Applications of Discrete Optimization to Commutative Algebra.

Toric Geometry Seminar 2010
Jarandilla de la Vera, November 2010

Víctor Blanco
Dpto. de Álgebra

Outline

(1) Solving IP using CA

Toric Gröbner Bases
Graver Bases
Lexicographic Gröbner Bases
Short generating functions
Sum of Squares (SOS)
(2) Discrete Optimization in CA

Computing the omega invariant Decomposing into m-irreducibles

Integer Programming

$$
\begin{align*}
& \min c x \\
& \begin{aligned}
\text { s.t. } \quad A x & =b \\
x & \in \mathbb{Z}_{+}^{n}
\end{aligned} \tag{A,c}\\
& A \in \mathbb{Z}^{m \times n}, b \in \mathbb{Z}^{m}, c \in \mathbb{Z}^{n} \text {. }
\end{align*}
$$

Gröbner Bases of Toric Ideals and IP

P. Conti and C. Traverso: Buchberger algorithm and integer programming, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (New Orleans, LA, 1991), 130-139, Lecture Notes in Comput. Sci., 539, Springer, Berlin, 1991.
S. Hoșten and R. Thomas: Gröbner bases and integer programming, Gröbner bases and applications (Linz, 1998), 144-158, London Math. Soc. Lecture Note Ser., 251, Cambridge Univ. Press, Cambridge, 1998.
S. Hoșten and B. Sturmfels: GRIN: an implementation of Gröbner bases for integer programming. Integer programming and combinatorial optimization (Copenhagen, 1995), 267-276, Lecture Notes in Comput. Sci., 920, Springer, Berlin, 1995.

How to solve IP using GB

$$
I_{A}=\left\langle x^{u}-x^{v}: A v=A u\right\rangle
$$

How to solve IP using GB

$$
I_{A}=\left\langle x^{u}-x^{v}: A v=A u\right\rangle
$$

\mathcal{G} : A Gröbner basis for I_{A} with respect to \prec_{C} :

$$
u \prec_{c} v: \Leftrightarrow\left\{\begin{array}{r}
c u<c v \quad \text { or } \\
c u=c v \text { and } u \prec_{\text {lex }} v
\end{array}\right.
$$

How to solve IP using GB

$$
I_{A}=\left\langle x^{u}-x^{v}: A v=A u\right\rangle
$$

\mathcal{G} : A Gröbner basis for I_{A} with respect to \prec_{C} :
$u \prec_{c} v: \Leftrightarrow\left\{\begin{aligned} & c u<c v \text { or } \\ & c u=c v \text { and } u \prec_{\text {lex }} v\end{aligned}\right.$
u_{0} : A feasible solution for $\operatorname{IP}_{A, c}(b)$.
$n f\left(x^{u_{0}}, \mathcal{G}\right)=x^{u^{\star}}$
u^{\star} OPTIMAL SOLUTION for $\mathrm{IP}_{A, c}(b)$.

How to solve IP using GB

$$
I_{A}=\left\langle x^{u}-x^{v}: A v=A u\right\rangle
$$

\mathcal{G} : A Gröbner basis for I_{A} with respect to \prec_{C} :
$u \prec_{c} v: \Leftrightarrow\left\{\begin{aligned} & c u<c v \text { or } \\ & c u=c v \text { and } u \prec_{l e x} v\end{aligned}\right.$
u_{0} : A feasible solution for $\mathrm{IP}_{A, c}(b)$.
$n f\left(x^{u_{0}}, \mathcal{G}\right)=x^{u^{*}}$
u^{\star} OPTIMAL SOLUTION for $\mathrm{IP}_{A, c}(b)$.

Task: How to compute a System of generators for I_{A} ?: Big-M method, GRIN method

Geometric GB

R R Thomas, A geometric Buchberger algorithm for integer programming. Math. Oper. Res. 20 (1995) 864-884.

Definition (Test Set)

A finite set $G=\left\{g_{1}, \ldots, g_{t}\right\} \subseteq \mathbb{Z}^{n}$ is a test set for $I P_{A, c}$ if and only if:
(1) For all $g \in G, A g=0$.
(2) If $x \in \mathbb{N}^{n}$ is a non optimal solution for $I P_{A, c}(b)$, with $b \in \mathbb{Z}_{+}^{n}$, there is some $g \in G$, such that $x-g \prec_{c} x$.
(3) If $x \in \mathbb{N}^{n}$ is the optimal solution for $I P_{A, c}(b)$, with $b \in \mathbb{Z}_{+}^{n}$, then for all $g \in G, x-g$ is infeasible.

Definition (Test Set)

A finite set $G=\left\{g_{1}, \ldots, g_{t}\right\} \subseteq \mathbb{Z}^{n}$ is a test set for $\mathbb{I P}_{A, c}$ if and only if:
(1) For all $g \in G, A g=0$.
(2) If $x \in \mathbb{N}^{n}$ is a non optimal solution for $I P_{A, c}(b)$, with $b \in \mathbb{Z}_{+}^{n}$, there is some $g \in G$, such that $x-g \prec_{c} x$.
(3) If $x \in \mathbb{N}^{n}$ is the optimal solution for $I P_{A, c}(b)$, with $b \in \mathbb{Z}_{+}^{n}$, then for all $g \in G, x-g$ is infeasible.

Theorem (Thomas 1995)

Let P be the set of non-optimal solutions of $\mathrm{IP}_{A, c}$. Then, there exist $\alpha_{1}, \ldots, \alpha_{t} \in P$ such that:

$$
P=\bigcup_{i=1}^{t}\left(\alpha_{i}+\mathbb{N}^{n}\right)
$$

Definition (Test Set)

A finite set $G=\left\{g_{1}, \ldots, g_{t}\right\} \subseteq \mathbb{Z}^{n}$ is a test set for $I P_{A, c}$ if and only if:
(1) For all $g \in G, A g=0$.
(2) If $x \in \mathbb{N}^{n}$ is a non optimal solution for $I P_{A, c}(b)$, with $b \in \mathbb{Z}_{+}^{n}$, there is some $g \in G$, such that $x-g \prec_{c} x$.
3 If $x \in \mathbb{N}^{n}$ is the optimal solution for $I P_{A, c}(b)$, with $b \in \mathbb{Z}_{+}^{n}$, then for all $g \in G, x-g$ is infeasible.

Theorem (Thomas 1995)

Let P be the set of non-optimal solutions of $\mathrm{IP}_{A, c}$. Then, there exist $\alpha_{1}, \ldots, \alpha_{t} \in P$ such that:

$$
P=\bigcup_{i=1}^{t}\left(\alpha_{i}+\mathbb{N}^{n}\right)
$$

Definition (Geometric GB)

For each $i=1, \ldots, t$, let β_{i} the optimal solution of $\mathrm{IP}_{A, c}\left(A \alpha_{i}\right)$:

$$
\mathcal{G}^{G}=\left\{g_{i}=\beta_{i}-\alpha_{i}: i=1, \ldots, t\right\}
$$

\mathcal{G}^{G} is a minimal test set

Let α a non-optimal solution of $\mathrm{IP}_{A, c}(b)$. By the theorem above, there exists at least one α_{i} such that $\alpha \geq \alpha_{i}$, then:

$$
\alpha-\alpha_{i} \geq 0
$$

and then,

$$
\alpha-\alpha_{i}+\beta_{i}=\alpha-g_{i} \geq 0
$$

But also:

- α and $\alpha-g_{i}$ are both feasible solutions of $\operatorname{IP}_{A, c}(b)$: $A\left(\alpha-g_{i}\right)=A\left(\alpha-\alpha_{i}+\beta_{i}\right)=A \alpha$.
- $\alpha-g_{i}$ improves $\alpha: c\left(\alpha-g_{i}\right)=c \alpha-c \alpha_{i}+c \beta_{i} \leq c \alpha$. $\left(\beta_{i}\right.$ is optimal for $\left.\operatorname{IP}_{A, c}\left(A \alpha_{i}\right)\right)$

\mathcal{G}^{G} is a minimal test set

Let α a non-optimal solution of $\mathrm{IP}_{A, c}(b)$. By the theorem above, there exists at least one α_{i} such that $\alpha \geq \alpha_{i}$, then:

$$
\alpha-\alpha_{i} \geq 0
$$

and then,

$$
\alpha-\alpha_{i}+\beta_{i}=\alpha-g_{i} \geq 0
$$

But also:

- α and $\alpha-g_{i}$ are both feasible solutions of $\operatorname{IP}_{A, c}(b)$: $A\left(\alpha-g_{i}\right)=A\left(\alpha-\alpha_{i}+\beta_{i}\right)=A \alpha$.
- $\alpha-g_{i}$ improves $\alpha: c\left(\alpha-g_{i}\right)=c \alpha-c \alpha_{i}+c \beta_{i} \leq c \alpha$. $\left(\beta_{i}\right.$ is optimal for $\left.\operatorname{IP}_{A, c}\left(A \alpha_{i}\right)\right)$

$$
\mathcal{G}^{G}=\left\{u-v: x^{u}-x^{v} \in \mathcal{G}\right\}
$$

Applications and Extensions

S. Hoșten and B. Sturmfels: Computing the integer programming gap, Combinatorica 23 (2007), 367-382.
R.R. Thomas and R. Weismantel. Truncated Gröbner bases for integer programming. Applicable Algebra in Engineering, Communication and Computing 8 (4) 1997, 241-256
B. Sturmfels and R. Thomas, Variation of cost functions in integer programming, Mathematical Programming 77 (1997) 357-387.
Q V. Blanco and J. Puerto. (2009) Partial Gröbner Bases for Multiobjective Integer Linear Optimization. SIAM Journal on Discrete Mathematics 23 (2), 571-595.

Q Tayur, S.R., Thomas, R.R., and Natraj, N.R. (1995). An algebraic geometry algorithm for scheduling in presence of setups and correlated demands. Mathematical Programming A, 69(3):369-401, 1995.
© Castro, F., Gago, J., Hartillo, I., Puerto, J., and Ucha, J.M. (2010). An algebraic approach to Integer Portfolio problems . arXiv:1004.0905

Graver bases and IP

R. Hemmecke, J. De Loera, S. Onn, R. Weismantel, N-fold Integer Programming, Discrete Optimization 5 (2), 2008, 231-241.
QR. Hemmecke, J. De Loera, S. Onn, U.G. Rothblum, R. Weismantel, Convex Integer Maximization via Graver Bases, Journal of Pure and Applied Algebra 213 (8). 2008, 1569-1577

R . Hemmecke and S. Onn, Multicommodity flow in polynomial time. Arxiv: arXiv:0906.5106 (June 2009)

Q De Loera, J., Haws, D., Lee, J. and O'Hair, A. (2009) Computation in Multicriteria Matroid Optimization, To appear, Journal of Experimental Algorithmics, 2009.

Graver Bases

$$
I_{A}=\left\langle x^{u}-x^{v}: A u=A v, u, v \in \mathbb{Z}_{+}\right\rangle
$$

Definition (Graver Bases)

$$
\mathcal{G} r_{A}=\left\{x^{u}-x^{v}: \nexists x^{w}-x^{z} \in I_{A} \text { such that } w \leq u \text { and } z \leq v\right\}
$$

$\mathcal{G r} r_{A}^{G}=\left\{z \in \operatorname{ker}_{\mathbb{Z}}(A): z\right.$ cannot be written as $z=u+v$ where $u, v \in$ $\operatorname{ker}_{\mathbb{Z}}(A)$ and $\left.u_{i} v_{i} \geq 0, \forall i\right\}$

$$
x^{u}-x^{v} \in \mathcal{G} r \Longleftrightarrow u-v \in \mathcal{G} r_{A}^{G}
$$

Universal Gröbner bases

$$
U G B_{A}=U_{c} G_{A, c}
$$

$$
\mathcal{G} r_{A} \subseteq U G B_{A}
$$

... but in some special cases it is easier to compute than Gröbner bases:
N -fold Integer Programs

Universal Gröbner bases

$U G B_{A}=U_{c} G_{A, c}$

$$
\mathcal{G} r_{A} \subseteq U G B_{A}
$$

... but in some special cases it is easier to compute than Gröbner bases:
N -fold Integer Programs

$$
\mathcal{G} r_{A}^{G} \text { is a test set for } I P_{A}
$$

Polynomial IP and Systems of Polynomial Equations

K K. Hägglöf, P. Lindberg, L. Svensson, Computing global minima to polynomial optimization problems using Gröbner bases, Journal of Global Optimization 7 (2) (1995) 115-125.
D. Bertsimas, D. Perakis, S. Tayur, A new algebraic geometry algorithm for integer programming, Management Sience 46 (7) (2000) 999-1008.

Q V. Blanco and J. Puerto, Some algebraic methods for solving multiobjective polynomial integer programs, Journal of Symbolic Computation, 2010R. Datta. Finding All Nash Equilibria of a Finite Game Using Polynomial Algebra, Economic Theory 20. 2009.

$$
\begin{align*}
\min & f(x) \\
\text { s.t. } & \\
& g_{j}(x) \tag{1}
\end{align*} \quad \leq 0 \quad=1, \ldots, m
$$

KKT necessary conditions for optimality [Karush, 1939] [Kuhn-Tucker, 1951]
Let x^{*} a feasible solution. Suppose that f and g_{j}, for $j=1, \ldots, m$, are differentiable at x^{*}, that g_{j}, for $j \notin J$, is continuous at x^{*}, and that h_{r}, for $r=1, \ldots, s$, is continuously differentiable at x^{*}. Further suppose that ∇g_{j}, for $j \in I$, and ∇h_{r}, for $r=1, \ldots, s$, are linearly independent (regularity conditions). If x^{*} is a optimal solution, then there exist scalars λ_{j}, for $j=1, \ldots, m$, and μ_{r}, for $r=1, \ldots, s$, such that

$$
\begin{array}{rlrl}
\nabla f\left(x^{*}\right)+\sum_{j=1}^{m} \lambda_{j} \nabla g_{j}\left(x^{*}\right) & +\sum_{r=1}^{s} \mu_{r} \nabla h_{r}\left(x^{*}\right) & =0 \\
\lambda_{j} g_{j}\left(x^{*}\right)=0 & & \text { for } j=1, \ldots, m \\
\lambda_{j} \geq 0 & \text { for } j=1, \ldots, m
\end{array}
$$

NR

x^{*} is Non Regular for (1), if x^{*} is feasible and there exist λ_{i}, for $i=1, \ldots, m$, and μ_{j}, for $j=1, \ldots, s$ such that:

$$
\sum_{i=1}^{m} \lambda_{i} \nabla g_{i}\left(x^{*}\right)+\sum_{i=1}^{s} \mu_{j} \nabla h_{j}\left(x^{*}\right)=0
$$

MOPIP $_{\mathbf{f}, \mathbf{g}}$

$\min \left(f_{1}(x), \ldots, f_{k}(x)\right)$
s.t.

$$
\begin{align*}
g_{j}(x) & \leq 0 \quad j=1, \ldots, m \tag{2}\\
h_{r}(x) & =0 \quad r=1, \ldots, s \\
x & \in \mathbb{Z}_{+}^{n}
\end{align*}
$$

with $f_{1}, \ldots, f_{k}, g_{1}, \ldots, g_{m}, h_{1}, \ldots, h_{s}$ polynomials in $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and the constraints defining a bounded feasible region.

Chebishev Scalarization

Nondominance necessary conditions for the Chebyshev scalarization [Bowman 1976]

x^{*} is a nondominated solution if and only if there are positive real numbers $\omega_{1}, \ldots, \omega_{k}>0$ so that x^{*} is an image unique solution of the following weighted Chebyshev approximation problem:

$$
\begin{array}{lll}
\min _{x}^{x} \max _{i} & \omega_{i}\left(f_{i}(x)-\hat{y}_{i}\right) & \\
\text { s.t. } & g_{j}(x) & \leq 0 \\
& j=1, \ldots, m \\
h_{r}(x) & =0 & r=1, \ldots, s \\
& x_{i}\left(x_{i}-1\right) & =0 \\
x \in \mathbb{R}^{n} & &
\end{array}
$$

where $\hat{y}=\left(\hat{y}_{1}, \ldots, \hat{y}_{k}\right) \in \mathbb{R}^{k}$ is a lower bound of $f=\left(f_{1}, \ldots, f_{k}\right)$, i.e., $\hat{y}_{i} \leq f_{i}(x)$ for all feasible solution x and $i=1, \ldots, k$.

Chebishev Scalarization

Nondominance necessary conditions for the Chebyshev scalarization [Bowman 1976]

x^{*} is a nondominated solution if and only if there are positive real numbers $\omega_{1}, \ldots, \omega_{k}>0$ so that x^{*} is an image unique solution of the following weighted Chebyshev approximation problem:

$$
\begin{array}{lll}
\min & \gamma & \\
\text { s.t. } & & \\
& \omega_{i}\left(f_{i}(x)-\hat{y}_{i}\right)-\gamma & \leq 0 \quad i=1, \ldots, k \\
& g_{j}(x) & \leq 0 \quad j=1, \ldots, m \\
h_{r}(x) & =0 \quad r=1, \ldots, s \\
& x_{i}\left(x_{i}-1\right) & =0 \quad i=1, \ldots, n \\
& \gamma \in \mathbb{R} & x \in \mathbb{R}^{n}
\end{array}
$$

where $\hat{y}=\left(\hat{y}_{1}, \ldots, \hat{y}_{k}\right) \in \mathbb{R}^{k}$ is a lower bound of $f=\left(f_{1}, \ldots, f_{k}\right)$, i.e., $\hat{y}_{i} \leq f_{i}(x)$ for all feasible solution x and $i=1, \ldots, k$.

Multiobjective FJ

FJ necessary conditions for non dominance [Zadeh, 1963; Cunha-Polack, 1967]
Let x^{*} a feasible solution. Suppose that f, g_{j}, for $j=1, \ldots, m$ and h_{r}, for $r=1, \ldots, s$, are continuously differentiable at x^{*}. If x^{*} is a nondominated solution, then there exist scalars ν_{i}, for $i=1, \ldots, k, \lambda_{j}$, for $j=1, \ldots, m$, and μ_{r}, for $r=1, \ldots, s$, such that

$$
\begin{array}{rlrl}
\sum_{i=1}^{k} \nu_{i} \nabla f_{i}\left(x^{*}\right)+\sum_{j=1}^{m} \lambda_{j} \nabla g_{j}\left(x^{*}\right) & +\sum_{r=1}^{s} \mu_{r} \nabla h_{r}\left(x^{*}\right) & =0 \\
\lambda_{j} g_{j}\left(x^{*}\right) & =0 & & \text { for } j=1, \ldots, m \\
\lambda_{j} \geq 0 & \text { for } j=1, \ldots, m \\
\nu_{i} \geq 0 & \text { for } i=1, \ldots, k \\
(\nu, \lambda, \mu) & \neq(\mathbf{0}, \mathbf{0}, \mathbf{0}) &
\end{array}
$$

Generating functions and IP

Barvinok, A. A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed, Mathematics of Operations Research , 19 (1994), 769-779.

Blanco, V and Puerto, J. Short Rational Generating Functions For Multiobjective Linear Integer Programming. Submitted. Available on Arxiv: 0712.4295. 2008.

De Loera, J.A., Haws, D., Hemmecke, R., Huggins, P., and R. Yoshida Three Kinds of Integer Programming Algorithms Based on Barvinok's Rational Functions, Lecture Notes in Computer Science, Integer Programming and Combinatorial Optimization (2004) 3-9

Q De Loera, J.A., Hemmecke, R., Köppe, M. (2008). Pareto Optima of Multicriteria Integer Linear Programs. INFORMS Journal on Computing, 2008.

Q Woods, K. and Yoshida, R. (2005). Short rational generating functions and their applications to integer programming , SIAG/OPT Views and News, 16, 15-19.

Generating functions of rational polytopes

Let $P=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$ be a rational polytope in \mathbb{R}^{n} with $A \in \mathbb{Z}^{m \times n}, b \in \mathbb{Z}^{m}$.

$$
f(P ; z)=\sum_{\alpha \in P \cap \mathbb{Z}^{\boldsymbol{n}}} z^{\alpha}
$$

where $z^{\alpha}=z_{1}^{\alpha_{1}} \cdots z_{n}^{\alpha_{n}}$, encodes the integer points inside P. INTRACTABLE!

Generating functions of rational polytopes

Let $P=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$ be a rational polytope in \mathbb{R}^{n} with $A \in \mathbb{Z}^{m \times n}, b \in \mathbb{Z}^{m}$.

$$
f(P ; z)=\sum_{\alpha \in P \cap \mathbb{Z}^{\boldsymbol{n}}} z^{\alpha}
$$

where $z^{\alpha}=z_{1}^{\alpha_{1}} \cdots z_{n}^{\alpha_{n}}$, encodes the integer points inside P. INTRACTABLE!

$$
\begin{aligned}
& P=[0, N] \subset \mathbb{R}: \\
& f(P, z)=\sum_{i=0}^{N} z^{i}=1+z+z^{2}+\cdots+z^{N}
\end{aligned}
$$

Generating functions of rational polytopes

Let $P=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$ be a rational polytope in \mathbb{R}^{n} with $A \in \mathbb{Z}^{m \times n}, b \in \mathbb{Z}^{m}$.

$$
f(P ; z)=\sum_{\alpha \in P \cap \mathbb{Z}^{\boldsymbol{n}}} z^{\alpha}
$$

where $z^{\alpha}=z_{1}^{\alpha_{1}} \cdots z_{n}^{\alpha_{n}}$, encodes the integer points inside P. INTRACTABLE!

$$
\begin{aligned}
& P=[0, N] \subset \mathbb{R}: \\
& f(P, z)=\sum_{i=0}^{N} z^{i}=1+z+z^{2}+\cdots+z^{N}=\frac{1-z^{N+1}}{1-z}
\end{aligned}
$$

Useful results on SGF

SGF of rational polytopes can be computed with the SGF of their supported cones (Brion, 1984)

Useful results on SGF

SGF of rational polytopes can be computed with the SGF of their supported cones (Brion, 1984)

Theorem (Barvinok, 1994)

Assume n, the dimension, is fixed. Given a rational polyhedron $P \subset \mathbb{R}^{n}$, the generating function $f(P ; z)$ can be computed in polynomial time in the form

$$
f(P ; z)=\sum_{i \in I} \varepsilon_{i} \frac{z^{u_{i}}}{\prod_{j=1}^{n}\left(1-z^{v_{i j}}\right)}
$$

where I is a polynomial-size indexing set, and where $\varepsilon \in\{1,-1\}$ and $u_{i}, v_{i j} \in \mathbb{Z}^{n}$ for all i and j.

Useful results on SGF

SGF of rational polytopes can be computed with the SGF of their supported cones (Brion, 1984)

Theorem (Barvinok, 1994)

Assume n, the dimension, is fixed. Given a rational polyhedron $P \subset \mathbb{R}^{n}$, the generating function $f(P ; z)$ can be computed in polynomial time in the form

$$
f(P ; z)=\sum_{i \in I} \varepsilon_{i} \frac{z^{u_{i}}}{\prod_{j=1}^{n}\left(1-z^{v_{i j}}\right)}
$$

where I is a polynomial-size indexing set, and where $\varepsilon \in\{1,-1\}$ and $u_{i}, v_{i j} \in \mathbb{Z}^{n}$ for all i and j.

Software: LattE and barvinok
$\max c \times$ s.t. $A x \leq b, x \in \mathbb{Z}_{+}^{n}$

Theorem (De Loera et al., 2004)

Assume that the number of variables, n, is fixed. There is a polynomial-time algorithm for computing the optimal solution of a (single-objective) integer program using generating functions.
$\max c \times$ s.t. $A x \leq b, x \in \mathbb{Z}_{+}^{n}$

Theorem (De Loera et al., 2004)

Assume that the number of variables, n, is fixed. There is a polynomial-time algorithm for computing the optimal solution of a (single-objective) integer program using generating functions.

Theorem (De Loera-Hemmecke-Köppe, 2008)

Assume that the number of variables, n and the number of objective of a multiobjective linear integer program are fixed. Then, the set of nondominated solutions can be encode in a short generating function.
$\max c \times$ s.t. $A x \leq b, x \in \mathbb{Z}_{+}^{n}$

Theorem (De Loera et al., 2004)

Assume that the number of variables, n, is fixed. There is a polynomial-time algorithm for computing the optimal solution of a (single-objective) integer program using generating functions.

Theorem (De Loera-Hemmecke-Köppe, 2008)

Assume that the number of variables, n and the number of objective of a multiobjective linear integer program are fixed. Then, the set of nondominated solutions can be encode in a short generating function.

Theorem (B.-Puerto 2009)

Assume that ONLY the number of variables, n, is fixed. Then, we can encode, in polynomial time, the entire set of nondominated solutions for MIP $_{A, C}(b)$ in a short sum of rational functions.
$\max c \times$ s.t. $A x \leq b, x \in \mathbb{Z}_{+}^{n}$

Theorem (De Loera et al., 2004)

Assume that the number of variables, n, is fixed. There is a polynomial-time algorithm for computing the optimal solution of a (single-objective) integer program using generating functions.

Theorem (De Loera-Hemmecke-Köppe, 2008)

Assume that the number of variables, n and the number of objective of a multiobjective linear integer program are fixed. Then, the set of nondominated solutions can be encode in a short generating function.

Theorem (B.-Puerto 2009)

Assume that ONLY the number of variables, n, is fixed. Then, we can encode, in polynomial time, the entire set of nondominated solutions for $\mathrm{MIP}_{A, C}(b)$ in a short sum of rational functions.

Theorem (B.-Puerto 2009)

Assume n is a constant. There is a polynomial-delay procedure to enumerate the entire set of nondominated solutions of $M I P A_{A, C}(b)$.

Consequences...

Blanco, V and Puerto, J. Some complexity results on fuzzy integer programming. Submitted. Available on Arxiv: 0712.4295. 2008.

Q Köppe, M, Ryan, C.T., and Queyranne, M (2008). Rational Generating Functions and Integer Programming Games, Submitted. Available on Arxiv: 0809.0689.
Köppe, M., Queyranne, M., and Ryan, C.T. (2009) Parametric Integer Programming Algorithm for Bilevel Mixed Integer Programs. Journal of Optimization Theory and Applications Volume 146, Number 1, 137-150
B Blanco, V., García-Sánchez, P.A., and Puerto, J. (2010) Counting Numerical Semigroups with Short Generating Functions. To Appear in the Int. J. of Algebra and Computation.

Sums of squares and the moment problem

Nie, J., Demmel, J., and Sturmfels, B. 2006. Minimizing Polynomials via Sum of Squares over the Gradient Ideal. Math. Program. 106, 3 (May. 2006), 587-606.

S Nie, J., Powers, V., and Demmel, J. Representations of positive polynomials on noncompact semialgebraic sets via KKT ideals, Journal of pure and applied algebra 209 (1), 2007, 189-200.

Q Lasserre, J.B. Global Optimization with Polynomials and the Problem of Moments, SIAM Journal on Optimization, v. 11 n.3, p.796-817, 2000.

S Henrion D., Lasserre J.B., and Lofberg J. (2009) Gloptipoly 3: moments, optimization and semidefinite programming. Optim. Methods and Softwares 24, pp. 761-779.

Lasserre J.B. (2009) Moments and sums of squares for polynomial optimization and related problems. J. Global Optim. 45, pp. 39-61.

Numerical Semigroups

Definition

A numerical semigroup is a subset S of \mathbb{N} (here \mathbb{N} denotes the set of non-negative integers) closed under addition, containing zero and such that $\mathbb{N} \backslash S$ is finite.

Numerical Semigroups

Definition

A numerical semigroup is a subset S of \mathbb{N} (here \mathbb{N} denotes the set of non-negative integers) closed under addition, containing zero and such that $\mathbb{N} \backslash S$ is finite.
$\left\{n_{1}, \ldots, n_{p}\right\}$ is a system of generators of S if
$S=\left\{\sum_{i=1}^{p} n_{i} x_{i}: x_{i} \in \mathbb{N}, i=1, \ldots, p\right\}$. We denote $S=\left\langle n_{1}, \ldots, n_{p}\right\rangle$.
Any numerical semigroup has an unique minimal system of generators (no proper subset of it is a system of generators).

Numerical Semigroups

Definition

A numerical semigroup is a subset S of \mathbb{N} (here \mathbb{N} denotes the set of non-negative integers) closed under addition, containing zero and such that $\mathbb{N} \backslash S$ is finite.
$\left\{n_{1}, \ldots, n_{p}\right\}$ is a system of generators of S if
$S=\left\{\sum_{i=1}^{p} n_{i} x_{i}: x_{i} \in \mathbb{N}, i=1, \ldots, p\right\}$. We denote $S=\left\langle n_{1}, \ldots, n_{p}\right\rangle$.
Any numerical semigroup has an unique minimal system of generators (no proper subset of it is a system of generators).

Embedding Dimension of S : cardinal of the minimal system of generators of S.
Gaps of $S: \mathrm{G}(S)=\mathbb{N} \backslash S$. Genus: $\mathrm{g}(S)=\# \mathrm{G}(S)$.

Numerical Semigroups

Definition

A numerical semigroup is a subset S of \mathbb{N} (here \mathbb{N} denotes the set of non-negative integers) closed under addition, containing zero and such that $\mathbb{N} \backslash S$ is finite.
$\left\{n_{1}, \ldots, n_{p}\right\}$ is a system of generators of S if
$S=\left\{\sum_{i=1}^{p} n_{i} x_{i}: x_{i} \in \mathbb{N}, i=1, \ldots, p\right\}$. We denote $S=\left\langle n_{1}, \ldots, n_{p}\right\rangle$.
Any numerical semigroup has an unique minimal system of generators (no proper subset of it is a system of generators).

Embedding Dimension of S : cardinal of the minimal system of generators of S.
Gaps of $S: \mathrm{G}(S)=\mathbb{N} \backslash S$. Genus: $\mathrm{g}(S)=\# \mathrm{G}(S)$.

Example: $S=\langle 2,4,5,7,10\rangle=\langle 2,5\rangle=\{0,2,4, \rightarrow\}=\mathbb{N} \backslash\{1,3\}$

Numerical Semigroups and Discrete Optimization

- Multiplicity: $m(S)=\min \{s \in S \backslash\{0\}\}$.
- Frobenius Number. $F(S)=\max \{n \in \mathbb{Z} \backslash S\}$.
- Kunz's polyhedron (Rosales et. al, 2002).
- Arithmetic invariants.
- Irreducibility: irreducible (Rosales-Branco, 2003) and m-irreducible (B.-Rosales, 2010) numerical semigroups.

The omega invariant: definition

Definition (Geroldinger, 1997)

Let $S=\left\langle n_{1}, \ldots, n_{p}\right\rangle$ be a numerical semigroup. For $s \in S$, let $\omega(S, s)$ denote the smallest $N \in \mathbb{N}_{0} \cup\{\infty\}$ with the following property:

$$
\begin{aligned}
& \text { For all } n \in \mathbb{N} \text { and } s_{1}, \ldots, s_{n} \in S \text {, if } \sum_{\substack{p \\
p}} s_{i}-s \in S \text {, then } \\
& \text { there exists a subset } \Omega \subset\{1, \ldots, n\} \text { such that }|\Omega| \leq N \text { and } \\
& \qquad \sum_{j \in \Omega} s_{j}-s \in S .
\end{aligned}
$$

Furthermore, we set

$$
\omega(S)=\max \left\{\omega\left(S, n_{i}\right): i=1, \ldots, p\right\} \in \mathbb{N} .
$$

The omega invariant: definition

Definition (Geroldinger, 1997)

Let $S=\left\langle n_{1}, \ldots, n_{p}\right\rangle$ be a numerical semigroup. For $s \in S$, let $\omega(S, s)$ denote the smallest $N \in \mathbb{N}_{0} \cup\{\infty\}$ with the following property:

$$
\begin{aligned}
& \text { For all } n \in \mathbb{N} \text { and } s_{1}, \ldots, s_{n} \in S \text {, if } \sum_{i=1}^{p} s_{i}-s \in S \text {, then } \\
& \text { there exists a subset } \Omega \subset\{1, \ldots, n\} \text { such that }|\Omega| \leq N \text { and } \\
& \qquad \sum_{j \in \Omega} s_{j}-s \in S .
\end{aligned}
$$

Furthermore, we set

$$
\omega(S)=\max \left\{\omega\left(S, n_{i}\right): i=1, \ldots, p\right\} \in \mathbb{N} .
$$

References: Geroldinger-Hassler (2008a-b), Geroldinger-Kainrath (2010), B.-GarcíaSánchez-Geroldinger (2010), Omidali (2010), Anderson-Chapman-Kaplan-Torkornoo (2010)...

The omega invariant: characterization

Theorem (B.-GarcíaSanchez-Geroldinger, 2010)
Let $S=\left\langle n_{1}, \ldots, n_{p}\right\rangle$ be a numerical semigroup.
(1) For every $s \in S$,

$$
\omega(S, n)=\max \left\{\sum_{i=1}^{p} x_{i}: x \in \operatorname{Minimals} Z(n+S)\right\},
$$

(2) $\omega(S)=\max \left\{\sum_{i=1}^{p} x_{i}: x \in \operatorname{Minimals}\left(Z\left(n_{i}+S\right)\right)\right.$ for some $i=$ $1, \ldots, p\}$.
$Z(n)=\left\{\left(x_{1}, \ldots, x_{p}\right) \in \mathbb{N}^{p}: n=\sum_{i=1}^{p} x_{i} n_{i}\right\}$
$Z(n+S)=\left\{\left(x_{1}, \ldots, x_{p}\right) \in \mathbb{N}^{p}: n+s=\sum_{i=1}^{p} x_{i} n_{i}\right.$, para algún $\left.s \in S\right\}$

Optimization over and integer efficient set

$$
\begin{array}{ll}
\max c(x) & \\
\text { s.t. } & x \text { is a non-dominated solution of } \\
v-\min C(x) & =\left(C_{1}(x), \ldots, C_{k}(x)\right) \\
\text { s.t. } & A x=b \\
& x \in \mathbb{Z}_{+}^{n}
\end{array}
$$

($x \in \mathbb{Z}_{+}^{n}$ feasible, is a non dominated solution if there is no other feasible solution $y \in \mathbb{Z}_{+}^{n}$ such that $C(y) \leq C(x)$ y $\left.C(x) \neq C(y)\right)$

Optimization over and integer efficient set: Omega

Let $S=\left\langle n_{1}, \ldots, n_{p}\right\rangle$ be a numerical semigroup. Then, for each $j \in\{1, \ldots, p\}, \omega\left(S, n_{j}\right)$ is the solution of the following OES problem:

$$
\begin{aligned}
& \max \sum_{i=1}^{n} x_{i} \\
& \text { s.t. }
\end{aligned}
$$

$$
\begin{align*}
& x \in v-\min \left(x_{1}, \ldots, x_{p}\right) \\
& \text { s.t. } \\
& \sum_{i=1}^{p} x_{i} n_{i}-\sum_{i=1}^{p} y_{i} n_{i}=n_{j} \tag{j}\\
& x_{i} \leq u b_{i}=\max _{k} \mathrm{UB}_{i k} \\
& x_{j}=0 \\
& x, y \in \mathbb{Z}_{+}^{p}
\end{align*}
$$

where $\mathrm{UB}_{i k}=\min \left\{x_{i}: x_{i} n_{i}-\sum_{j=1}^{p} y_{j} n_{j}=n_{k}, y_{k}=0, x_{i} \in \mathbb{Z}_{+}, y \in \mathbb{Z}_{+}^{p}\right\}$
($x_{j}=0: e_{j}$ is a non-dominated solution, but non optimal since
$\omega\left(S, n_{j}\right)>1$ (B.-GarcíaSánchez-Geroldinger, 2010))

Solving the problem of optimizing over and integer efficient set: general scheme (Jorge, 2009)

- Solve a relaxed (single objective) problem (feasible solution).

Solving the problem of optimizing over and integer efficient set: general scheme (Jorge, 2009)

- Solve a relaxed (single objective) problem (feasible solution).
- Obtain a non-dominated solution dominating the feasible solution (Ecker-Kouada, 1975).

Solving the problem of optimizing over and integer efficient set: general scheme (Jorge, 2009)

- Solve a relaxed (single objective) problem (feasible solution).
- Obtain a non-dominated solution dominating the feasible solution (Ecker-Kouada, 1975).
- Check if the solution is optimal (Nemhauser-Wolsey, 1988), otherwise, move to another feasible solution.

Computing the omega invarian: initial solution

$$
\begin{array}{lll}
\max & \sum_{i=1}^{n} x_{i} & \\
\text { s.t. } & \\
& & \sum_{i=1}^{p} x_{i} n_{i}-\sum_{i=1}^{p} y_{i} n_{i}=n_{j} \tag{j}\\
& & x_{i} \leq u b_{i} \\
& & x_{j}=0 \\
& & x, y \in \mathbb{Z}_{+}^{p}
\end{array}
$$

Lemma

Problem $\left(\mathrm{R}_{j}\right)$ is feasible. Furthermore, the optimal solutions of $\left(\mathrm{R}_{j}\right)$ are not non-dominated solution of $\left(\mathrm{SMIP}_{j}\right)$.

Computing the omega invariant: generating efficient solutions

Let x^{*} be an optimal solution of $\left(\mathrm{R}_{j}\right)$ and $(\bar{s}, \bar{x}, \bar{y})$ an optimal solution of the following problem

$$
\max \sum_{i=1}^{n} s_{i}
$$

s.t.

$$
\begin{array}{ll}
x_{i}+s_{i}=x_{i}^{*} & i=1, \ldots, p \\
\sum_{i=1}^{p} x_{i} n_{i}-\sum_{i=1}^{p} y_{i} n_{i}=n_{j} & \tag{j}\\
x_{i} \leq u b_{i} & i=1, \ldots, p \\
x_{j}=0 & \\
x, y \in \mathbb{Z}_{+}^{p} &
\end{array}
$$

Then, \bar{x} is a non-dominated solution of $\left(\mathrm{SMIP}_{j}\right)$ that dominates x^{*}.

Computing the omega invariant: generating new feasible solutions

Let $\bar{x}^{1}, \ldots, \bar{x}^{s}$ be non-dominated solutions of $\left(\operatorname{SMIP}_{\mathrm{j}}\right)$ and (\hat{x}, \hat{y}) an optimal solution of the following problem

s.t.

$$
\begin{array}{ll}
x_{i} \leq z_{i}^{k}\left(\bar{x}_{i}^{k}-1\right)-M_{i}\left(z_{i}^{k}-1\right) & i=1, \ldots, p, k=1, \ldots, s \\
\sum_{i=1}^{p} x_{i} n_{i}-\sum_{i=1}^{p} y_{i} n_{i}=n_{j} & i=1, \ldots, p \\
x_{i} \leq u b_{i} & \\
x_{j}=0 & k=1, \ldots, s \\
\sum_{i=1}^{p} z_{i}^{k} \geq 1 & k=1, \ldots, s \\
x, y \in \mathbb{Z}_{+}^{p}, z^{k} \in\{0,1\}^{p} & \left(\mathrm{NW}_{j}\left(\bar{x}^{1}, \ldots, \bar{x}^{s}\right)\right)
\end{array}
$$

where $M_{j}=\max \left\{x_{j}: n_{j} x_{j}=\sum_{i \neq j}^{p} n_{i} y_{i}, x_{i} \leq u b_{i}, i=1, \ldots, p, x, y \in \mathbb{Z}_{+}^{p}\right\}$.
Then, \hat{x} is a feasible solution of $\left(\mathrm{SMIP}_{\mathrm{j}}\right)$ that is not dominated by

Improvements...

(1) Better bounds (B.-GarcíaSánchez-Geroldinger, 2010):
$\omega(S) \leq n_{p}$.
(2) $\sum_{i=1}^{p} n_{i} y_{i} \leq \max \bigcup_{i=1}^{p} \operatorname{Ap}\left(S, n_{i}\right)$ y
$\sum_{i=1}^{p} n_{i} y_{i} \geq \min \bigcup_{i=1}^{p} \operatorname{Ap}\left(S, n_{i}\right)=\min \left\{n_{1}, \ldots, n_{p}\right\}$. Apéry set: $\operatorname{Ap}(S, a)=\{s \in S \mid s-a \notin S\}, a \in S$.
(3) Controlling the bounds at each iteration.

Experiments

(1) 250 instances. Embedding dimension $\in\{5,10,15,20\}$ (RandomListOfNS) with $n_{i} \in[2,1000]$
(2) Implemented in Xpress-Mosel 7.0 in a Intel Core 2 Quad 2x 2.50 Ghz and 4 GB of RAM.
(3) Compared to GAP package on numerical semigroups (brute force).
(4) Limit: 2 h .

Experiments

S	$\mathrm{n}^{\mathbf{j}}$	$\omega\left(\mathrm{S}, \mathrm{n}_{\boldsymbol{j}}\right)$	min	it	time $_{\boldsymbol{j}}$	GAPtime	tottime	avtime	\#min
S5(1)	20	4	[0,0,0,0,4]	9	0.54	6.03	5.921	1.184	12
	354	60	[60,0,0,0,0]	12	0.95	11.35			14
	402	63	[63,0,0,0,0]	16	1.439	12.54			17
	417	60	[60,0,0,0,0]	15	1.43	12.68			16
	429	60	[60,0,0,0,0]	17	1.55	12.43			20
S5(2)	7	3	[0,3,0,0,0]	10	0.55	12.48	2.84	0.56	11
	292	93	[93,0,0,0,0]	9	0.37	23.72			11
	359	93	[93,0,0,0,0]	11	0.43	27.33			13
	645	200	[200,0,0,0,0]	14	0.67	45.92			15
	755	200	[200, 0, 0, 0, 0]	18	0.81	75.59			19
S5(3)	5	2	[0,0,0,2,0]	8	0.285	1.201	1.69	0.33	11
	86	37	[37,0,0,0,0]	11	0.294	2.527			12
	99	37	[37,0,0,0,0]	11	0.34	2.82			12
	148	60	[60,0,0,0,0]	12	0.37	4.1			13
	152	60	[60,0,0,0,0]	12	0.39	2.29			13
S5(4)	41	14	[0,14,0,0,0]	12	0.893	5.64	7.39	1.47	14
	65	22	[22,0,0,0,0]	13	0.988	6.02			14
	155	24	[24,0,0,0,0]	16	1.1	8.22			18
	317	22	[21,0,1,0,0]	22	2.916	13.96			28
	377	31	[31,0,0,0,0]	18	1.49	18.7			35
S5(5)	28	10	[0,10,0,0,0]	11	0.5	10.71	4.719	0.94	12
	55	25	[25,0,0,0,0]	8	0.381	11.45			12
	125	27	[27,0,0,0,0]	13	0.71	20.18			15
	233	26	[26,0,0,0,0]	13	0.732	42.37			17
	590	30	[24,5,0,1,0]	23	2.38	109.38			48

Experiments

S	${ }^{\text {j }}$ j	$\omega\left(\mathrm{S}, \mathrm{n}_{\boldsymbol{j}}\right)$	min	it	${ }^{\text {time }} \mathbf{j}$	GAPtime	tottime	avtime	\#min
S10(1)	43	5	[0,0,5,0,0,0,0,0,0,0]	49	3.36	5.41	67.89	6.78	58
	63	8	[8,0,0,0,0,0,0,0,0,0]	48	2.7	8.61			65
	68	8	[8,0,0,0,0,0,0,0,0,0]	49	3.16	13.18			69
	108	7	[5,0,2,0,0,0,0,0,0,0]	52	4.15	18.26			81
	120	8	[8,0,0,0,0,0,0,0,0,0]	57	4.24	12.65			94
	135	9	[9,0,0,0,0,0,0,0,0,0]	68	5.95	15.5			108
	142	9	[9,0,0,0,0,0,0,0,0,0]	88	9.24	16.75			125
	150	7	[4,2,1,0,0,0,0,0,0,0]	66	8.07	19.85			116
	177	9	[7,2,0,0,0,0,0,0,0,0]	70	6.88	49.26			149
	224	9	[7,0,2,0,0,0,0,0,0,0]	113	20.1	65.16			246
S10(2)	15	3	[0,0,3,0,0,0,0,0,0,0]	36	1.801	6.64	35.87	3.58	45
	46	9	[9,0,0,0,0,0,0,0,0,0]	39	1.66	10.32			48
	58	10	[10,0,0,0,0,0,0,0,0,0]	38	1.69	12.23			50
	89	9	[7,0,1,0,0,0,0,1,0,0]	47	2.681	17.33			68
	108	15	[15,0,0,0,0,0,0,0,0,0]	63	3.278	24			83
	114	16	[16,0,0,0,0,0,0,0,0,0]	57	3.07	28.81			78
	117	15	[15,0,0,0,0,0,0,0,0,0]	63	4.316	21.65			88
	126	16	[16,0,0,0,0,0,0,0,0,0]	73	4.243	22.48			99
	130	22	[22,0,0,0,0,0,0,0,0,0]	64	3.399	38.59			98
	173	23	[23,0,0,0,0,0,0,0,0,0]	107	9.73	80.49			161
S10(3)	20	4	[0,0,0,4,0,0,0,0,0,0]	39	1.48	5.1	99.49	9.94	43
	22	5	[5,0,0,0,0,0,0,0,0,0]	43	1.59	5.41			45
	24	5	[5,0,0,0,0,0,0,0,0,0]	36	1.3	5.41			45
	26	5	[3,2,0,0,0,0,0,0,0,0]	33	1.64	3.49			44
	54	6	[0,6,0,0,0,0,0,0,0,0]	52	2.77	14.05			88
	77	9	[7,0,2,0,0,0,0,0,0,0]	93	13.27	26.72			176
	83	9	[6,0,2,1,0,0,0,0,0,0]	109	19.41	33.83			198
	89	10	[10,0,0,0,0,0,0,0,0,0]	100	13.85	41.18			219
	93	10	[10,0,0,0,0,0,0,0,0,0]	109	21.75	46.17			254
	95	10	[10,0,0,0,0,0,0,0,0,0]	114	22.4	52.46			251
S10(4)	131	7	[5,0,0,0,2,0,0,0,0,0]	63	8.34	61.44	225.55	22.55	102
	136	6	[3,1,0,0,2,0,0,0,0,0]	47	7.23	54.38			88
	171	6	[2,2,0,0,2,0,0,0,0,0]	65	11.18	56.92			102
	173	7	[3,1,3,0,0,0,0,0,0,0]	60	9.87	116.22			118
	239	8	[5,2,0,0,0,0,0,1,0,0]	83	16.81	104.66			155
	278	10	[10,0,0,0,0,0,0,0,0,0]	80	14.93	129.1			208
	287	10	[10,0,0,0,0,0,0,0,0,0]	62	11.628	128.1			178
	364	10	[7,3,0,0,0,0,0,0,0,0]	128	34.053	227.12			260
	483	11	[9,1,0,0,0,0,1,0,0,0]	204	105.146	497			427

Experiments

S	$\mathrm{n}_{\boldsymbol{j}}$	ω	min	it	${ }^{\text {time }} \boldsymbol{j}$	GAPtime	tottime	avtime	\#min
S10(5)	146	8	[0,6,2,0,0,0,0,0,0,0]	42	8.048	100.82	315.14	31.51	70
	173	10	[10,0,0,0,0,0,0,0,0,0]	71	15.43	115.39			99
	207	10	[10,0,0,0,0,0,0,0,0,0]	60	11.77	138.87			82
	359	12	[7,5,0,0,0,0,0,0,0,0]	60	14.69	198.246			152
	426	12	[12,0,0,0,0,0,0,0,0,0]	77	16.23	290.08			130
	548	12	[0,12, $0,0,0,0,0,0,0,0]$	105	38.525	470.76			209
	604	15	[15,0,0,0,0,0,0,0,0,0]	124	43.81	499.9			244
	606	13	[13,0,0,0,0,0,0,0,0,0]	98	28.4	422.96			243
	657	12	[0,8,4,0,0,0,0,0,0,0]	105	65.01	558.71			244
	702	14	[14,0,0,0,0,0,0,0,0,0]	159	73.19	718.58			362
S15(1)	47	6	[6,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	114	8.386	13.78	612.099	40.8066	129
	65	5	[4,0,0,1,0,0,0,0,0,0,0,0,0,0,0]	112	10.358	35.64			159
	79	5	[3,1,0,0,1,0,0,0,0,0,0,0,0,0,0]	105	9.392	7.21			165
	82	6	[0,6,0,0,0,0,0,0,0,0,0,0,0,0,0]	141	13.664	17.93			184
	84	6	[4,1,0,0,1,0,0,0,0,0,0,0,0,0,0]	112	11.156	28.24			192
	91	7	[7,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	101	6.863	9.34			173
	96	7	[4,3,0,0,0,0,0,0,0,0,0,0,0,0,0]	104	11.98	52.225			250
	100	8	[8,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	187	26.425	29.725			251
	109	7	[7,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	129	12.659	35.725			245
	121	8	[8,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	154	19.271	48.225			307
	124	8	[8,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	214	37.796	203.8			364
	134	7	[5,1,1,0,0,0,0,0,0,0,0,0,0,0,0]	168	29.652	241.9			383
	139	8	[8,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	183	30.122	199.05			394
	169	8	[5,2,0,0,0,1,0,0,0,0,0,0,0,0,0]	285	38.405	164.625			680
S15(2)	46	5	[0,1,3,0,1,0,0,0,0,0,0,0,0,0,0]	83	8.383	79.4	1683.63	112.242	98
	115	6	[2,0,3,0,1,0,0,0,0,0,0,0,0,0,0]	94	10.454	112.65			109
	155	17	[$17,0,0,0,0,0,0,0,0,0,0,0,0,0,0]$	123	14.728	139.425			151
	286	15	[12,0,3,0,0,0,0,0,0,0,0,0,0,0,0]	137	20.015	291.65			206
	289	15	[15,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	109	14.545	293.575			190
	341	17	[17,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	174	65.975	401			252
	342	15	[14,0,0,0,1,0,0,0,0,0,0,0,0,0,0]	192	32.986	406.775			265
	348	15	[13,0,2,0,0,0,0,0,0,0,0,0,0,0,0]	193	113.383	427.3			291
	393	20	[20,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	228	135.869	550.35			320
	436	25	[25,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	273	74.036	736.575			413
	445	24	[24,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	311	96.198	784.625			434
	449	19	[19,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	294	82.945	795.45			425
	504	22	[22,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	354	177.154	1161.45			594
	527	20	[20,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	367	166.69	1345.275			610
	584	26	[26,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	438	670.269	1988.875			737

Experiments $(n=20)$

n_{j}	ω	min	it	${ }^{\text {time }} \boldsymbol{j}$	GAPtime	tottime	avtime	\#min
131	8	[0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	188	35.321	321.325			264
145	8	[8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	191	34.252	332.3			265
249	9	[$6,2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]$	233	54.57	550.725			340
257	9	[6,2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	233	53.913	569.15			352
260	8	[8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	197	47.428	573.775			355
319	9	[1,7,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	244	90.809	785.925			451
354	9	[4,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	256	97.12	938.925			500
459	10	[$0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]$	398	182.085	1700.525			787
465	9	[$9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]$	356	363.725	1747.575			752
469	11	[$3,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]$	317	239.548	1802.75	19603.67	980.1835	796
487	9	[9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	384	408.842	2011.8			865
572	12	[$6,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]$	399	826.33	3290.4			1160
575	10	[$0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]$	542	3123.4	3414.425			1235
587	12	[12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	487	1356.94	3657.525			1273
606	11	[11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	507	2100.84	4119.5			1389
607	10	[$5,5,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]$	787	2894.21	4181.7			1387
652	11	[$9,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0]$	683	2013.25	5538.2			1673
674	12	[12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	821	1999.747	6288.875			1732
694	11	[11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	726	2991.08	7185.075			1851
762	12	[12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	118	690.26	11142.2			2375
57	4	[0,2,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0]	146	15.003	108.725			186
105	7	[$7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]$	169	20.95	158.525			211
182	9	[$6,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]$	195	31.558	311.125			304
186	11	[11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	272	61.55	328.45			364
201	14	[14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	319	300.1	374.2			409
204	9	[$9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]$	284	63.721	394.55			427
254	9	[8,0,0,0,1,0,0,0,0,0,0,0,0,0,0]	378	153.266	635.725			599
259	10	[7,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	295	72.789	653.9			530
263	10	[$6,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]$	294	69.81	695.8			612
274	9	[4,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	336	172.839	751.05	11703.9	585.1952	587
275	11	[8,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	414	217.261	798.075			702
294	8	[5,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	359	396.194	915.575			612
295	11	[$8,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]$	488	2342.7	975.65			802
298	12	[12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	463	174.03	990.675			773
307	10	[6,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	391	187.431	1084.4			808
338	13	[$13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]$	484	432.837	1546.65			1001
367	14	[14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	608	2000.37	2113.475			1248
393	12	[3,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	658	2531.045	2889.325			1502
417	11	[$5,0,2,0,0,0,0,0,0,2,3,0,0,0,0,0,0,0,0,0]$	563	1093.34	3737.325			1686
431	14	[$6,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]$	781	1367.11	*			

Experiments $(n=20)$

n_{j}	ω	min	it	${ }^{\text {time }}{ }_{j}$	GAPtime	tottime	avtime	\#min
85	4	[0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	147	25.646	341.175			230
298	15	[15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	316	99.513	864.5			455
333	15	[15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	322	91.273	1007.75			465
342	16	[$16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]$	326	99.809	1026.075			466
349	16	[$16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]$	307	76.393	1075.375			512
358	15	[15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	324	86.003	1092.975			480
401	12	[10,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	394	154.683	1372.975			631
415	16	[16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	448	293.327	1474			687
462	15	[15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	361	135.922	1827.75			691
480	14	[14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	527	261.581	1982.85	8912.075	445.6038	786
556	16	[$16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]$	610	592.666	2975.05			1028
569	18	[18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	695	2453.98	3284.75			1158
583	19	[19,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	711	1496.19	3440.55			1164
609	15	[15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	57	11.671	4037.25			1290
619	13	[12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	912	990.061	4518.725			1386
708	18	[18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	582	569.397	*			*
710	15	[11,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	733	673.064	*			*
752	18	[18,0,0, , , , , , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0,0,0]	777	722.174	*			*
821	21	[18,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]	108	35.333	*			*
853	21	[19,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	108	43.389	*			*
81	5	[0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	140	17.706	219.175			214
107	6	[$6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]$	176	27.955	264.375			251
168	9	[$7,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]$	185	26.037	416.725			291
194	9	[$6,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]$	239	57.189	527.75			427
230	8	[$4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]$	186	39	707.575			471
236	9	[$7,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]$	198	49.312	735.875			474
274	9	[8,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	284	524.051	1027.225			590
277	9	[$7,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]$	276	113.266	1079.7			679
286	9	[$6,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]$	321	676.315	1143.675			698
290	8	[1,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	312	1775.88	1177.15	11215.3	560.7652	630
305	10	[$7,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]$	256	188.763	1345.125			683
310	10	[10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	297	85.818	1407.6			704
348	10	[$7,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]$	403	392.226	2039.675			953
351	11	[11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	432	193.712	2079.4			949
366	10	[$9,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]$	383	295.208	2346.175			912
379	10	[3,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	296	1007.8	2735.2			1116
396	11	[10,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	560	3095.66	3283.85			1222
416	12	[12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	541	693.549	*			*
521	14	[14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	611	955.771	*			*
583	14	[14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	982	1000.085	*			*

Experiments $(n=20)$

$\mathrm{n}_{\boldsymbol{j}}$	ω	min	it	${ }^{\text {time }} \boldsymbol{j}$	GAPtime	tottime	avtime	\#min
101	8	[0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	57	8.393	488.75			246
141	7	[7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	146	33.759	567.975			260
279	12	[12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	99	23.478	1170.65			502
314	10	[10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	199	68.421	1328.55			457
329	11	[7,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	85	17.706	1428.15			461
369	11	[5,5,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	106	25.178	1747.875			493
399	11	[7,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	156	90.957	2166.55			711
425	11	[$5,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]$	65	26.208	2477.4			718
438	13	[13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	115	37.799	2648.8			732
447	15	[15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	60	11.342	2771.675	10007.05	500.3524	808
477	14	[14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	138	51.901	3357.7			929
501	16	[16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	40	7.425	3884.325			1026
534	12	[12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	180	145.075	4557.05			983
536	14	[14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	83	23.15	4752.25			1090
555	13	[9,3,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	166	63.804	5404.225			1190
574	13	[13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	345	777.094	*			*
620	14	[14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	721	654.063	*			*
727	18	[18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	882	2140.435	*			*
786	17	[17,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	734	3000.11	*			*
871	17	[17,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]	813	2800.75	*			*

- av $\frac{\text { time }_{j}}{\text { GAPtime }}=0.23$.
- $a v \frac{i t}{\# \min }=0.59$.
- GAP was not able to solve 14 problem in $2 \mathrm{~h} .(*)$.

Irreducible and m-irreducible numerical semigroups

Definition

- A numerical semigroup is irreducible if it cannot be expressed as an intersection of two numerical semigroups containing it properly.

Irreducible and m-irreducible numerical semigroups

Definition

- A numerical semigroup is irreducible if it cannot be expressed as an intersection of two numerical semigroups containing it properly.
- A numerical semigroup with multiplicity m is m-irreducible if it cannot be expressed as an intersection of two numerical semigroups with multiplicity m containing it properly. (B.-Rosales, 2010)

Irreducible and m-irreducible numerical semigroups

Definition

- A numerical semigroup is irreducible if it cannot be expressed as an intersection of two numerical semigroups containing it properly.
- A numerical semigroup with multiplicity m is m-irreducible if it cannot be expressed as an intersection of two numerical semigroups with multiplicity m containing it properly. (B.-Rosales, 2010)

Problem: Decompose (minimally) into m-irreducibles

How are those m-irreducibles?

Proposition (B.-Rosales, 2010)

S is m-irreducible if $\mathrm{m}(S)=m$ and it is maximal (w.r.t \subseteq) among the set of numerical semigroup with Frobenius number $\mathrm{F}(\mathrm{S})$ and multipliity m.

How are those m-irreducibles?

Proposition (B.-Rosales, 2010)

S is m-irreducible if $\mathrm{m}(S)=m$ and it is maximal (w.r.t \subseteq) among the set of numerical semigroup with Frobenius number $\mathrm{F}(S)$ and multipliity m.

Corollary (B.-Rosales, 2010)

A numerical semigroup, S, with multiplicity m is m-irreducible if and only if one of the following conditions holds:
(1) $S=\{0, m, \rightarrow\}$.
(2) $S=\{0, m, \rightarrow\} \backslash\{f\}$ with $f \in\{m+1, \ldots, 2 m-1\}$.
(3 S is an irreducible numerical semigroup.

How are those m-irreducibles?

Proposition (B.-Rosales, 2010)

S is m-irreducible if $\mathrm{m}(S)=m$ and it is maximal (w.r.t \subseteq) among the set of numerical semigroup with Frobenius number $\mathrm{F}(S)$ and multipliity m.

Corollary (B.-Rosales, 2010)

A numerical semigroup, S, with multiplicity m is m-irreducible if and only if one of the following conditions holds:
(1) $S=\{0, m, \rightarrow\}$.
(2) $S=\{0, m, \rightarrow\} \backslash\{f\}$ with $f \in\{m+1, \ldots, 2 m-1\}$.
(3) S is an irreducible numerical semigroup.

Corollary (B.-Rosales, 2010)
Let S be a numerical semigroup with multiplicity m. Then, S is
m-irreducible if and only if $\mathrm{g}(S) \in\left\{m-1, m,\left\lceil\frac{\mathrm{~F}(S)+1}{2}\right\rceil\right\}$.

Where to look for those m-irreducible n.s. in the decomposition?

Definition (Oversemigroups)

Let S be a numerical semigroup with multiplicity m. The set of oversemigroups of S is

$$
\mathcal{O}(S)=\left\{S^{\prime} \text { numerical semigroup : } S \subseteq S\right\}
$$

Where to look for those m-irreducible n.s. in the decomposition?

Definition (Oversemigroups)

Let S be a numerical semigroup with multiplicity m. The set of oversemigroups of S is

$$
\mathcal{O}(S)=\left\{S^{\prime} \text { numerical semigroup : } S \subseteq S\right\}
$$

$$
\begin{aligned}
& \mathcal{O}_{m}(S)=\left\{S^{\prime} \in \mathcal{O}(S): m\left(S^{\prime}\right)=m\right\} \\
& \mathcal{J}_{m}(S)=\left\{S^{\prime} \in \mathcal{O}_{m}(S): S \text { is } m \text {-irreducible }\right\} .
\end{aligned}
$$

Where to look for those m-irreducible n.s. in the decomposition?

Definition (Oversemigroups)

Let S be a numerical semigroup with multiplicity m. The set of oversemigroups of S is

$$
\mathcal{O}(S)=\left\{S^{\prime} \text { numerical semigroup : } S \subseteq S\right\}
$$

$\mathcal{O}_{m}(S)=\left\{S^{\prime} \in \mathcal{O}(S): m\left(S^{\prime}\right)=m\right\}$.
$\mathcal{J}_{m}(S)=\left\{S^{\prime} \in \mathcal{O}_{m}(S): S\right.$ is m-irreducible $\}$.

Definition

Let S be a numerical semigroup. The special gaps of S is the following set:

$$
\mathrm{SG}(S)=\{z \in \mathrm{G}(S): S \cup\{z\} \text { is a numerical semigroup }\}
$$

where $\mathrm{G}(\mathrm{S})$ is the set of gaps of S.

$$
\mathrm{SG}_{m}(S)=\{z \in \mathrm{SG}(S): z>m\} . \# \mathrm{SG}_{m}(S) \leq m-1
$$

Where to look for those m-irreducible n.s. in the decomposition?

Lemma

Let $S \in \mathcal{S}(m)$ and $S_{1}, \ldots, S_{n} \in \mathcal{O}_{m}(S)$. Then, $S=S_{1} \cap \cdots \cap S_{n}$ if and only if for all $h \in\{x \in \operatorname{SG}(S): x>m\}$ there exists $i \in\{1, \ldots, n\}$ such that $h \notin S_{i}$.

Proposition

Assume that Minimals $\subseteq \mathcal{I}_{m}(S)=\left\{S_{1}, \ldots, S_{n}\right\}$. Then, $S=S_{i_{1}} \cap \cdots \cap S_{i_{r}}$ if and only if $\mathrm{SG}_{m}(S) \cap\left(\mathrm{G}\left(S_{i_{1}}\right) \cup \cdots \cup \mathrm{G}\left(S_{i_{r}}\right)\right)=\mathrm{SG}_{m}(S)$, where $\left\{S_{i_{1}}, \ldots, S_{i_{r}}\right\} \subseteq\left\{S_{1}, \ldots, S_{n}\right\}$.

Translating the problem: Kunz coordinates

Definition

Let S be a numerical semigroup with multiplicity m. If $\operatorname{Ap}(S, m)=\left\{w_{0}=0, w_{1}, \ldots, w_{m-1}\right\}$, the Kunz coordinates of S is the vector $x \in \mathbb{Z}_{+}^{m-1}$ with components $x_{i}=\frac{w_{i}-i}{m}$ for $i=1, \ldots, m-1$.

Translating the problem: Kunz coordinates

Definition

Let S be a numerical semigroup with multiplicity m. If $\operatorname{Ap}(S, m)=\left\{w_{0}=0, w_{1}, \ldots, w_{m-1}\right\}$, the Kunz coordinates of S is the vector $x \in \mathbb{Z}_{+}^{m-1}$ with components $x_{i}=\frac{w_{i}-i}{m}$ for $i=1, \ldots, m-1$.

Theorem (Rosales et. al, 2002)

Each numerical semigroup is one-to-one identified with its Kunz coordinates.
Furthermore, the set of Kunz coordinates of the numerical semigroups with multiplicity m is the set of solutions of the following system of diophantine inequalities:

$$
\begin{aligned}
& x_{i} \geqslant 1 \quad \text { for all } i \in\{1, \ldots, m-1\}, \\
& x_{i}+x_{j}-x_{i+j} \geqslant 0 \\
& \text { for all } 1 \leqslant i \leqslant j \leqslant m-1, i+j \leqslant m-1, \\
& x_{i}+x_{j}-x_{i+j-m} \geqslant-1 \quad \text { for all } 1 \leqslant i \leqslant j \leqslant m-1, i+j>m
\end{aligned}
$$

Translating the problem: Kunz coordinates

- $\mathrm{m}(x)=\mathrm{m}(S)=m$ (Multiplicity of x.)
- $\mathrm{F}(x)=\mathrm{F}(S)=\max _{i}\left\{m x_{i}+i\right\}-m$ (Frobenius number)
- $\mathrm{G}(x)=\mathrm{G}(S)=\left\{n \in \mathbb{Z}: m x_{n}(\bmod m)+n(\bmod m)>n\right\}$ (Gaps of x.)
- $\mathrm{g}(x)=\mathrm{g}(S)=\sum_{i=1}^{m-1} x_{i}$.(Genus of x.)
- $\mathrm{SG}_{m}(x)=\mathrm{SG}_{m}(S)$.(Special Gaps greater than m of x.)
- $\mathcal{U}_{m}(x)=\mathcal{O}_{m}(S)$. (Undercoordinates of x : $\left.S \subseteq S^{\prime} \Longleftrightarrow x \geq x^{\prime}\right)$
$\overline{\text { Algorithm 1: Computing the special gaps greater than the multiplicity of }}$ a Kunz coordinate.

```
Input : A Kunz coordinate }x\in\mp@subsup{\mathbb{Z}}{+}{\boldsymbol{m}-\mathbf{1}}\mathrm{ .
```



```
M2}={m(\mp@subsup{x}{\boldsymbol{i}}{}-1)+i:\mp@subsup{x}{\boldsymbol{i}}{}+\mp@subsup{x}{\boldsymbol{j}}{}>\mp@subsup{x}{\boldsymbol{i}+\boldsymbol{j}-\boldsymbol{m}}{}-1,\mathrm{ for all }j\mathrm{ with i+j>m}.
```

Output: $\mathrm{SG}_{\boldsymbol{m}}(x)=\left\{z \in M_{1} \cap M_{2}: z>m\right.$ and $\left.2 z \geq m x_{2 z(\bmod \boldsymbol{m})}+2 z(\bmod m)\right\}$.

Translating the problem: Kunz coordinates

- $\mathrm{m}(x)=\mathrm{m}(S)=m$ (Multiplicity of x.)
- $\mathrm{F}(x)=\mathrm{F}(S)=\max _{i}\left\{m x_{i}+i\right\}-m$ (Frobenius number)
- $\mathrm{G}(x)=\mathrm{G}(S)=\left\{n \in \mathbb{Z}: m x_{n(\bmod m)}+n(\bmod m)>n\right\}$ (Gaps of x.)
- $\mathrm{g}(\mathrm{x})=\mathrm{g}(\mathrm{S})=\sum_{i=1}^{m-1} x_{i}$. (Genus of x.)
- $\mathrm{SG}_{m}(x)=\mathrm{SG}_{m}(S)$.(Special Gaps greater than m of x.)
- $\mathcal{U}_{m}(x)=\mathcal{O}_{m}(S)$. (Undercoordinates of x :
$\left.S \subseteq S^{\prime} \Longleftrightarrow x \geq x^{\prime}\right)$
$\overline{\text { Algorithm 2: Computing the special gaps greater than the multiplicity of }}$ a Kunz coordinate.
Input : A Kunz coordinate $x \in \mathbb{Z}_{+}^{\boldsymbol{m}-\mathbf{1}}$.
Compute $M_{\mathbf{1}}=\left\{m\left(x_{\boldsymbol{i}}-1\right)+i: x_{\boldsymbol{i}}+x_{\boldsymbol{j}}>x_{\boldsymbol{i}+\boldsymbol{j}}\right.$, for all j with $\left.i+j<m\right\}$ and $M_{\mathbf{2}}=\left\{m\left(x_{i}-1\right)+i: x_{\boldsymbol{i}}+x_{\boldsymbol{j}}>x_{\boldsymbol{i}+\boldsymbol{j}-\boldsymbol{m}}-1\right.$, for all j with $\left.i+j>m\right\}$.

Output: $\mathrm{SG}_{\boldsymbol{m}}(x)=\left\{z \in M_{1} \cap M_{2}: z>m\right.$ and $\left.2 z \geq m x_{2 z(\bmod m)}+2 z(\bmod m)\right\}$.
m-irreducible numerical semigroup $\Rightarrow m$-irreducible Kunz coordinates
$\left(\sum_{i=1}^{m} x_{i} \in\left\{m, m-1,\left\lceil\frac{\mathrm{~F}(x)+1}{2}\right\rceil\right)\right.$

Corollary

The set of Kunz coordinates in \mathbb{Z}_{+}^{m-1} with genus g and Frobenius number F is the set of solutions of the following system of diophantine inequalities:

$$
\begin{array}{rc}
x_{i} \geqslant 1 & \text { for all } i \in\{1, \ldots, m-1\}, \\
x_{i}+x_{j}-x_{i+j} \geqslant 0 & \text { for all } 1 \leqslant i \leqslant j \leqslant m-1, i+j \leqslant m-1, \\
x_{i}+x_{j}-x_{i+j-m} \geqslant-1 & \text { for all } 1 \leqslant i \leqslant j \leqslant m-1, i+j>m, \\
\sum_{i=1}^{m-1} x_{i}=g & \\
F=\max _{i}\left\{m x_{i}+i\right\}-m & , \\
x_{i} \in \mathbb{Z} & \text { for all } i \in\{1, \ldots, m-1\},
\end{array}
$$

Translating the problem: Kunz coordinates

If x is a Kunz coordinate, the set of m-irreducible undercoordinates of x are those $x^{\prime} \in \mathbb{Z}^{m-1}$ in the form $x^{\prime}=x-y$ with $y \in \mathbb{Z}_{+}^{m-1}$, i.e., y verifying the following inequalities:

$$
\begin{array}{ll}
y_{i} \leqslant x_{i}-1 & \text { for all } i \in\{1, \ldots, m-1\} \\
y_{i}+y_{j}-y_{i+j} \leqslant x_{i}+x_{j}-x_{i+j} & \text { for all } 1 \leqslant i \leqslant j \leqslant m-1, i+j \leqslant m-1, \\
y_{i}+y_{j}-y_{i+j} \leqslant x_{i}+x_{j}-x_{i+j}+1 & \text { for all } 1 \leqslant i \leqslant j \leqslant m-1, i+j>m \\
\sum_{i=1}^{m-1} y_{i} \in M(x, y) &
\end{array}
$$

where

$$
\begin{aligned}
& M(x, y)= \\
& \left\{\sum_{i=1}^{m-1} x_{i}-m, \sum_{i=1}^{m-1} x_{i}-m+1, \sum_{i=1}^{m-1} x_{i}-\left\lceil\frac{\max _{i}\left\{m\left(x_{i}-y_{i}\right)+i\right\}-m+1}{2}\right\rceil\right\}
\end{aligned}
$$

$$
\begin{array}{ll}
y_{i} \leqslant x_{i}-1 & i=1, \ldots, m- \\
y_{i}+y_{j}-y_{i+j} \leqslant x_{i}+x_{j}-x_{i+j} & i+j \leqslant m-1, \\
y_{i}+y_{j}-y_{i+j} \leqslant x_{i}+x_{j}-x_{i+j}+1 & i+j>m \\
m\left(x_{k}-y_{k}\right)+k \geq m\left(x_{i}-y_{i}\right)+i & \forall i \\
2 \sum_{i=1}^{m-1} y_{i}-m y_{k} \geqslant 2 \sum_{i=1}^{m-1} x_{i}-m x_{k}-k+m-2 & \tag{k}\\
2 \sum_{i=1}^{m-1} y_{i}-m y_{k} \leqslant 2 \sum_{i=1}^{m-1} x_{i}-m x_{k}-k+m-1 &
\end{array}
$$

$k=1, \ldots, m-1$, and

$$
\begin{array}{ll}
y_{i} \leqslant x_{i}-1 & i=1, \ldots, m-1, \\
y_{i}+y_{j}-y_{i+j} \leqslant x_{i}+x_{j}-x_{i+j} & i+j \leqslant m-1 \\
y_{i}+y_{j}-y_{i+j} \leqslant x_{i}+x_{j}-x_{i+j}+1 & i+j>m \\
\sum_{i=1}^{m-1} y_{i}=\sum_{i=1}^{m-1} x_{i}-m &
\end{array}
$$

Solving the above problems, we obtain a decomposition into m-irreducibles... but clearly, it is not minimal.

Denote by $\mathcal{I}_{m}(x)$ the maximal elements (w.r.t \leq) in the set $\mathcal{O}_{m}(x)$.

Theorem

Let $x \in \mathbb{Z}^{m-1}$ a Kunz coordinates. The elements $\mathcal{I}_{m}(x)$ are in the form $x-\hat{y}$ where \hat{y} is a nondominated solution of the any of the following multiobjective linear integer programming problems.

$$
\begin{aligned}
& v-\min \left(y_{1}, \ldots, y_{m-1}\right) \\
& \text { s.t. }
\end{aligned}
$$

$\left(\operatorname{MIP}_{k}(x)\right)$
for $k=1, \ldots, m-1, m$.

Theorem

Let x be a Kunz coordinate. Then, the elements in a minimal decomposition into m-irreducible Kunz coordinates can be found by solving the following problems:

$$
\begin{array}{ll}
\min & \sum_{i=1}^{m-1} y_{i} \\
\text { s.t. } & y \in \mathrm{P}_{k}(x) \\
& m y_{k} \leq m x_{k}+k-h+1
\end{array}
$$

where $k=h(\bmod m)$.
$\min \sum_{i=1}^{m-1} y_{i}$
s.t.

$$
y \in \mathrm{P}_{m}(x) \quad m y_{k} \leq m x_{k}+k-h+1
$$

Corollary

For each $h \in \operatorname{SG}_{m}(x)$, it is enough to solve $\operatorname{IP}_{h(\bmod m)}(x, h)$ if $h>2 m$ or $\operatorname{IP}_{m}(x, h)$ if $h<2 m$. Then, at most $\# \mathrm{SG}(S)(\leq m-1)$ problems must be solved.

Discarding Solutions: Set Covering

Let x be a Kunz coordinates, $s=\# \operatorname{SG}(x)$, and $\left\{x^{1}, \ldots, x^{s}\right\}$ a set of m-irreducible coordinates decompose in x (solutions of $\operatorname{IP}_{k}(x, h)$ for each $h \in \operatorname{SG}(x))$.
We consider s decision variables

$$
z_{i}= \begin{cases}1 & \text { if } x^{i} \text { is selected for the minimal decomposition, } \\ 0 & \text { otherwise }\end{cases}
$$

We formulate the problem of selecting a minimal set of m-irreducible Kunz coordinates as

$$
\min \sum_{i=1}^{s} z_{i}
$$

s.t.

$$
\sum_{i / m x_{k}^{i}+k \geq h+1} z_{i} \geq 1 \quad, \forall h \in \operatorname{SG}(S), k=h \quad(\bmod m)
$$

Algorithm 3: Decomposition into m-irreducible numerical semigroups.
Input : A numerical semigroup S with multiplicity m.
Compute the Kunz coordinates of $S: x \in \mathbb{Z}_{+}^{m-1}$. (Computing the Apéry set.)
D $=\{ \}$. DmIRNS $=\{ \}$
(1) Compute $\mathrm{SG}_{m}(x)$.
(2) for $h \in \operatorname{SG}_{m}(x)$ with $h=k(\bmod m)$ do if $k=h-m$ then

Solve $\mathrm{P}_{m}(x, h): \hat{y}$. Add $x-\hat{y}$ to D else
L Solve $\mathrm{P}_{k}(x, h): \hat{y}$. Add $x-\hat{y}$ to D .
(3) Select a minimal decomposition from D $\}$: Solve ($\operatorname{SC}(x)$).
$\mathrm{DmIR}=\left\{x^{\prime} \in \mathrm{D}: z=1\right\}$
for $x^{\prime} \in \operatorname{DmIR}$ do
$S^{\prime}=\left\langle\{m\} \cup\left\{m x_{i}^{\prime}+i: i=1, \ldots, m-1\right\}\right\rangle$
Add S^{\prime} to DmIRNS.
Output: DmIRNS.

Example

$$
S=\langle 3,19,26\rangle .
$$

Example

```
S = \langle3, 19, 26\rangle.
Kunz coordinates: }x=(6,8
```


Example

$$
\begin{aligned}
& S=\langle 3,19,26\rangle . \\
& \text { Kunz coordinates: } x=(6,8) \\
& \text { Special Gaps: } \operatorname{SG}_{3}(S)=\{16,23\} .
\end{aligned}
$$

Example

$S=\langle 3,19,26\rangle$.
Kunz coordinates: $x=(6,8)$
Special Gaps: $\mathrm{SG}_{3}(S)=\{16,23\}$.
$16>2 \cdot 3=6$ and $23>2 \cdot 3=6$ (no m-irreducibles with genus 3)

Example

$S=\langle 3,19,26\rangle$.
Kunz coordinates: $x=(6,8)$
Special Gaps: $\mathrm{SG}_{3}(S)=\{16,23\}$.
$16>2 \cdot 3=6$ and $23>2 \cdot 3=6$ (no m-irreducibles with genus 3) $16 \equiv 1(\bmod 3), 23 \equiv 2(\bmod 3)$: Problems to solve $\mathrm{P}_{1}(x, 16)$ and $\mathrm{P}_{2}(x, 23)$.

Example

$S=\langle 3,19,26\rangle$.
Kunz coordinates: $x=(6,8)$
Special Gaps: $\mathrm{SG}_{3}(S)=\{16,23\}$.
$16>2 \cdot 3=6$ and $23>2 \cdot 3=6$ (no m-irreducibles with genus 3) $16 \equiv 1(\bmod 3), 23 \equiv 2(\bmod 3)$: Problems to solve $\mathrm{P}_{1}(x, 16)$ and $\mathrm{P}_{2}(x, 23)$.

Example

$S=\langle 3,19,26\rangle$.
Kunz coordinates: $x=(6,8)$
Special Gaps: $\mathrm{SG}_{3}(S)=\{16,23\}$.
$16>2 \cdot 3=6$ and $23>2 \cdot 3=6$ (no m-irreducibles with genus 3) $16 \equiv 1(\bmod 3), 23 \equiv 2(\bmod 3)$: Problems to solve $\mathrm{P}_{1}(x, 16)$ and $\mathrm{P}_{2}(x, 23)$.

- The optimal solution of $\mathrm{P}_{1}(x, 16)$ is $y^{1}=(0,5)$, being then $x^{1}=(6,3)$.

Example

$S=\langle 3,19,26\rangle$.
Kunz coordinates: $x=(6,8)$
Special Gaps: $\mathrm{SG}_{3}(S)=\{16,23\}$.
$16>2 \cdot 3=6$ and $23>2 \cdot 3=6$ (no m-irreducibles with genus 3) $16 \equiv 1(\bmod 3), 23 \equiv 2(\bmod 3)$: Problems to solve $\mathrm{P}_{1}(x, 16)$ and $\mathrm{P}_{2}(x, 23)$.

- The optimal solution of $\mathrm{P}_{1}(x, 16)$ is $y^{1}=(0,5)$, being then $x^{1}=(6,3)$.
- The optimal solution of $\mathrm{P}_{2}(x, 23)$ is $y^{2}=(2,0)$, being then $x^{2}=(4,8)$.

Example

$S=\langle 3,19,26\rangle$.
Kunz coordinates: $x=(6,8)$
Special Gaps: $\mathrm{SG}_{3}(S)=\{16,23\}$.
$16>2 \cdot 3=6$ and $23>2 \cdot 3=6$ (no m-irreducibles with genus 3) $16 \equiv 1(\bmod 3), 23 \equiv 2(\bmod 3)$: Problems to solve $\mathrm{P}_{1}(x, 16)$ and $\mathrm{P}_{2}(x, 23)$.

- The optimal solution of $\mathrm{P}_{1}(x, 16)$ is $y^{1}=(0,5)$, being then $x^{1}=(6,3)$.
- The optimal solution of $\mathrm{P}_{2}(x, 23)$ is $y^{2}=(2,0)$, being then $x^{2}=(4,8)$.
Discarding: No solution are discarded because S is not 3-irreducible $(\mathrm{g}(S)=14$ and $\mathrm{F}(S)=23$).

Example

$S=\langle 3,19,26\rangle$.
Kunz coordinates: $x=(6,8)$
Special Gaps: $\mathrm{SG}_{3}(S)=\{16,23\}$.
$16>2 \cdot 3=6$ and $23>2 \cdot 3=6$ (no m-irreducibles with genus 3) $16 \equiv 1(\bmod 3), 23 \equiv 2(\bmod 3)$: Problems to solve $\mathrm{P}_{1}(x, 16)$ and $\mathrm{P}_{2}(x, 23)$.

- The optimal solution of $\mathrm{P}_{1}(x, 16)$ is $y^{1}=(0,5)$, being then $x^{1}=(6,3)$.
- The optimal solution of $\mathrm{P}_{2}(x, 23)$ is $y^{2}=(2,0)$, being then $x^{2}=(4,8)$.
Discarding: No solution are discarded because S is not 3-irreducible ($\mathrm{g}(S)=14$ and $\mathrm{F}(S)=23$).
$x^{1} \rightarrow S^{1}=\langle 3,19,11\rangle$ and $x^{2} \rightarrow S^{2}=\langle 3,13,26\rangle=\langle 3,13\rangle$.

Example

$S=\langle 3,19,26\rangle$.
Kunz coordinates: $x=(6,8)$
Special Gaps: $\mathrm{SG}_{3}(S)=\{16,23\}$.
$16>2 \cdot 3=6$ and $23>2 \cdot 3=6$ (no m-irreducibles with genus 3)
$16 \equiv 1(\bmod 3), 23 \equiv 2(\bmod 3)$: Problems to solve $\mathrm{P}_{1}(x, 16)$ and $\mathrm{P}_{2}(x, 23)$.

- The optimal solution of $\mathrm{P}_{1}(x, 16)$ is $y^{1}=(0,5)$, being then $x^{1}=(6,3)$.
- The optimal solution of $\mathrm{P}_{2}(x, 23)$ is $y^{2}=(2,0)$, being then $x^{2}=(4,8)$.
Discarding: No solution are discarded because S is not 3-irreducible ($\mathrm{g}(\mathrm{S})=14$ and $\mathrm{F}(S)=23$).
$x^{1} \rightarrow S^{1}=\langle 3,19,11\rangle$ and $x^{2} \rightarrow S^{2}=\langle 3,13,26\rangle=\langle 3,13\rangle$.
Minimal Decomposition into 3-irreducibles:
$\langle 3,19,26\rangle=\langle 3,11,19\rangle \cap\langle 3,13\rangle$

