed path ω = v0v1 · · · vn−1v0 is any path going from an initial v0 back
to v0; rω = v0vn−1 · · · v1v0 is the reversed closed path. If we do not
distinguish any initial vertex, the equivalence class of closed paths is called a
circuit.

A closed path is elementary if it has no proper closed sub-path, i.e. if does
not meet twice the same vertex except the initial one v0. The circuit of an
elementary closed path is a cycle.

1 2

4 3

1 2

4 3

1 2

4 3

1 2

4 3

1 2

4 3

1 2

4 3



Kolmogorov’s ideal

With indeterminates P = [Pv→w ], (v → w) ∈ A, form the ring
k[Pv→w : (v → w) ∈ A]. For a trajectory ω, define the monomial term

ω = a1 · · · an 7→ Pω =
n∏

k=1

Pak =
∏
a∈A

PNa(ω)
a ,

with Na(ω) the number of traversals of the arc a by the trajectory.

1 2

4 3

(3)

(3) (4)

(4)

(1) P1   2
3 P2   3

4 P3   4
4 P4   1

3 P4   2

2   3 3   4 4   2

4   1 1   22   3 3   4

4   1 1   22   3 3   4

4   1 1   22   3 3   4

Definition (K-ideal)

The Kolmogorov’s ideal or K-ideal of the graph G is the ideal generated by the
binomials Pω − P rω, where ω is any circuit.



Bases of the K-ideal

Finite basis of the K-ideal

The K-ideal is generated by the set of binomials Pω − P rω, where ω is cycle.

Universal G-basis

The binomials Pω − P rω, where ω is any cycle, form a reduced universal Gröbner
basis of the K-ideal.

Six cycles: ω1 = 1→ 2 2→ 4 4→ 1 (green), ω2 = 2→ 3 3→ 4 4→ 2,
ω3 = 1→ 2 2→ 3 3→ 2 4→ 1 (red), ω4 = rω1, ω5 = rω2,ω6 = rω3.
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Cycle space of O

For each cycle ω define cycle vector

za(ω) =


+1 if a is an arc of ω,

−1 if r(a) is an arc of ω,

0 otherwise.

a ∈ A.

The binomial Pω − P rω is written as Pz+(ω) − Pz−(ω).

The definition of z can be is extended to any circuit ω̄ by
za(ω̄) = Na(ω)− Na(rω).

There exists a sequence of cycles such that z(ω̄) = z(ω1) + · · ·+ z(ωl).

We can find nonnegative integers λ(ω) such that z(ω̄) =
∑
ω∈C λ(ω)z(ω),

i.e. it belongs to the integer lattice generated by the cycle vectors.

Z (O) is the cycle space, i.e. the vector space generated in kA by the cycle
vectors.



Cocycle space of O

For each subset W of V , define cocycle vector

ua(W ) =


+1 if a exits from W ,

−1 if a enters into W ,

0 otherwise.

a ∈ A.

1 2

4 3

W

The generated subspace of kA is the cocycle space U(O)

The cycle space and the cocycle space orthogonally split the vector space{
y ∈ kA : ya = −yr(a), a ∈ A

}
.

Note that for each cycle vector z(ω), cocycle vector u(W ),
za(ω)ua(W ) = zr(a)(ω)ur(a)(W ), a ∈ A, hence

z(ω) · u(W ) = 2
∑
a∈ω

ua(W ) = 2

 ∑
a∈ω,ua(W )=+1

1−
∑

a∈ω,ua(W )=−1

1

 = 0.



Toric ideals

Let U be the matrix whose rows are the cocycle vectors u(W ), W ⊂ V . We
call the matrix U = [ua(W )]W⊂V ,a∈A the cocycle matrix.

Consider the ring k[Pa : a ∈ A] and the Laurent ring k(tW : W ⊂ V ),
together with their homomorphism h defined by

h : Pa 7−→
∏

W⊂V

t
ua(W )
W = tua .

The kernel I (U) of h is the toric ideal of U. It is a prime ideal and the

binomials Pz+ − Pz− , z ∈ ZA, Uz = 0 are a generating set of I (U) as a
k-vector space.

As for each cycle ω we have Uz(ω) = 0, the cycle vector z(ω) belongs to

kerZ U =
{

z ∈ ZA : Uz = 0
}

. Moreover, Pz+(ω) = Pω, Pz−(ω) = P rω,
therefore the K-ideal is contained in the toric ideal I (U).



The K-ideal is toric

Theorem

The K-ideal is the toric ideal of the cocycle matrix.

Definition (Graver basis)

z(ω1) is conformal to z(ω2), z(ω1) v z(ω2), if the component-wise product is
non-negative and |z(ω1)| ≤ |z(ω2)| component-wise, i.e. za(ω1)za(ω2) ≥ 0 and
|za(ω1)| ≤ |za(ω2)| for all a ∈ A. A Graver basis of Z (O) is the set of the
minimal elements with respect to the conformity partial order v.

Theorem

1 For each cycle vector z ∈ Z (O), z =
∑
ω∈C λ(ω)z(ω), there exist cycles

ω1, . . . , ωn ∈ C and positive integers α(ω1), . . . , α(ωn), such that
z+ ≥ z+(ωi ), z− ≥ z−(ωi ), i = 1, . . . , n and z =

∑n
i=1 α(ωi )z(ωi ).

2 The set {z(ω) : ω ∈ C} is a Graver basis of Z(O). The binomials of the
cycles form a Graver basis of the K-ideal.



Example of proof

1→ 2 2→ 1 2→ 3 3→ 2 3→ 4 4→ 3 4→ 1 1→ 4 2→ 4 4→ 2

z(ωA) = ( 1 −1 0 0 0 0 1 −1 1 −1 )

z(ωB) = ( 0 0 1 −1 1 −1 0 0 −1 1 )

z(ωC) = ( 1 −1 1 −1 1 −1 1 −1 0 0 )

+ 2 =

1 1 1 12 2 2 2

4 4 4 43 3 3 3

+ 2

(3)

(3) (4)

(4)

(1)

z(ω) = z(ωA) + 2z(ωB) + 2z(ωC) = (3 ,−3 , 4 ,−4 , 4 ,−4 , 0 , 0 ,−1 , 1)

z+(ω) = z+(ωB) + 3z+(ωC) = (3 , 0 , 4 , 0 , 4 , 0 , 0 , 0 , 0 , 1)

+ 3=

1 11 2 22

4 44 3 33

(3)
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Positive K-ideal

The strictly positive reversible transition probabilities on O are given by:

Pv→w = s(v ,w)
∏
S

t
uv→w (S)
S

= s(v ,w)
∏

S : v∈S,w /∈S

tS
∏

S : w∈S,v /∈S

t−1S ,

where s(v ,w) = s(w , v) > 0, tS > 0.

The first set of parameters, s(v ,w), is a function of the edge.

The second set of parameters, tS , represent the deviation from symmetry.
The second set of parameters is not identifiable because the rows of the U
matrix are not linearly independent.

The parametrization can be used to derive an explicit form of the invariant
probability.



Parametric detailed balance

Theorem

Consider the strictly non-zero points on the K-variety.

1 The symmetric parameters s(e), e ∈ E , are uniquely determined. The
parameters tS , S ⊂ V are confounded by ker U = {U tt = 0}.

2 An identifiable parametrization is obtained by taking a subset of parameters
corresponding to linearly independent rows, denoted by tS , S ⊂ S:

Pv→w = s(v ,w)
∏

S⊂S : v∈S,w /∈S

tS
∏

S⊂S : w∈S,v /∈S

t−1S

3 The detailed balance equations, κ(v)Pv→w = κ(w)Pw→v , are verified if, and
only if,

κ(v) ∝
∏

S : v∈S

t−2S



Detailed balance ideal

Definition

The detailed balance ideal is the ideal

Ideal

(∏
v∈V

κ(v)− 1, κ(v)Pv→w − κ(w)Pv→w , (v → w) ∈ A

)
.

in k[κ(v) : v ∈ V ,Pv→w , (v → w) ∈ A]

1 The matrix [Pv→w ]v→w∈A is a point of the variety of the K-ideal if and only
if there exists κ = (κ(v) : v ∈ V ) such that (κ,P) belongs to the variety of
the detailed balance ideal.

2 The detailed balance ideal is a toric ideal.

3 The K-ideal is the κ-elimination ideal of the detailed balance ideal.



Parameterization of reversible transitions

There exist a (non algebraic) parametrization of the non-zero K-variety of
the form

Pv→w = s(v ,w)κ(w)1/2κ(v)−1/2

Such a P is a reversible transition probability strictly positive on the graph G
with invariant probability proportional to κ if, and only if,

κ(v)1/2 ≥
∑
w 6=v

s(u,w)κ(w)−1/2.

In the Hastings-Metropolis algorithm, we are given an unnormalized positive
probability κ and a transition Qv→w > 0 if (v → w) ∈ A. We are required
to produce a new transition Pv→w = Qv→wα(v ,w) such that P is reversible
with invariant probability κ and 0 < α(v ,w) ≤ 1. We have

Qv→wα(v ,w) = s(v ,w)κ(w)1/2κ(v)−1/2

and moreover we want

α(v ,w) =
s(v ,w)κ(w)1/2

Qv→wκ(v)1/2
≤ 1.


