TORIC GEOMETRY SEMINAR 2010

(Combinatorial Commutative Algebra, Optimization and Statistics) JARANDILLA DE LA VERA (CÁCERES, SPAIN)

November 12-15, 2010

Hermite polynomial aliasing in Gaussian quadrature

Giovanni Pistone giovanni.pistone@gmail.com Collegio Carlo Alberto

Eva Riccomagno and Claudia Fassino riccomag@dima.unige.it and fassino@dima.unige.it

Grand plan

Determine classes of f polynomials, $\mathcal{D}=\left\{x_{1}, \ldots, x_{n}\right\}$ and $w=\left\{w_{1}, \ldots, w_{n}\right\}$ such that

$$
\mathrm{E}(f(Z))=\int_{\mathbb{R}} f(x) \frac{e^{-x^{2} / 2}}{\sqrt{2 \pi}} d x=\sum_{i=1}^{n} f\left(x_{i}\right) w_{i}
$$

with $Z \sim \mathcal{N}(0,1)$ using polynomial algebra and orthogonal polynomials.

Theorem

In one dimension, if
\mathcal{D} are the zeros of the Hermite polynomial of degree n
w_{i} is the expected values of the Lagrange polynomials

$$
I_{i}(x)=\prod_{i \neq j} \frac{x-x_{i}}{x_{j}-x_{i}}
$$

f is a polynomial of degree smaller or equal to $2 n-1$ then the equality holds.

Abstract and a reference

In the computational algebra approach to DoE, the set of design points is described as the solution of a system of polynomial equations and the identification of various classes of models is computed by the use of special bases of the corresponding polynomial ideal.

A recent overview of this new field, termed Algebraic Statistics, and the first mention of the application to polynomial chaos are in

- P. Gibilisco, E. Riccomagno, M. Rogantin, H.P. Wynn, eds., Algebraic and Geometric Methods in Statistics, Cambridge University Press, 2010.

Here we present the first results of a research in progress in which we explore the applicability of these ideas when the defining equations are derived from Hermite polynomials and when the calculus is Hermite polynomial based, to obtain a folding over a finite set of points of multivariate polynomials.

This is related to quadrature formulas and has strong links with designs of experiments. Hermite polynomials are key tools in many areas: chaos expansions, Malliavin calculus, SODE and SPDE, p-rough paths, ...

I．Hermite polynomials
II．Expectation
III．The weighing vector
IV．Fractions
V．Higher dimension

I. Hermite polynomials and Stein-Markov operator

Definition

(1) Define $\delta f(x)=x f(x)-f^{\prime}(x)=-e^{x^{2} / 2} \frac{d}{d x}\left(f(x) e^{-x^{2} / 2}\right)$. If $Z \sim \mathcal{N}(0,1)$

$$
\mathrm{E}\left(g(Z) \delta^{n} f(Z)\right)=\mathrm{E}\left(d^{n} g(Z) f(Z)\right)
$$

i.e. δ is the transpose of the derivative w.r.t. the standard Gaussian measure.
(2) Define $H_{0}=1, H_{n}(x)=\delta^{n} 1, n>0$, e.g.

$$
H_{1}(x)=x, H_{2}(x)=x^{2}-1, H_{3}(x)=x^{3}-3 x, H_{4}(x)=x^{4}-6 x^{2}+3, \ldots
$$

Properties

(1) The transposition formula shows that the H_{n} 's are orthogonal
(2) $d \delta-\delta d=$ id, $d H_{n}=n H_{n-1}, \mathrm{E}\left(H_{n}^{2}(Z)\right)=n!, H_{n+1}=x H_{n}-n H_{n-1}$.

- P. Malliavin, Integration and probability, Springer-Verlag, New York, 1995, with the collaboration of Hélène Airault, Leslie Kay and Gérard Letac, Edited and translated from the French by Kay, foreword by Mark Pinsky.

Theorem (Zeros of H_{n})

(1) The Hermite polynomial $H_{n}, n \geq 1$, has n distinct real roots
(2) which are separated by those of H_{n+1}.

Theorem (Linear structure)

(1) $\operatorname{deg}_{x}\left(H_{n}(x)\right)=n$.
(2) $\operatorname{Span}\left(1, x, \ldots, x^{n}\right)=\operatorname{Span}\left(H_{0}, H_{1}(x), \ldots, H_{n}(x)\right)$.

Theorem (Ring structure)

(1) $H_{k} H_{n}=H_{n+k}+\sum_{i=1}^{n \wedge k}\binom{n}{i}\binom{k}{i} i!H_{n+k-2 i}, n, k \geq 1$ 。
(2) If $H_{n}(x)=0$, then $H_{n+k}(x)+\sum_{i=1}^{n \wedge k}\binom{n}{i}\binom{k}{i} i!H_{n+k-2 i}(x)=0, n \geq 1$.

In statistical language, item 3 shows an aliasing relation on the design

$$
\mathcal{D}_{n}=\left\{x: H_{n}(x)=0\right\}
$$

- W. Gautschi, Orthogonal polynomials: computation and approximation, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2004.

Aliasing computation

- The computation of the normal form introduces a notion of confounding. For example from $H_{n+1}(x)=x H_{n}(x)-n H_{n-1}(x)$ we obtain $H_{n+1}(x) \equiv-n H_{n-1}(x)$ where \equiv stands for equality over $\mathcal{D}_{n}=\left\{x: H_{n}(x)=0\right\}$, that is remainder of division by H_{n}.
- In general let $H_{n+k} \equiv \sum_{j=0}^{n-1} h_{j}^{n+k} H_{j}$ be the representation of H_{n+k} at \mathcal{D}_{n}. Substitution in the product formula gives

$$
\begin{aligned}
\operatorname{NF}\left(H_{n+k}\right) & \equiv-\sum_{i=1}^{n \wedge k}\binom{n}{i}\binom{k}{i} i!\operatorname{NF}\left(H_{n+k-2 i}\right) \\
& =-\sum_{i=1}^{n \wedge k}\binom{n}{i}\binom{k}{i} i!\sum_{j=0}^{n-1} h_{j}^{n+k-2 i} H_{j}
\end{aligned}
$$

Equating coefficients gives a general recursive formula

$$
h_{j}^{n+k}=-\sum_{i=1}^{n \wedge k}\binom{n}{i}\binom{k}{i} i!h_{j}^{n+k-2 i}
$$

The first confounding relationships are

k	expansion
1	$-n H_{n-1}$
2	$-n(n-1) H_{n-2}$
3	$-n(n-1)(n-2) H_{n-3}+3 n H_{n-1}$
4	$-n(n-1)(n-2)(n-3) H_{n-4}+8 n(n-1) H_{n-2}$
5	$-\frac{n!}{(n-5)!} H_{n-5}+5 n H_{n-1}+15 n(n-1)(n-2) H_{n-3}$
6	$-\frac{n!)}{(n-6)!} H_{n-6}+24 n(n-1)(n-2)(n-3) H_{n-4}+10 n(n-1)(2 n-5) H_{n-2}$

- For $f=\sum_{i=0}^{n+1} c_{i}(f) H_{i}$, we have $k=1$ and

$$
\begin{aligned}
\operatorname{NF}(f) & =\sum_{i=0}^{n-1} c_{i}(f) H_{i}+\underline{c_{n}(f) H_{n}}+c_{n+1}(f) \operatorname{NF}\left(H_{n+1}\right) \\
& \equiv \sum_{i=0}^{n-2} c_{i}(f) H_{i}+\left(c_{n-1}(f)-n c_{n+1}(f)\right) H_{n-1}
\end{aligned}
$$

Find $c_{i}(f)$ as linear combination of the coefficients of f and of H_{n}.

II. Expectation and normal forms

- Let f be a polynomial in one variable with real coefficients and by polynomial division $f(x)=q(x) H_{n}(x)+r(x)$ where r has degree smaller than H_{n} and $r(x)=f(x)$ on $H_{n}(x)=0$.
- Then for $Z \sim \mathcal{N}(0,1)$

$$
\begin{aligned}
\mathrm{E}(f(Z)) & =\mathrm{E}\left(q(Z) H_{n}(Z)\right)+\mathrm{E}(r(Z)) \\
& =\mathrm{E}\left(q(Z) \delta^{n} 1\right)+\mathrm{E}(r(Z)) \\
& =\mathrm{E}\left(d^{n} q(Z)\right)+\mathrm{E}(r(Z))=\mathrm{E}(r(Z)) \quad \text { iff } \mathrm{E}\left(d^{n} q(Z)\right)=0 .
\end{aligned}
$$

- Note that $d^{n} q(Z)=0$ if and only if q has degree smaller than n and this is only if f has degree smaller or equal to $2 n-1$. But also

$$
\mathrm{E}\left(d^{n} q(Z)\right)=\mathrm{E}\left(d^{n} \sum_{i=0}^{\infty} c_{i}(q) H_{i}\right)=\left\langle H_{n}, \sum_{i=0}^{\infty} c_{i}(q) H_{i}\right\rangle=n!c_{n}(q)=0
$$

iff $c_{n}(q)=0$. The set of polynomials orthogonal to H_{n} is characterised by $c_{n}(q)=0$ which is a linear combination of coefficients of f.

Gaussian quadrature

For $k=1, \ldots, n$ and $x_{1}, \ldots, x_{n} \in \mathbb{R}$ pairwise distinct, define the Lagrange polynomials

$$
I_{k}(x)=\prod_{i: i \neq k} \frac{x-x_{i}}{x_{k}-x_{i}}
$$

- These are indicator polynomial functions of degree $n-1$, namely $I_{k}\left(x_{i}\right)=\delta_{i k}$,
- and form a \mathbb{R}-vector space basis of the set of polynomials of degree at most $(n-1), \mathbb{P}_{n-1}$.
- Hence if r has degree smaller than n then $r(x)=\sum_{k=1}^{n} r\left(x_{k}\right) I_{k}(x)$
- and for $w_{k}=\mathrm{E}\left(I_{k}(Z)\right)$ by linearity

$$
\mathrm{E}(r(Z))=\sum_{k=1}^{n} r\left(x_{k}\right) \mathrm{E}\left(I_{k}(Z)\right)=\sum_{k=1}^{n} r\left(x_{k}\right) w_{k}
$$

- Putting all together, on $\mathcal{D}_{n}=\left\{x: H_{n}(x)=0\right\}=\left\{x_{1}, \ldots, x_{n}\right\}$ and for f polynomial of degree at most $(2 n-1)$ or s.t. $c_{n}\left(\frac{f-r}{H_{n}}\right)=0$

$$
\begin{aligned}
\mathrm{E}(f(Z))=\mathrm{E}(r(Z))= & \sum_{k=1}^{n} r\left(x_{k}\right) \mathrm{E}\left(I_{k}(Z)\right) \\
& =\sum_{k=1}^{n} f\left(x_{k}\right) w_{k} \\
& =\mathrm{E}_{\mathrm{n}}(f(X))
\end{aligned}
$$

where $\mathrm{P}_{\mathrm{n}}\left(X=x_{k}\right)=\mathrm{E}\left(I_{k}(Z)\right)=w_{k}$ is a probability on \mathcal{D}.

- In general

$$
\mathrm{E}(f(Z))=\sum_{k=1}^{n} f\left(x_{k}\right) \mathrm{E}\left(I_{k}(Z)\right)+n!c_{n}\left(\frac{f-r}{H_{n}}\right)
$$

III. Algebraic computation of the weights w_{k}

Theorem

Let w be the polynomial of degree $n-1$ such that $w\left(x_{k}\right)=w_{k}$ then

$$
w(x) H_{n-1}^{2}(x)=\frac{(n-1)!}{n} \quad \text { on } H_{n}(x)=0
$$

- E.g. for $n=3$

$$
\left\{\begin{aligned}
0 & =H_{3}(x)=x^{3}-3 x \\
2 / 3 & =w(x) H_{2}^{2}=\left(\theta_{0}+\theta_{1} x+\theta_{2} x^{2}\right)\left(x^{2}-1\right)^{2}
\end{aligned}\right.
$$

reduce degree using $x^{3}=3 x$ and equate coefficients to obtain

$$
w(x)=\frac{2}{3}-\frac{x^{2}}{6}
$$

Evaluate to find $w_{-\sqrt{3}}=w(-\sqrt{3})=\frac{1}{6}=w_{\sqrt{3}}$ and $w_{0}=w(0)=\frac{2}{3}$.

- The roots of $H_{n}, n>2$, are not in \mathbb{Q}. Computer algebra systems work with rational fields. Working with algebraic extensions of fields could be slow.
- Sometimes there is no need to compute explicitly the weights.

A CoCoA code for the weighing polynomial

```
N:=4;
Use R::=Q[w,h[1..(N-1)]], Elim(w);
-- number of nodes
-- setting up the ring
-- the Hermite polynomials
A:=[ h[I]-h[1]*h[I-1]+(I-1)*h[I-2] | I In (3..(N-1)) ];
Eqs:=Concat( A, [ h[2]-h[1]*h[1]+1 ] );
Append(Eqs,h[1]*h[N-1]-(N-1)*h[N-2]); --the nodes
Set Indentation;
Append(Eqs,N*w*h[N-1]^2-Fact(N-1)); --the weighing polynomial
J:=Ideal(Eqs); GB_J:=GBasis(J);
--the game
Last(GB_J);
3w + 1/4h[2] - 5/4 --the result
```

Hence, $w(x)=\frac{5-h[2]}{12}=\frac{6-x^{2}}{12}$ and as $h[4]=x^{4}-6 x^{2}+3=0$ we get

$$
\begin{array}{l|llll}
x & -\sqrt{3-\sqrt{6}} & -\sqrt{3 \pm \sqrt{6}} & \sqrt{3-\sqrt{6}} & \sqrt{3+\sqrt{6}} \\
w(x) & \frac{3+\sqrt{6}}{12} & \frac{3-\sqrt{6}}{12} & \frac{3+\sqrt{6}}{12} & \frac{31 \sqrt{6}}{12}
\end{array}
$$

Proof

- For $\left\{\tilde{H}_{n}\right\}_{n}$ a sequence of normalised orthogonal polynomials, the Christoffel-Darboux formula recite

$$
\begin{aligned}
\sum_{k=0}^{n-1} \tilde{H}_{k}(x) \tilde{H}_{k}(t) & =\sqrt{\beta_{n}} \frac{\tilde{H}_{n}(x) \tilde{H}_{n-1}(t)-\tilde{H}_{n-1}(x) \tilde{H}_{n}(t)}{x-t} \\
\sum_{k=0}^{n-1} \tilde{H}_{k}(t)^{2} & =\sqrt{\beta_{n}}\left(\tilde{H}_{n}^{\prime}(t) \tilde{H}_{n-1}(t)-\tilde{H}_{n-1}^{\prime}(t) \tilde{H}_{n}(t)\right)
\end{aligned}
$$

where $\tilde{H}_{k+1}(t)=\left(t-\alpha_{k}\right) \tilde{H}_{k}(t)-\beta_{k} \tilde{H}_{k-1}(t) \quad \tilde{H}_{-1}(t)=0 \quad \tilde{H}_{0}(t)=1$.

- For $\tilde{H}_{n}=H_{n} / \sqrt{n!}$ and at points in $\mathcal{D}_{n}=\left\{x: H_{n}(x)=0\right\}$ they become

$$
\sum_{k=0}^{n-1} \tilde{H}_{k}\left(x_{i}\right) \tilde{H}_{k}\left(x_{j}\right)=0 \text { if } i \neq j \quad \sum_{k=0}^{n-1} \tilde{H}_{k}\left(x_{i}\right)^{2}=n \tilde{H}_{n-1}\left(x_{i}\right)^{2}
$$

Hence for $\mathbb{H}_{n}=\left[\tilde{H}_{j}\left(x_{i}\right)\right]_{i=1, \ldots, n ; j=0, \ldots, n-1}$

$$
\mathbb{H}_{n} \mathbb{H}_{n}^{t}=n \operatorname{diag}\left(\tilde{H}_{n-1}^{2}\left(x_{i}\right): i=1, \ldots, n\right)
$$

and $\mathbb{H}_{n}^{-1}=\mathbb{H}_{n}^{t} n^{-1} \operatorname{diag}\left(\tilde{H}_{n-1}^{-2}\left(x_{i}\right): i=1, \ldots, n\right)$.

- Let $f(x)=\sum_{j=0}^{n-1} c_{j} \tilde{H}_{j}(x)$ and $\underline{f}=\mathbb{H}_{n} \underline{c}$ where $\underline{f}=\left[f\left(x_{i}\right)\right]_{i=1, \ldots, n}$ and $\underline{c}=\left[c_{j}\right]_{j}$. Furthermore

$$
\begin{aligned}
\underline{c} & =\mathbb{H}_{n}^{-1} \underline{f}=\mathbb{H}_{n}^{t} n^{-1} \operatorname{diag}\left(\tilde{H}_{n-1}^{-2}\left(x_{i}\right): i=1, \ldots, n\right) \underline{f} \\
& =\mathbb{H}_{n}^{t} n^{-1} \operatorname{diag}\left(\tilde{H}_{n-1}^{-2}\left(x_{i}\right) f\left(x_{i}\right): i=1, \ldots, n\right) \\
c_{j} & =\frac{1}{n} \sum_{i=1}^{n} \tilde{H}_{j}\left(x_{i}\right) f\left(x_{i}\right) \tilde{H}_{n-1}^{-2}\left(x_{i}\right)
\end{aligned}
$$

- For $f(x)=I_{k}(x)$ the k th Lagrange polynomial and using $I_{k}\left(x_{i}\right)=\delta_{i k}$ above

$$
c_{j}=\frac{1}{n} \tilde{H}_{j}\left(x_{k}\right) \tilde{H}_{n-1}^{-2}\left(x_{k}\right)
$$

- The expected value of $I_{k}(Z)$ is

$$
w_{k}=\mathrm{E}\left(I_{k}(Z)\right)=\sum_{j=0}^{n-1} c_{j} \mathrm{E}\left(\tilde{H}_{j}(x)\right)=c_{0}=\frac{1}{n} \tilde{H}_{n-1}^{-2}\left(x_{k}\right)
$$

IV．Fractions： $\mathcal{F} \subset \mathcal{D}_{n}, \# \mathcal{F}=m<n$

－Let $1_{\mathcal{F}}(x)$ be the polynomial of degree n such that $1_{\mathcal{F}}(x)=1$ if $x \in \mathcal{F}$ and 0 if $x \in \mathcal{D}_{n} \backslash \mathcal{F}$ and
let f be polynomial of degree at most $n-1$ or s．t．$c_{n}\left(\left(f 1_{\mathcal{F}}-r\right) / H_{n}\right)=0$ and let $Z \sim \mathcal{N}(0,1)$ ．
Then

$$
\begin{aligned}
\mathrm{E}\left(\left(f 1_{\mathcal{F}}\right)(Z)\right) & =\sum_{x_{k} \in \mathcal{F}} f\left(x_{k}\right) w_{k}=\mathrm{E}_{\mathrm{n}}\left(f(X) 1_{\mathcal{F}}(X)\right) \\
& =\mathrm{E}_{\mathrm{n}}(f(X) \mid X \in \mathcal{F}) \mathrm{P}_{\mathrm{n}}(X \in \mathcal{F})
\end{aligned}
$$

where $\mathrm{P}_{\mathrm{n}}\left(X=x_{k}\right)=w_{k}$.

- Let $\omega_{\mathcal{F}}(x)=\prod_{x_{k} \in \mathcal{F}}\left(x-x_{k}\right)=\sum_{i=0}^{m} c_{i} H_{i}(x)^{1}$ and
note $I_{k}^{\mathcal{F}}(x)=\prod_{i \in \mathcal{F}, i \neq k} \frac{x-x_{i}}{x_{k}-x_{i}}=\operatorname{NF}\left(I_{k}(x)\right.$, Ideal $\left(\omega_{\mathcal{F}}(x)\right)$ are the Lagrange polynomials for \mathcal{F}.
Let f be a polynomial of degree N and $f(x)=q(x) \omega_{\mathcal{F}}(x)+r(x)$ with $f\left(x_{i}\right)=r\left(x_{i}\right)$ on \mathcal{F} and $r(x)=\sum_{x_{k} \in \mathcal{F}} f\left(x_{k}\right) \mathcal{I}_{k}^{\mathcal{F}}(x)$.
Let's write $q(x)=\sum_{j=0}^{N-m} b_{j} H_{j}(x)$.
Then

$$
\begin{aligned}
\mathrm{E} & (f(Z))=\mathrm{E}\left(\sum_{j=0}^{N-m} b_{j} H_{j}(Z) \sum_{i=0}^{m} c_{i} H_{i}(Z)\right)+\mathrm{E}(r(Z)) \\
& =b_{0} c_{0}+b_{1} c_{1}+\ldots+((N-m) \wedge m)!b_{(N-m) \wedge m} c_{(N-m) \wedge m}+\sum_{x_{k} \in \mathcal{F}} f\left(x_{k}\right) w_{k}^{\mathcal{F}}
\end{aligned}
$$

where $w_{k}^{\mathcal{F}}=E\left(\operatorname{NF}\left(I_{k}(x), \operatorname{Ideal}\left(\omega_{\mathcal{F}}(x)\right)\right)\right.$.
${ }^{1} \mathrm{cf}$. the node polynomial from Gautschi.

V. Higher dimension

Theorem (Full grid on the zeros of product of Hermite polynomials)

Let Z_{1}, \ldots, Z_{d} i.i.d. $\sim \mathcal{N}(0,1), f \in \mathbb{R}\left[x_{1}, \ldots, x_{d}\right]$ with $\operatorname{deg}_{x_{i}} f \leq 2 n_{i}-1$ for $i=1, \ldots, d$ and

$$
\mathcal{D}_{n_{1} \ldots n_{d}}=\left\{\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}: H_{n_{1}}\left(x_{1}\right)=H_{n_{2}}\left(x_{2}\right)=\ldots=H_{n_{d}}\left(x_{d}\right)=0\right\} .
$$

Then

$$
\mathrm{E}\left(f\left(Z_{1}, \ldots, Z_{d}\right)\right)=\sum_{\left(x_{1}, \ldots, x_{d}\right) \in \mathcal{D}_{n_{1} \ldots n_{d}}} f\left(x_{1}, \ldots, x_{d}\right) w_{x_{1}}^{n_{1}} \ldots w_{x_{d}}^{n_{d}}
$$

where $w_{x_{j}}^{n_{j}}=\mathrm{E}\left(I_{x_{j}}\left(Z_{j}\right)\right)$ for $x_{j} \in \mathcal{D}_{n_{j}}$.

- Here $\mathrm{E}\left(f\left(Z_{1}, Z_{2}\right)\right)=\int f(x, y) \frac{e^{-\left(x^{2}+y^{2}\right) / 2}}{\sqrt{2 \pi^{2}}} d x d y$
- Can take other f e.g. for $f(x, y)=q_{1}(x, y) H_{n}(x)+q_{2}(x, y) H_{m}(y)+r(x, y)$ is needed that $\mathrm{E}\left(d_{x}^{n} q_{1}\left(Z_{1}, Z_{2}\right)\right)$ and $\left\langle H_{m}\left(Z_{2}\right), q_{2}\left(Z_{1}, Z_{2}\right)\right\rangle=0$.
- For Z_{1} and Z_{2} dependent with known covariance then without changing degrees the previous applies.

Fraction: an example

$$
\left\{\begin{aligned}
g_{1}=x^{2}-y^{2} & =H_{2}(x)-H_{2}(y)=0 \\
g_{2}=y^{3}-3 y & =H_{3}(y)=0 \\
g_{3}=x y^{2}-3 x & =H_{1}(x)\left(H_{2}(y)-2 H_{0}\right)=0
\end{aligned}\right.
$$

- For any f polynomial there exists unique $r \in \operatorname{Span}\left(1, x, y, x y, y^{2}\right)=$ Span $\left(H_{0}, H_{1}(x), H_{1}(y), H_{1}(x) H_{1}(y), H_{2}(y)\right)$ such that $f=\sum_{i=1}^{3} q_{i} g_{i}+r$.
- If

$$
\begin{aligned}
& q_{1}(x, y)=a_{o}+a_{1} H_{1}(x)+a_{2} H_{1}(y)+a_{3} H_{1}(x) H_{1}(y) \\
& q_{2}(x, y)=\theta_{1}(x)+\theta_{2}(x) H_{1}(y)+\theta_{3}(x) H_{2}(y) \\
& q_{3}(x, y)=a_{4}+a_{5} H_{1}(y)
\end{aligned}
$$

- Then

$$
\begin{aligned}
& \mathrm{E}\left(f\left(Z_{1}, Z_{2}\right)\right)=\mathrm{E}\left(r\left(Z_{1}, Z_{2}\right)\right) \\
& \quad=2 \frac{f(0,0)}{3}+\frac{f(\sqrt{3}, \sqrt{3})+f(\sqrt{3},-\sqrt{3})+f(-\sqrt{3}, \sqrt{3})+f(-\sqrt{3},-\sqrt{3})}{12}
\end{aligned}
$$

Input: $\quad \mathcal{F} \subset\left\{\left(x_{1}, \ldots, x_{d}\right): H_{n_{i}}\left(x_{i}\right)=0 i=1, \ldots, d\right\}$
τ and f polynomial
Output: $\quad \mathrm{E}(f(Z))$ with $Z \sim \mathcal{N}_{n}(0, I)$

1. Compute G, a τ-Gröbner basis of the design ideal of \mathcal{F}
2. Let $H=\left\{h=h_{a_{1}}\left(x_{1}\right) \ldots h_{a_{d}}\left(x_{d}\right): \mathrm{LT}_{\tau}(h) \leq_{\tau} \mathrm{LT}_{\tau}(g)\right.$ for all $\left.g \in G\right\}$
(the Hermite basis of the linear space of monomials in the g 's)
3. Write $g \in G$ in terms of Hermite polynomials
(change of linear basis from "monomials" to "Hermite")
4. Write $f=\sum_{g \in G} s_{g} g+r=\sum_{g \in G} s_{g} \sum_{h<g} g_{h} h+r$
5. Check if $\sum_{g \in G, h<g}\left\langle s_{g} g_{h}, h\right\rangle=0$ for all $h=h_{a_{1}}\left(x_{1}\right) \ldots h_{a_{d}}\left(x_{d}\right) \in H$ (more often than not complicated linear combination of coefficients of f)
6. If YES then $\mathrm{E}(f(Z))=\sum_{x \in \mathcal{F}} f(x) w_{x}$
7. If NO then $\mathrm{E}(f(Z))=\sum_{x \in \mathcal{F}} f(x) w_{x}+$ complicated linear combination
of coefficients of f
Notes:

- 1., 2., 3. and 4. are essentially linear operations.
- Find \mathcal{F} and f such that 5 . holds.
- By means of a Buchberger-Möller type of algorithm do 1.2.3. directly with Hermite polynomials. What about 4. and 5.? We think we have 7.

Factorial grid

Design

$$
\mathcal{G}= \begin{cases}g_{1}=y(y-1) & =H_{2}(y)-H_{1}(y)+1 \\ g_{2}=x(x-1)(x-2) & =H_{3}(x)-3 H_{2}(x)+5 H_{1}(x)-3 H_{0}(x)\end{cases}
$$

Then the only order ideal is

$$
\begin{aligned}
\mathcal{L} & =\left\{1, y, x, x y, x^{2}, x^{2} y\right\} \\
& =\left\{H_{0}, H_{1}(y), H_{1}(x), H_{1}(y) H_{1}(x), H_{2}(x)+1, H_{2}(x) H_{1}(x)+H_{1}(x)\right\}
\end{aligned}
$$

and $f \in \mathbb{R}[x, y]$ can be written as $f=s_{1} g_{1}+s_{2} g_{2}+r$ with $r \in \operatorname{Span} \mathcal{L}$. Then

$$
\begin{aligned}
\mathrm{E}(f(X, Y)) & =\mathrm{E}\left(s_{1}\left(H_{2}(Y)-H_{1}(Y)+1\right)\right) \\
& +\mathrm{E}\left(s_{2}\left(H_{3}(X)-3 H_{2}(X)+5 H_{1}(X)-3 H_{0}(X)\right)+\mathrm{E}(R)\right.
\end{aligned}
$$

As $s_{1}=\sum_{i, j=0}^{+\infty} \alpha_{i j} H_{i}(x) H_{j}(y)$ with only a finite number of $\alpha_{i j} \in \mathbb{R}$ not zero, we have

$$
\begin{align*}
& \mathrm{E}\left(s_{1}\left(H_{2}(Y)-H_{1}(Y)+1\right)\right)=\sum_{i, j=0}^{+\infty} \alpha_{i j} \int H_{i}(x) d x \int H_{j}(y) H_{2}(y) d y \\
& \quad-\sum_{i, j=0}^{+\infty} \alpha_{i j}\left(\int H_{i}(x) d x \int H_{j}(y) H_{1}(y) d y\right) \\
& \quad+\sum_{i, j=0}^{+\infty} \alpha_{i j}\left(\int H_{i}(x) d x \int H_{j}(y) d y\right) \\
& \quad=\sum_{i, j=0}^{+\infty} \alpha_{i j} \delta_{i, 0} 2!\delta_{j, 2}-\sum \alpha_{i j} \delta_{i, 0} 1!\delta_{j, 1}+\sum \alpha_{i j} \delta_{i, 0} 0!\delta_{j, 0} \\
& \quad=2!\alpha_{0,2}-\alpha_{0,1}+\alpha_{0,0} \tag{1}
\end{align*}
$$

Similarly for $g_{2}=H_{3}(x)-3 H_{2}(x)+5 H_{1}(x)-3 H_{0}(x)$ and $s_{2}=\sum_{i, j=0}^{+\infty} \beta_{i j} H_{i}(x) H_{j}(y)$ we find

$$
\begin{equation*}
\mathrm{E}\left(s_{2} g_{1}\right)=3!\beta_{3,0}-3 \cdot 2!\beta_{2,0}+5 \beta_{1,0}-3 \beta_{0,0} \tag{2}
\end{equation*}
$$

For any f orthogonal to g_{1} and g_{2}, that is, such that

$$
\begin{aligned}
2!\alpha_{0,2}-\alpha_{0,1}+\alpha_{0,0}=0 & =3!\beta_{3,0}-3 \cdot 2!\beta_{2,0}+5 \beta_{1,0}-3 \beta_{0,0} \\
\mathrm{E}(f(X, Y)) & =\sum_{d \in \mathcal{D}} f(d) \mathrm{E}\left(w_{d}(X, Y)\right)
\end{aligned}
$$

where e.g. $w_{d}(x, y)$ is the product of the Lagrange polynomial for the levels of x and the Lagrange polynomial for the levels of y.

- The steps in magenta require only linear algebra operation and involve only the H 's.
- The green bits, the s_{i} may not be unique.
- The red bits, what we care about, can be determined easily. The issues are to find how they relate to the coefficients of f and how the non-uniqueness of s_{i} effects them.

We think that the above can be generalised

- to any product grid with integer levels, and likely for any level,
- to other types of design e.g. we considered $\left(x, x^{2}\right): x=-2,-1,0,1,2$.

The G-Bases and the quotient space bases can be obtained by a specialisation of the Buchberger Möller algorithm for ideal of points.
Even if the s_{i} 's are not unique, we suspect that there is some invariants (simpler than sizygies).
In any case we still need to write the "Hermite coefficients" in terms of the coefficients of the polynomial to integrate.

Of course we'd like to implement efficient macros.

Bibliography

- D. A. Cox, J. B. Little, D. O'Shea, Ideals, varieties, and algorithms, An introduction to computational algebraic geometry and commutative algebra. Third edition. Undergraduate Texts in Mathematics. Springer, New York, 2007.
- W. Gautschi, Orthogonal polynomials: computation and approximation, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2004.
- P. Malliavin, Integration and probability, Springer-Verlag, New York, 1995, with the collaboration of Hélène Airault, Leslie Kay and Gérard Letac, Edited and translated from the French by Kay, foreword by Mark Pinsky.
- G. Pistone, E. Riccomagno, H. P. Wynn. Algebraic Statistics. Computational commutative algebra in statistics. Monographs on Statistics and Applied Probability, 89. Chapman \& Hall/CRC, Boca Raton, FL, 2001. CRC Press, 2001.
- G. Pistone. Algebraic varieties vs. differentiable manifolds in statistical models final chapter in Algebraic and geometric methods in statistics (Gibilisco, Riccomagno, Rogantin and Wynn, eds) Cambridge University Press, Cambridge, 2010.
- W. Schoutens. Stochastic Processes and Orthogonal Polynomials. Springer-Verlag, 2000.

Product formula

Let $\langle\phi, \psi\rangle=\mathrm{E}(\phi(Z) \psi(Z))$ and $h<k$. Then

$$
\begin{aligned}
\left\langle H_{k} H_{h}, \psi\right\rangle & =\left\langle H_{h}, H_{k} \psi\right\rangle=\left\langle 1, d^{h}\left(H_{k} \psi\right)\right\rangle=\sum_{i=0}^{h}\left\langle 1,\binom{h}{i} d^{i} H_{k} d^{h-i} \psi\right\rangle \\
& =\left\langle 1, H_{k} d^{h} \psi\right\rangle+\sum_{i=1}^{h}\left\langle 1,\binom{h}{i} d^{i} H_{k} d^{h-i} \psi\right\rangle \\
& =\left\langle H_{h+k}, \psi\right\rangle+\sum_{i=1}^{h}\binom{h}{i} k(k-1) \ldots(k-i+1)\left\langle H_{h+k-2 i}, \psi\right\rangle
\end{aligned}
$$

Example: $H_{2} H_{1}=\left(x^{2}-1\right) x=H_{3}+2 H_{1}$ and in particular

$$
H_{k}^{2}=H_{2 k}+\sum_{i=1}^{k}\binom{k}{i} k(k-1) \ldots(k-i+1) H_{2 k-2 i}
$$

$$
\mathrm{E}\left(H_{k}^{2}(Z)\right)=\binom{k}{1} k(k-1) \ldots 1=k!
$$

$\mathrm{E}\left(H_{k}(Z) H_{h}(Z)\right)=0$

Algebraic DoE: basics

- Given a finite set \mathcal{D} of distinct points in \mathbb{R}^{d} we consider the design ideal

$$
\begin{aligned}
& \left\langle f \in \mathbb{R}\left[x_{1}, \ldots, x_{d}\right]: f(d)=0 \text { for all } d \in \mathcal{D}\right\rangle \\
= & \left\langle f_{1}, \ldots, f_{p} \in \mathbb{R}\left[x_{1}, \ldots, x_{d}\right]\right\rangle
\end{aligned}
$$

- Two polynomials h, k, are aliased if $h-k$ is zero on \mathcal{D}, i.e. if $h-k$ belong to the design ideal.
- A fraction is a subset \mathcal{F} of \mathcal{D}. Its design ideal is obtained by adding new equations g_{1}, \ldots, g_{l}, called defining equations.
- The indicator polynomial of the fraction \mathcal{F} in \mathcal{D} is a polynomial whose restriction to \mathcal{D} is the indicator function of the fraction.
- This is made operative by notions from Algebraic Geometry such as term-order, Gröbner basis, normal form, ... and algebraic software such as CoCoA, Maple, Singular, 4ti2, Matematica, Maxima, Macaulay2, ...
- G. Pistone, E. Riccomagno, H.P. Wynn, Algebraic statistics. Computational commutative algebra in statistics, Monographs on Statistics and Applied Probability, Chapman \& Hall/CRC, Boca Raton, FL, 2001.
- D. Cox, J. Little, D. O'Shea, Ideals, varieties, and algorithms: An introduction to computational algebraic geometry and commutative algebra, 2nd edn., Springer-Verlag, New York, 1997.

An application: identification of Fourier coefficients in one dimension

For $f(x)=\sum_{k=0}^{N} c_{k}(f) H_{k}(x)$, then

- $\mathrm{E}(f(Z))=c_{0}(f)$
- if $c_{n}\left((f-r) / H_{n}\right)=0$ e.g. if $N \leq 2 n-1$ then

$$
c_{0}(f)=\sum_{H_{n}\left(x_{k}\right)=0} f\left(x_{k}\right) w_{k} .
$$

- If $c_{n}\left(\left(f H_{i}-r\right) / H_{n}\right)=0$ e.g. for all i such that $N+i \leq 2 n-1$

$$
\sum_{H_{n}\left(x_{k}\right)=0} f\left(x_{k}\right) H_{i}\left(x_{k}\right) w_{k}=\mathrm{E}\left(f(Z) H_{i}(Z)\right)=i!c_{i}(f),
$$

- in particular if $\operatorname{deg} f=n-1$ then all coefficients can be computed exactly.
- In general

$$
\begin{aligned}
\sum_{H_{n}\left(x_{k}\right)=0} f\left(x_{k}\right) H_{i}\left(x_{k}\right) w_{k} & =\sum_{H_{n}\left(x_{k}\right)=0} \operatorname{NF}\left(f\left(x_{k}\right) H_{i}\left(x_{k}\right)\right) w_{k} \\
& =\mathrm{E}\left(\operatorname{NF}\left(f(Z) H_{i}(Z)\right)\right)=i!c_{i}(\operatorname{NF}(f)) .
\end{aligned}
$$

...in higher dimension

Consider $\mathcal{D}_{n n}$ and f a polynomial with $\operatorname{deg}_{x} f, \operatorname{deg}_{y} f<n$ then

$$
f(x, y)=\sum_{i, j=0}^{n-1} c_{i j} H_{i}(x) H_{j}(y)
$$

As $\operatorname{deg}_{x}\left(f H_{k}\right), \operatorname{deg}_{y}\left(f H_{k}\right)<2 n-1$ for all $k<n$, then

$$
\begin{aligned}
\mathrm{E}\left(f\left(Z_{1}, Z_{2}\right) H_{k}\left(Z_{1}\right) H_{h}\left(Z_{2}\right)\right) & =c_{h k} \delta_{i k}\left\|H_{k}\left(Z_{1}\right)\right\|^{2} \delta_{j h}\left\|H_{h}\left(Z_{2}\right)\right\|^{2} \\
c_{k h} & =\frac{1}{k!h!} \sum_{(x, y) \in \mathcal{D}_{n n}} f(x, y) H_{k}(x) H_{h}(y) w_{x} w_{y}
\end{aligned}
$$

Note if f is the indicator function of a fraction $\mathcal{F} \subset \mathcal{D}_{n n}$ then

$$
c_{k h}=\frac{1}{k!h!} \sum_{(x, y) \in \mathcal{F}} H_{k}(x) H_{h}(y) w_{x} w_{y}
$$

