
Replicated measurements,
ideal and derivatives

Roberto Notari

roberto.notari @ polimi.it

Dipartimento di Matematica, Politecnico di Milano

Jarandilla, November 13, 2010 – p. 1/30



Introduction

The first part of this talk reports on the paper

–, E. Riccomagno, Replicated measurements and algebraic
statistics, in Algebraic and Geometric Methods in Statistics,
P. Gibilisco, E. Riccomagno, M.P. Rogantin, H. Wynn Eds.,
2010, Cambridge University Press.

The second part is based on various papers by J. Elias, A.
Iarrobino, V. Kanev, and M.E. Rossi.
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Introduction

A basic application of algebraic statistics to design and
analysis of experiments considers a design D as a finite set
of distinct points in R

n. This set can be equivalently
described as the zero set of a system of polynomial
equations, that is to say, of an ideal I(D) in a polynomial
ring. Then a subset of a basis of the quotient ring R/I(D) is
used as support for an identifiable regression model.

We consider this identifiability problem in the case where
more than one measurement is taken at a design point. As
we are after saturated regression models, this is essentially
an interpolation problem.
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Introduction

We focus on the case where a set of sample points ωi ∈ Ω
are such that the corresponding design points d(ωi) are
unknown and identified with a single point d
(error-in-variables models and random effect models).

Namely, consider clouds of points with unknown
coordinates. Each cloud is close to a point d whose
coordinates are known. The measured responses for each
point in a cloud yi = y(d(ωi)) are known.

We might include non replicated points as well.
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Introduction

The problems we want to tackle are

I. determine a reasonable algebraic notion of a cloud of
points close to a point ↔ an analogue of I(D);

II. determine conditions that ensure the good behavior of
the interpolating polynomial ↔ the analogue of R/I(D).

In the second part of the talk, I will discuss the apolar
correspondence and some of its applications.
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Points with multiplicities

Let K be a field, and let A
n be the affine space over K of

dimension n. If we fix a coordinate system, we can identify
A

n with K
n, and in particular, every point P ∈ A

n is
represented by its coordinates (a1, . . . , an) or equivalently,
by its defining ideal I(P ) = 〈x1 − a1, . . . , xn − an〉.

If we want to consider sets consisting of finitely many
distinct points, e.g. X = {P1, . . . , Pr}, the defining ideals can
be computed as

I(X) = I(P1) ∩ · · · ∩ I(Pr)

and consists exactly of the polynomials f(x1, . . . , xn)
vanishing at all the points in X, i.e. f(Pi) = 0 for each
i = 1, . . . , r.
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Points with multiplicities

In many situations, the computation of the coordinates of
points is enough for solving specific problems, in some
others, it is tto a poor information.
Example 1 Consider the two intersection problems

{

y − x2 = 0

y = 1

{

y − x2 = 0

y = 0

The first system has A(1, 1) and B(−1, 1) as only solutions,
and so we say that the conic and the line meet at the points
A and B, and there is nothing more to say.
In the second case, we find that O(0, 0) is the only
intersection point, but the line is tangent to the conic at the
origin. So, the coordinates are not enough.
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Points with multiplicities

Example 2 Determine the polynomials vanishing at the
origin, or vanishing at the origin with all their first
derivatives.
In the first case, as said before, we get exactly the
polynomials in I(O) = 〈x1, . . . , xn〉.
In the second case, we get the subset of I(O) consisting of
all the polynomials having no linear part, i.e., if we write a
polynomial as sum of homogeneous forms,

f = fs + fs−1 + · · · + f1 + f0, with deg(fj) = j,

then f solves the second problem if and only if f1 = f0 = 0.
The solutions form the ideal I generated by all the degree 2
monomials.
We set fs = LF (f).
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Points with multiplicities

Now, we give the definition of a point with multiplicity.
Definition 3 An ideal I defines the point P with multiplicity
m if there exists k ∈ N such that

I(P )k ⊆ I ⊆ I(P ) and dimKR/I = m

where R/I is the quotient ring and dimK is the dimension as
K–vector space.
Equivalently, we say that I is an I(P )–primary ideal of
degree m. The point P is called the support of I.

If we want to consider more that one point as support, it is
enough to consider the intersection of the corresponding
primary ideals.
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Points with multiplicities

In the first example, the ideal associated to the intersection
of y = 0 and y− x2 = 0 is I = 〈y, x2〉 that defines the origin O
with multiplicity 2, while in the second example, I = I(O)2

and its multiplicity is n+ 1, where n is the number of
variables.

Also if we consider only one point as support, the degree m
does not allow us to uniquely find the ideal unless m = 1.
We give some examples in K[x, y] of multiple point
supported at the origin.
m = 2 (double point): I = 〈y, x2〉 and J = 〈y − x, x2〉;

m = 3 (triple point): I = 〈y, x3〉 and J = 〈x2, xy, y2〉.
I(P ) instead is the only ideal that defines P with m = 1.
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Some algebraic tools

A tangent line to a curve can be seen as the limit position of
a moving secant line. Equivalently, a double point can be
seen as the limit position of two points that collapse to the
same support. How to handle points that move?

Requirements:

• one more variable t to describe the movement;

• an ideal J ⊆ K[x1, . . . , xn, t] that defines points whose
coordinates depend on t;

• no point can appear or disappear during the movement.
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Some algebraic tools

The requirements motivate the following definition.

Definition 4 An ideal J ⊆ S = K[x1, . . . , xn, t] defines a flat
family of points if there exists m such that, for every t0 ∈ K,

dimK S/〈J, t− t0〉 = m.

For example, let K = R. Then, J = 〈x2 + y2 − t2, xy〉 is a flat
family.

For t0 6= 0, 〈J, t− t0〉 defines the 4 points (±t0, 0), (0,±t0).

For t0 = 0, 〈J, t〉 = 〈x2 + y2, xy, t〉 defines the origin with
multiplicity 4.
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Some algebraic tools

In a flat family, for almost every t0 ∈ K, the corresponding
set of points has the same geometric properties.
They are called the general element of the family.
The remaining t0 ∈ K give rise to the special elements of
the family.
In the previous example, the origin with multiplicity 4 was
the special element of the family.
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Some algebraic tools

In particular, it is possible to explicitly compute the special
element of a family of points collapsing to one point along
rays, given the ideal of the starting points.
Theorem 5 Consider D = {P1, . . . , Pr} ⊆ A

n a set of r
distinct points, and let I(D) be its defining ideal. Consider
the flat family of points obtained by moving every Pi to the
origin O along a straight line. Then, the special element is
the origin with multiplicity r and it is defined by the
I(O)–primary ideal

I0 = {F homogeneous |F = LF (f) for some f ∈ I(D)}.

I0 is homogeneous.
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Some algebraic tools

It is possible to generalize the previous theorem to a more
general situation.
Theorem 6 Assume Xi = {Pi1, . . . , Pi,ri

} is a set of distinct
points that collapse to Ai for i = 1, . . . , s. Assume further
that X1 ∪ · · · ∪Xs is a set of r1 + · · · + rs = r distinct points.
If Ij is the I(Aj)–primary ideal defined in the previous
Theorem, then

I1 ∩ · · · ∩ Is

is the special element of the flat family of points obtained by
moving all the r points at the same time.
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Interpolation

As before, we first approach the problem in a special case,
then we generalize it.
Let D = {P1, . . . , Pr} ⊆ A

n be a set of distinct points, and let
y1, . . . , yr ∈ K.

The multivariate interpolation problem can be stated as:
find a polynomial f ∈ R = K[x1, . . . , xn] such that f(Pi) = yi

for each i = 1, . . . , r.

The problem has a unique solution if we look for f ∈ R/I(D)
instead of f ∈ R. In fact, if f is a solution of the interpolation
problem, then f + g interpolates the same values for every
g ∈ I(D).
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Interpolation

First step: collapse the points to the origin along rays, and
study the coefficients of the interpolating polynomial on the
distinct points. Of course, we choose to vary the computed
value yi at Pi by means of a polynomial yi(t).

Theorem 7 Let X = {P1, . . . , Pr} ⊆ A
n be a set of distinct

points, and let y1, . . . , yr ∈ K. Let M1 = 1, . . . ,Mr be a
monomial base of R/I(X) and assume that deg(Mi) = di

with 0 = d1 ≤ · · · ≤ dr. Let yi(t) ∈ K[t] verify yi(1) = yi for
each i = 1, . . . , r. Then, there exists a unique interpolating
polynomial F = c1M1 + · · · + crMr with ci(t) ∈ K[t]t such that
F (t0Pi) = yi(t0) for every i and t0 6= 0.

ci ∈ K[t]t means that ci is a ratio whose denominator is td.
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Interpolation

Second step: look for sufficient conditions on the yi(t) to
assure that ci(t) can be evaluated at t = 0. The evaluation is
possible if ci ∈ K[t], or, if K = R, if limt→0 ci(t) exists and it is
finite.

Theorem 8 Let A be the r × r matrix such that aij = Mj(Pi)

evaluation of the monomial Mj at the point Pi. Moreover, let

y = (y1(t), . . . , yr(t))
T = y0 + ty1 + · · · + tbyb

with yi ∈ K
r. Then, ci(t) ∈ K[t] if and only if

yj ∈ Span〈Ah|dh ≤ j〉 where Ah is the h–th column of A.

The advantage of yi(t) to be a polynomial is that the
condition is not only sufficient, but it is also necessary.
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Interpolation

Third step: as in the computation of the primary ideal when
collapsing a cloud of points at the origin, now we want to
explicitly compute the limit of the interpolating polynomial.

Theorem 9 In the hypotheses and notation of previous
Theorems,

ci(0) =
det(Ai,di

)

det(A)

where Ai,di
is the matrix obtained from A by substituting its

i–th column with ydi .

Hence, also in this case, the new variable t plays no role.
As last remark, M1 = 1, and so y0 = y0M1, i.e. c1(0) = y0 for
some y0 ∈ K arbitrarily chosen.
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Interpolation

Last step: we want to collapse the starting points to more
centers, and we want to get one interpolating polynomial
fitting both the initial data, and the movement of the points.
Theorem 10 In the set-up of Theorem 6, let Ij the
I(Aj)–primary ideal obtained by collapsing Xj to Aj and let
I = I1 ∩ · · · ∩ Is. Let Fj ∈ R/Ij be the limit interpolating
polynomial computed in Theorem 9, for j = 1, . . . , s. Then,
there exists a unique polynomial F ∈ R/I such that F
mod Ij = Fj for every j.

This result is a sort of gluing of partial interpolators. Once
again, all the computations can be performed without using
the extra variable t.
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Projection to the support

In most practical cases, after various observations are
taken over each point of the design, one is interested in
determining a saturated, linear, regression model
identifiable by the design. Hence, we start comparing the
rings R/I and R/I(Y ) where Y = {A1, . . . , As}. Of course, Y
is the design, while I describes the intersection of the
I(Aj)–primary ideals obtained by collapsing various points
at each Aj .

At first, we show that the comparison is possible.
Theorem 11 The inclusion I ⊆ I(Y ) induces a surjective
map

ψ :
R

I
→

R

I(Y )

defined as ψ(F ) = F mod I(Y ).
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Projection to the support

Now, we adapt the previous Theorem to our situation.
Theorem 12 Let Fj ∈ R/Ij be the limit interpolating
polynomial for j = 1, . . . , s, and let F ∈ R/I be the gluing of
F1, . . . , Fs. Let G ∈ R/I(Y ) be the only solution of the
interpolating problem G(Aj) = Fj(Aj) for j = 1, . . . , s. Then,
ψ(F ) = G.

Often, Fj(Aj) is the mean value of the observations over
each design point, but the results hold true also for different
choices of Fj(Aj).

Jarandilla, November 13, 2010 – p. 22/30



Primary ideals and derivatives

Now, we want to describe the apolar correspondence, that
allows to describe primary ideals by means of derivatives.
Let K be a field of characteristic 0, and let
R = K[x1, . . . , xn], S = K[y1, . . . , yn] be polynomial rings in
the same number of indeterminates. We define a
multiplication between a monomial ya1

1
. . . yan

n ∈ S and a
monomial xb1

1
. . . xbn

n ∈ R as

ya1

1
. . . yan

n ◦xb1

1
. . . xbn

n =
b1!

(b1 − a1)!
. . .

bn!

(bn − an)!
xb1−a1

1
. . . xbn−an

n

if bi ≥ ai for each i = 1, . . . , n, and ya1

1
. . . yan

n ◦ xb1

1
. . . xbn

n = 0

otherwise. Essentially, we think of yi as ∂/∂xi.
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Primary ideals and derivatives

This new product can be extended from monomials to
polynomials by using the distributive law.
In algebraic terms, the operation ◦ makes R an S–module.
This means that in R the product of polynomials cannot be
considered.
Definition 13 Let g ∈ S and f ∈ R be polynomials. We say
that g and f are apolar each other if g ◦ f = 0.

Easy generalization

1. (I)⊥ = {f ∈ R | g ◦ f = 0 for every g ∈ I} given the ideal
I ⊆ S; (I)⊥ is a submodule of R.

2. (M)⊥ = {g ∈ S | g ◦ f = 0 for every f ∈M} given the
submodule M ⊆ R; (M)⊥ is an ideal of S.
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Primary ideals and derivatives

The S–module R is not Noetherian, i.e. there are
submodules of R that are not finitely generated. For
example, consider M = 〈xn

1 | n ∈ N〉.

Under the standard grading, Sd ×Rd → K identifies Sd with
the dual of Rd, because it is a non–degenerate bilinear
map.

First basic result result on the apolar correspondence.
Theorem 14 There is a 1-to-1 correspondence between
Artinian homogeneous ideals in S and finitely generated,
graded, S–submodules of R.

Artinian homogeneous ideals in S represent I(O)–primary
ideals in S, i.e. the origin with some multiplicity.
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Primary ideals and derivatives

We want to translate operations on ideals in S to operations
on submodules in R.

1. I ⊆ J if, and only if, I⊥ ⊇ J⊥.

2. dimK

(

J
I

)

t
= dimK

(

I⊥

J⊥

)

t
for each t ∈ Z.

3. (I ∩ J)⊥ = I⊥ + J⊥;

4. (I + J)⊥ = I⊥ ∩ J⊥;

5. (I : J)⊥ = J ◦ I⊥, for whatever homogeneous ideal J ;

6. I is monomial if, and only if, I⊥ is monomial.

Moreover, I⊥ is isomorphic to the canonical module of S/I.
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Gorenstein ideals

A particular class of multiple points are the Gorenstein
ones, that we want to define and characterize in terms of
apolarity.
Let I ⊆ S a homogeneous Artinian ideal. We define the
socle of S/I as the ideal Soc(S/I) = 0 :S/I I(O) of S/I.

Definition 15 We say that either I or S/I is Gorenstein if
dimK Soc(S/I) = 1.

The apolar submodule of a Gorenstein ideal is quite simple.
In fact,
Theorem 16 I is Gorenstein if, and only if, I⊥ is cyclic.
This result is known as Macaulay’ s correspondence.
Hence, to construct Gorenstein multiple points it is enough
to choose a homogeneous polynomial in R and compute its
apolar ideal.
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Gorenstein ideals

Gorenstein Artinian homogeneous ideals are then the basic
bricks to construct every other Artinian homogeneous ideal.
In fact, it holds
Theorem 17 Every Artinian ideal I is the intersection of
finitely many Artinian Gorenstein ideals.

Let g1, . . . , gs be the largest degree generators of I⊥. Then,
the ideal J = ∩s

i=1
(gi)

⊥ is uniquely determined by I. It would
be interesting to deeply investigate the relation between the
ideals I and J.
What about the monomial Gorenstein Artinian ideals in S?
Theorem 18 Let I ⊆ S be an Artinian monomial ideal.
Then, I is Gorenstein if, and only if, (I)⊥ = 〈xb1

1
. . . xbn

n 〉, i.e. I
is the complete intersection ideal generated by ybi+1

i .
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Gorenstein ideals

Assume I = (f)⊥ for some f ∈ Rd. Then,

dimK

(

S

I

)

t

= dimK

(

S

I

)

d−t

for every t ∈ Z, i.e., there is a symmetry around d/2. In
particular, dimK(S/I)d = 1 and dimK(S/I)t = 0 for t > d.

Theorem 19 Let f ∈ Rd be a non–zero form of degree
d ≥ 1. Then, f⊥ has minimal generators in degree > d if,
and only if, f = `d for a suitable linear form ` ∈ R, or
equivalently, dimK(S/I)t = 1 for every 0 ≤ t ≤ d.
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Gorenstein ideals

Assume d = 2h+ 1, and let f ∈ Rd be a polynomial. The
ideal (f)⊥ defines the origin with multiplicity
m =

∑d
t=0

dimK(S/I)t. For a general choice of f, we get
m = 2

(n+h
n

)

.

The parameter space for Gorenstein ideals has dimension
dimKRd − 1 =

(

2h+n
n

)

− 1.

The parameters to determine m distinct points in A
n are

mn = 2n
(n+h

n

)

.

Theorem 20 Not every primary ideal is limit of distinct
points.

Proof. Asymptotically,
(

2h+n
n

)

− 1 > 2n
(n+h

n

)

, and so there
are too many Gorenstein ideals with respect to the set of m
distinct points. �
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