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Integer Programming

min c x
s.t. Ax = b

x ∈ Zn
+

(IPA,c(b))

A ∈ Zm×n, b ∈ Zm, c ∈ Zn.
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How to solve IP using GB
IA = 〈xu − xv : Av = Au〉

G: A Gröbner basis for IA with respect to ≺c :

u ≺c v :⇔
{

cu < cv or
cu = cv and u ≺lex v

u0: A feasible solution for IPA,c(b).

nf (xu0 ,G) = xu?

u? OPTIMAL SOLUTION for IPA,c(b).

Task: How to compute a System of generators for IA?: Big-M method,
GRIN method
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Geometric GB

R. Thomas, A geometric Buchberger algorithm for integer
programming. Math. Oper. Res. 20 (1995) 864–884.



Definition (Test Set)

A finite set G = {g1, . . . , gt} ⊆ Zn is a test set for IPA,c if and only if:
1 For all g ∈ G, A g = 0.
2 If x ∈ Nn is a non optimal solution for IPA,c(b), with

b ∈ Zn
+, there is some g ∈ G, such that x − g ≺c x.

3 If x ∈ Nn is the optimal solution for IPA,c(b), with b ∈ Zn
+,

then for all g ∈ G, x − g is infeasible.

Theorem (Thomas 1995)

Let P be the set of non-optimal solutions of IPA,c . Then, there exist
α1, . . . , αt ∈ P such that:

P =
t⋃

i=1

(αi + Nn)

Definition (Geometric GB)

For each i = 1, . . . , t, let βi the optimal solution of IPA,c(Aαi ):

GG = {gi = βi − αi : i = 1, . . . , t}
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GG is a minimal test set

Let α a non-optimal solution of IPA,c(b). By the theorem above, there
exists at least one αi such that α ≥ αi , then:

α− αi ≥ 0

and then,
α− αi + βi = α− gi ≥ 0

But also:
• α and α− gi are both feasible solutions of IPA,c(b):
A(α− gi ) = A(α− αi + βi ) = Aα.

• α− gi improves α: c(α− gi ) = cα− cαi + cβi ≤ cα. (βi is
optimal for IPA,c(Aαi ))

GG = {u − v : xu − xv ∈ G}
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Applications and Extensions

S. Hoşten and B. Sturmfels: Computing the integer programming
gap, Combinatorica 23 (2007), 367–382.

R.R. Thomas and R. Weismantel. Truncated Gröbner bases for
integer programming. Applicable Algebra in Engineering,
Communication and Computing 8 (4) 1997, 241–256

B. Sturmfels and R. Thomas, Variation of cost functions in
integer programming, Mathematical Programming 77 (1997)
357–387.

V. Blanco and J. Puerto. (2009) Partial Gröbner Bases for
Multiobjective Integer Linear Optimization. SIAM Journal on
Discrete Mathematics 23 (2), 571–595.

Tayur, S.R., Thomas, R.R., and Natraj, N.R. (1995). An
algebraic geometry algorithm for scheduling in presence of setups
and correlated demands. Mathematical Programming A,
69(3):369–401, 1995.

Castro, F., Gago, J., Hartillo, I., Puerto, J., and Ucha, J.M.
(2010). An algebraic approach to Integer Portfolio problems .
arXiv:1004.0905



Graver bases and IP

R. Hemmecke, J. De Loera, S. Onn, R. Weismantel, N-fold
Integer Programming, Discrete Optimization 5 (2), 2008,
231–241.

R. Hemmecke, J. De Loera, S. Onn, U.G. Rothblum,
R. Weismantel, Convex Integer Maximization via Graver Bases,
Journal of Pure and Applied Algebra 213 (8). 2008, 1569–1577

R. Hemmecke and S. Onn, Multicommodity flow in polynomial
time. Arxiv: arXiv:0906.5106 (June 2009)

De Loera, J., Haws, D., Lee, J. and O’Hair, A. (2009)
Computation in Multicriteria Matroid Optimization, To appear,
Journal of Experimental Algorithmics, 2009.



Graver Bases

IA = 〈xu − xv : Au = Av , u, v ∈ Z+〉

Definition (Graver Bases)

GrA = {xu − xv :6 ∃xw − xz ∈ IA such that w ≤ u and z ≤ v}

GrG
A = {z ∈ kerZ(A) : z cannot be written as z = u + v where u, v ∈

kerZ(A) and uivi ≥ 0,∀i}

xu − xv ∈ Gr ⇐⇒ u − v ∈ GrG
A



Universal Gröbner bases

UGBA =
⋃

c GA,c

GrA ⊆ UGBA

... but in some special cases it is easier to compute than Gröbner bases:
N-fold Integer Programs

GrG
A is a test set for IPA
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Polynomial IP and Systems of Polynomial Equations

K. Hägglöf, P. Lindberg, L. Svensson, Computing global minima
to polynomial optimization problems using Gröbner bases,
Journal of Global Optimization 7 (2) (1995) 115–125.

D. Bertsimas, D. Perakis, S. Tayur, A new algebraic geometry
algorithm for integer programming, Management Sience 46 (7)
(2000) 999–1008.

V. Blanco and J. Puerto, Some algebraic methods for solving
multiobjective polynomial integer programs, Journal of Symbolic
Computation, 2010

R. Datta. Finding All Nash Equilibria of a Finite Game Using
Polynomial Algebra, Economic Theory 20. 2009.



min f (x)
s.t.

gj(x) ≤ 0 = 1, . . . ,m
hr (x) = 0 r = 1, . . . , s

x ∈ Zn

(1)



KKT necessary conditions for optimality [Karush, 1939]
[Kuhn-Tucker, 1951]

Let x∗ a feasible solution. Suppose that f and gj , for j = 1, . . . ,m, are
differentiable at x∗, that gj , for j 6∈ J, is continuous at x∗,and that hr , for
r = 1, . . . , s, is continuously differentiable at x∗. Further suppose that
∇gj , for j ∈ I , and ∇hr , for r = 1, . . . , s, are linearly independent
(regularity conditions). If x∗ is a optimal solution, then there exist scalars
λj , for j = 1, . . . ,m, and µr , for r = 1, . . . , s, such that

∇f (x∗) +
m∑

j=1

λj ∇gj(x∗) +
s∑

r=1

µr ∇hr (x∗) = 0

λj gj(x∗) = 0 for j = 1, . . . ,m
λj ≥ 0 for j = 1, . . . ,m

(KKT)

NR
x∗ is Non Regular for (1), if x∗ is feasible and there exist λi , for
i = 1, . . . ,m, and µj , for j = 1, . . . , s such that:

m∑
i=1

λi ∇gi (x∗) +
s∑

j=1

µj ∇hj(x∗) = 0



MOPIPf,g

min (f1(x), . . . , fk(x))
s.t.

gj(x) ≤ 0 j = 1, . . . ,m
hr (x) = 0 r = 1, . . . , s

x ∈ Zn
+

(2)

with f1, . . . , fk , g1, . . . , gm, h1, . . . , hs polynomials in K[x1, . . . , xn] and the
constraints defining a bounded feasible region.



Chebishev Scalarization

Nondominance necessary conditions for the Chebyshev
scalarization [Bowman 1976]

x∗ is a nondominated solution if and only if there are positive real
numbers ω1, . . . , ωk > 0 so that x∗ is an image unique solution of the
following weighted Chebyshev approximation problem:

min
x

max
i

ωi (fi (x)− ŷi )

s.t.
gj(x) ≤ 0 j = 1, . . . ,m
hr (x) = 0 r = 1, . . . , s

xi (xi − 1) = 0 i = 1, . . . , n
x ∈ Rn

(Pω)

where ŷ = (ŷ1, . . . , ŷk) ∈ Rk is a lower bound of f = (f1, . . . , fk), i.e.,
ŷi ≤ fi (x) for all feasible solution x and i = 1, . . . , k .
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min γ
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Multiobjective FJ

FJ necessary conditions for non dominance [Zadeh, 1963;
Cunha-Polack, 1967]

Let x∗ a feasible solution. Suppose that f , gj , for j = 1, . . . ,m and hr ,
for r = 1, . . . , s, are continuously differentiable at x∗. If x∗ is a
nondominated solution, then there exist scalars νi , for i = 1, . . . , k , λj ,
for j = 1, . . . ,m, and µr , for r = 1, . . . , s, such that

k∑
i=1

νi∇fi (x∗) +
m∑

j=1

λj ∇gj(x∗) +
s∑

r=1

µr ∇hr (x∗) = 0

λj gj(x∗) = 0 for j = 1, . . . ,m
λj ≥ 0 for j = 1, . . . ,m
νi ≥ 0 for i = 1, . . . , k

(ν, λ, µ) 6= (0, 0, 0)
(MO-FJ)



Generating functions and IP

Barvinok, A. A polynomial time algorithm for counting integral
points in polyhedra when the dimension is fixed, Mathematics of
Operations Research , 19 (1994), 769–779.

Blanco, V and Puerto, J. Short Rational Generating Functions
For Multiobjective Linear Integer Programming. Submitted.
Available on Arxiv: 0712.4295. 2008.
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Yoshida Three Kinds of Integer Programming Algorithms Based
on Barvinok’s Rational Functions, Lecture Notes in Computer
Science, Integer Programming and Combinatorial Optimization
(2004) 3–9

De Loera, J.A., Hemmecke, R., Köppe, M. (2008). Pareto
Optima of Multicriteria Integer Linear Programs. INFORMS
Journal on Computing, 2008.

Woods, K. and Yoshida, R. (2005). Short rational generating
functions and their applications to integer programming ,
SIAG/OPT Views and News, 16 , 15-19.



Generating functions of rational polytopes

Let P = {x ∈ Rn : Ax ≤ b} be a rational polytope in Rn with
A ∈ Zm×n, b ∈ Zm.

f (P; z) =
∑

α∈P∩Zn

zα

where zα = zα1
1 · · · zαn

n , encodes the integer points inside P.
INTRACTABLE!

P = [0,N] ⊂ R:

f (P, z) =
∑N

i=0 z
i = 1 + z + z2 + · · ·+ zN=

1− zN+1

1− z
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Useful results on SGF

SGF of rational polytopes can be computed with the SGF of their
supported cones (Brion, 1984)

= + +

Theorem (Barvinok, 1994)

Assume n, the dimension, is fixed. Given a rational polyhedron P ⊂ Rn,
the generating function f (P; z) can be computed in polynomial time in
the form

f (P; z) =
∑
i∈I

εi
zui

n∏
j=1

(1− zvij )

where I is a polynomial-size indexing set, and where ε ∈ {1,−1} and
ui , vij ∈ Zn for all i and j.

Software: LattE and barvinok
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max c x s.t. Ax ≤ b, x ∈ Zn
+

Theorem (De Loera et al., 2004)

Assume that the number of variables, n, is fixed. There is a
polynomial-time algorithm for computing the optimal solution of a
(single-objective) integer program using generating functions.

Theorem (De Loera-Hemmecke-Köppe, 2008)

Assume that the number of variables, n and the number of objective of a
multiobjective linear integer program are fixed. Then, the set of
nondominated solutions can be encode in a short generating function.

Theorem (B.-Puerto 2009)

Assume that ONLY the number of variables, n, is fixed. Then, we can
encode, in polynomial time, the entire set of nondominated solutions for
MIPA,C (b) in a short sum of rational functions.

Theorem (B.-Puerto 2009)

Assume n is a constant. There is a polynomial-delay procedure to
enumerate the entire set of nondominated solutions of MIPA,C (b).
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Consequences...
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integer programming. Submitted. Available on Arxiv: 0712.4295.
2008.
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Generating Functions and Integer Programming Games,
Submitted. Available on Arxiv: 0809.0689.

Köppe, M., Queyranne, M., and Ryan, C.T. (2009) Parametric
Integer Programming Algorithm for Bilevel Mixed Integer
Programs. Journal of Optimization Theory and Applications
Volume 146, Number 1, 137-150

Blanco,V., García-Sánchez, P.A., and Puerto, J. (2010) Counting
Numerical Semigroups with Short Generating Functions. To
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Sums of squares and the moment problem
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Numerical Semigroups

Definition
A numerical semigroup is a subset S of N (here N denotes the set of
non-negative integers) closed under addition, containing zero and such
that N\S is finite.

{n1, . . . , np} is a system of generators of S if

S = {
p∑

i=1

nixi : xi ∈ N, i = 1, . . . , p}. We denote S = 〈n1, . . . , np〉.

Any numerical semigroup has an unique minimal system of generators
(no proper subset of it is a system of generators).

Embedding Dimension of S : cardinal of the minimal system of generators
of S .
Gaps of S : G(S) = N\S . Genus: g(S) = #G(S).

Example: S = 〈2, 4, 5, 7, 10〉 = 〈2, 5〉 = {0, 2, 4,→} = N\{1, 3}
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Numerical Semigroups and Discrete Optimization

• Multiplicity: m(S) = min{s ∈ S\{0}}.
• Frobenius Number: F (S)= max{n ∈ Z\S}.
• Kunz’s polyhedron (Rosales et. al, 2002).
• Arithmetic invariants.
• Irreducibility: irreducible (Rosales-Branco, 2003) and
m-irreducible (B.-Rosales, 2010) numerical semigroups.



The omega invariant: definition

Definition (Geroldinger, 1997)

Let S = 〈n1, . . . , np〉 be a numerical semigroup. For s ∈ S, let ω(S , s)
denote the smallest N ∈ N0 ∪ {∞} with the following property :

For all n ∈ N and s1, . . . , sn ∈ S, if
p∑

i=1

si − s ∈ S, then

there exists a subset Ω ⊂ {1, . . . , n} such that |Ω| ≤ N and∑
j∈Ω

sj − s ∈ S .

Furthermore, we set

ω(S) = max{ω(S , ni ) : i = 1, . . . , p} ∈ N.

References: Geroldinger-Hassler (2008a-b), Geroldinger-Kainrath (2010),
B.-GarcíaSánchez-Geroldinger (2010), Omidali (2010),
Anderson-Chapman-Kaplan-Torkornoo (2010)...
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The omega invariant: characterization

Theorem (B.-GarcíaSanchez-Geroldinger, 2010)

Let S = 〈n1, . . . , np〉 be a numerical semigroup.
1 For every s ∈ S,

ω(S , n) = max{
p∑

i=1

xi : x ∈ MinimalsZ(n + S)},

2 ω(S) = max{
p∑

i=1

xi : x ∈ Minimals
(
Z(ni + S)

)
for some i =

1, . . . , p
}
.

Z(n) = {(x1, . . . , xp) ∈ Np : n =

p∑
i=1

xini}

Z(n + S) = {(x1, . . . , xp) ∈ Np : n + s =

p∑
i=1

xini , para algún s ∈ S}



Optimization over and integer efficient set

max c(x)
s.t. x is a non-dominated solution of
v −min C (x) = (C1(x), . . . ,Ck(x))
s.t.

Ax = b
x ∈ Zn

+

(OES)

(x ∈ Zn
+ feasible, is a non dominated solution if there is no other feasible

solution y ∈ Zn
+ such that C (y) ≤ C (x) y C (x) 6= C (y))



Optimization over and integer efficient set: Omega

Let S = 〈n1, . . . , np〉 be a numerical semigroup. Then, for each
j ∈ {1, . . . , p}, ω(S , nj) is the solution of the following OES problem:

max
n∑

i=1

xi

s.t.
x ∈ v −min (x1, . . . , xp)
s.t.
p∑

i=1

xini −
p∑

i=1

yini = nj

xi ≤ ubi = maxk UBik
xj = 0
x , y ∈ Zp

+

(OESj)

where UBik = min{xi : xini −
p∑

j=1

yjnj = nk , yk = 0, xi ∈ Z+, y ∈ Zp
+}

(xj = 0: ej is a non-dominated solution, but non optimal since
ω(S , nj) > 1 (B.-GarcíaSánchez-Geroldinger, 2010))



Solving the problem of optimizing over and integer efficient
set: general scheme (Jorge, 2009)

• Solve a relaxed (single objective) problem (feasible solution).

• Obtain a non-dominated solution dominating the feasible
solution (Ecker-Kouada, 1975).

• Check if the solution is optimal (Nemhauser-Wolsey, 1988),
otherwise, move to another feasible solution.
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Computing the omega invarian: initial solution

max
n∑

i=1

xi

s.t.
p∑

i=1

xini −
p∑

i=1

yini = nj

xi ≤ ubi
xj = 0
x , y ∈ Zp

+.

(Rj)

Lemma
Problem (Rj) is feasible. Furthermore, the optimal solutions of (Rj) are
not non-dominated solution of (SMIPj).



Computing the omega invariant: generating efficient solutions

Let x∗ be an optimal solution of (Rj) and (s, x , y) an optimal solution of
the following problem

max
n∑

i=1

si

s.t.
xi + si = x∗i i = 1, . . . , p
p∑

i=1

xini −
p∑

i=1

yini = nj

xi ≤ ubi i = 1, . . . , p
xj = 0
x , y ∈ Zp

+.

(EKj(x∗))

Then, x is a non-dominated solution of (SMIPj) that dominates x∗.



Computing the omega invariant: generating new feasible
solutions

Let x1, . . . , x s be non-dominated solutions of (SMIPj) and (x̂ , ŷ) an
optimal solution of the following problem

max
n∑

i=1

xi

s.t.
xi ≤ zk

i (xk
i − 1)−Mi (zk

i − 1) i = 1, . . . , p, k = 1, . . . , s
p∑

i=1

xini −
p∑

i=1

yini = nj

xi ≤ ubi i = 1, . . . , p
xj = 0
p∑

i=1

zk
i ≥ 1 k = 1, . . . , s

x , y ∈ Zp
+, zk ∈ {0, 1}p k = 1, . . . , s

(NWj(x1, . . . , x s))

where Mj = max{xj : njxj =

p∑
i 6=j

ni yi , xi ≤ ubi , i = 1, . . . , p, x , y ∈ Zp
+}.

Then, x̂ is a feasible solution of (SMIPj) that is not dominated by
x1, . . . , x s .



Improvements...

1 Better bounds (B.-GarcíaSánchez-Geroldinger, 2010):
ω(S) ≤ np.

2
∑p

i=1 ni yi ≤ max
⋃p

i=1 Ap(S , ni ) y∑p
i=1 ni yi ≥ min

⋃p
i=1 Ap(S , ni ) = min{n1, . . . , np}.

Apéry set: Ap(S , a) = {s ∈ S | s − a /∈ S}, a ∈ S .
3 Controlling the bounds at each iteration.



Experiments

1 250 instances. Embedding dimension ∈ {5, 10, 15, 20}
(RandomListOfNS) with ni ∈ [2, 1000]

2 Implemented in Xpress-Mosel 7.0 in a Intel Core 2 Quad 2x
2.50 Ghz and 4 GB of RAM.

3 Compared to GAP package on numerical semigroups (brute
force).

4 Limit: 2h.



Experiments

S nj ω(S, nj ) min it timej GAPtime tottime avtime #min
20 4 [0,0,0,0,4] 9 0.54 6.03 12
354 60 [60,0,0,0,0] 12 0.95 11.35 14

S5(1) 402 63 [63,0,0,0,0] 16 1.439 12.54 5.921 1.184 17
417 60 [60,0,0,0,0] 15 1.43 12.68 16
429 60 [60,0,0,0,0] 17 1.55 12.43 20
7 3 [0,3,0,0,0] 10 0.55 12.48 11

292 93 [93,0,0,0,0] 9 0.37 23.72 11
S5(2) 359 93 [93,0,0,0,0] 11 0.43 27.33 2.84 0.56 13

645 200 [200,0,0,0,0] 14 0.67 45.92 15
755 200 [200,0,0,0,0] 18 0.81 75.59 19
5 2 [0,0,0,2,0] 8 0.285 1.201 11
86 37 [37,0,0,0,0] 11 0.294 2.527 12

S5(3) 99 37 [37,0,0,0,0] 11 0.34 2.82 1.69 0.33 12
148 60 [60,0,0,0,0] 12 0.37 4.1 13
152 60 [60,0,0,0,0] 12 0.39 2.29 13
41 14 [0,14,0,0,0] 12 0.893 5.64 14
65 22 [22,0,0,0,0] 13 0.988 6.02 14

S5(4) 155 24 [24,0,0,0,0] 16 1.1 8.22 7.39 1.47 18
317 22 [21,0,1,0,0] 22 2.916 13.96 28
377 31 [31,0,0,0,0] 18 1.49 18.7 35
28 10 [0,10,0,0,0] 11 0.5 10.71 12
55 25 [25,0,0,0,0] 8 0.381 11.45 12

S5(5) 125 27 [27,0,0,0,0] 13 0.71 20.18 4.719 0.94 15
233 26 [26,0,0,0,0] 13 0.732 42.37 17
590 30 [24,5,0,1,0] 23 2.38 109.38 48



Experiments
S nj ω(S, nj ) min it timej GAPtime tottime avtime #min

43 5 [0,0,5,0,0,0,0,0,0,0] 49 3.36 5.41 58
63 8 [8,0,0,0,0,0,0,0,0,0] 48 2.7 8.61 65
68 8 [8,0,0,0,0,0,0,0,0,0] 49 3.16 13.18 69
108 7 [5,0,2,0,0,0,0,0,0,0] 52 4.15 18.26 81
120 8 [8,0,0,0,0,0,0,0,0,0] 57 4.24 12.65 94

S10(1) 135 9 [9,0,0,0,0,0,0,0,0,0] 68 5.95 15.5 67.89 6.78 108
142 9 [9,0,0,0,0,0,0,0,0,0] 88 9.24 16.75 125
150 7 [4,2,1,0,0,0,0,0,0,0] 66 8.07 19.85 116
177 9 [7,2,0,0,0,0,0,0,0,0] 70 6.88 49.26 149
224 9 [7,0,2,0,0,0,0,0,0,0] 113 20.1 65.16 246
15 3 [0,0,3,0,0,0,0,0,0,0] 36 1.801 6.64 45
46 9 [9,0,0,0,0,0,0,0,0,0] 39 1.66 10.32 48
58 10 [10,0,0,0,0,0,0,0,0,0] 38 1.69 12.23 50
89 9 [7,0,1,0,0,0,0,1,0,0] 47 2.681 17.33 68
108 15 [15,0,0,0,0,0,0,0,0,0] 63 3.278 24 83

S10(2) 114 16 [16,0,0,0,0,0,0,0,0,0] 57 3.07 28.81 35.87 3.58 78
117 15 [15,0,0,0,0,0,0,0,0,0] 63 4.316 21.65 88
126 16 [16,0,0,0,0,0,0,0,0,0] 73 4.243 22.48 99
130 22 [22,0,0,0,0,0,0,0,0,0] 64 3.399 38.59 98
173 23 [23,0,0,0,0,0,0,0,0,0] 107 9.73 80.49 161
20 4 [0,0,0,4,0,0,0,0,0,0] 39 1.48 5.1 43
22 5 [5,0,0,0,0,0,0,0,0,0] 43 1.59 5.41 45
24 5 [5,0,0,0,0,0,0,0,0,0] 36 1.3 5.41 45
26 5 [3,2,0,0,0,0,0,0,0,0] 33 1.64 3.49 44

S10(3) 54 6 [0,6,0,0,0,0,0,0,0,0] 52 2.77 14.05 99.49 9.94 88
77 9 [7,0,2,0,0,0,0,0,0,0] 93 13.27 26.72 176
83 9 [6,0,2,1,0,0,0,0,0,0] 109 19.41 33.83 198
89 10 [10,0,0,0,0,0,0,0,0,0] 100 13.85 41.18 219
93 10 [10,0,0,0,0,0,0,0,0,0] 109 21.75 46.17 254
95 10 [10,0,0,0,0,0,0,0,0,0] 114 22.4 52.46 251
131 7 [5,0,0,0,2,0,0,0,0,0] 63 8.34 61.44 102
136 6 [3,1,0,0,2,0,0,0,0,0] 47 7.23 54.38 88
171 6 [2,2,0,0,2,0,0,0,0,0] 65 11.18 56.92 102
173 7 [3,1,3,0,0,0,0,0,0,0] 60 9.87 116.22 118

S10(4) 239 8 [5,2,0,0,0,0,0,1,0,0] 83 16.81 104.66 225.55 22.55 155
278 10 [10,0,0,0,0,0,0,0,0,0] 80 14.93 129.1 208
287 10 [10,0,0,0,0,0,0,0,0,0] 62 11.628 128.1 178
364 10 [7,3,0,0,0,0,0,0,0,0] 128 34.053 227.12 260
483 11 [9,1,0,0,0,0,1,0,0,0] 204 105.146 497 427



Experiments
S nj ω min it timej GAPtime tottime avtime #min

146 8 [0,6,2,0,0,0,0,0,0,0] 42 8.048 100.82 70
173 10 [10,0,0,0,0,0,0,0,0,0] 71 15.43 115.39 99
207 10 [10,0,0,0,0,0,0,0,0,0] 60 11.77 138.87 82
359 12 [7,5,0,0,0,0,0,0,0,0] 60 14.69 198.246 152

S10(5) 426 12 [12,0,0,0,0,0,0,0,0,0] 77 16.23 290.08 315.14 31.51 130
548 12 [0,12,0,0,0,0,0,0,0,0] 105 38.525 470.76 209
604 15 [15,0,0,0,0,0,0,0,0,0] 124 43.81 499.9 244
606 13 [13,0,0,0,0,0,0,0,0,0] 98 28.4 422.96 243
657 12 [0,8,4,0,0,0,0,0,0,0] 105 65.01 558.71 244
702 14 [14,0,0,0,0,0,0,0,0,0] 159 73.19 718.58 362
47 6 [6,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 114 8.386 13.78 129
65 5 [4,0,0,1,0,0,0,0,0,0,0,0,0,0,0] 112 10.358 35.64 159
79 5 [3,1,0,0,1,0,0,0,0,0,0,0,0,0,0] 105 9.392 7.21 165
82 6 [0,6,0,0,0,0,0,0,0,0,0,0,0,0,0] 141 13.664 17.93 184
84 6 [4,1,0,0,1,0,0,0,0,0,0,0,0,0,0] 112 11.156 28.24 192
91 7 [7,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 101 6.863 9.34 173

S15(1) 96 7 [4,3,0,0,0,0,0,0,0,0,0,0,0,0,0] 104 11.98 52.225 612.099 40.8066 250
100 8 [8,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 187 26.425 29.725 251
109 7 [7,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 129 12.659 35.725 245
121 8 [8,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 154 19.271 48.225 307
124 8 [8,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 214 37.796 203.8 364
134 7 [5,1,1,0,0,0,0,0,0,0,0,0,0,0,0] 168 29.652 241.9 383
139 8 [8,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 183 30.122 199.05 394
169 8 [5,2,0,0,0,1,0,0,0,0,0,0,0,0,0] 285 38.405 164.625 680
46 5 [0,1,3,0,1,0,0,0,0,0,0,0,0,0,0] 83 8.383 79.4 98
115 6 [2,0,3,0,1,0,0,0,0,0,0,0,0,0,0] 94 10.454 112.65 109
155 17 [17,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 123 14.728 139.425 151
286 15 [12,0,3,0,0,0,0,0,0,0,0,0,0,0,0] 137 20.015 291.65 206
289 15 [15,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 109 14.545 293.575 190
341 17 [17,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 174 65.975 401 252
342 15 [14,0,0,0,1,0,0,0,0,0,0,0,0,0,0] 192 32.986 406.775 265

S15(2) 348 15 [13,0,2,0,0,0,0,0,0,0,0,0,0,0,0] 193 113.383 427.3 1683.63 112.242 291
393 20 [20,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 228 135.869 550.35 320
436 25 [25,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 273 74.036 736.575 413
445 24 [24,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 311 96.198 784.625 434
449 19 [19,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 294 82.945 795.45 425
504 22 [22,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 354 177.154 1161.45 594
527 20 [20,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 367 166.69 1345.275 610
584 26 [26,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 438 670.269 1988.875 737



ExperimentsS nj ω min it timej GAPtime tottime avtime #min
40 3 [0,1,0,0,1,0,0,0,0,1,0,0,0,0,0] 89 7.53 24.85 113
84 8 [8,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 119 11.648 39.95 139
126 10 [10,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 114 13.082 67.375 195
130 10 [10,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 117 12.165 68.425 188
132 10 [10,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 126 12.849 69.1 186
135 10 [10,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 149 23.85 72.4 212
142 10 [10,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 156 20.35 78.35 216

S15(3) 152 8 [8,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 176 22.83 90.65 1407.684 93.8456 267
165 12 [12,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 183 31.199 109.15 305
183 10 [10,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 189 38.537 134.025 324
217 11 [9,1,0,0,1,0,0,0,0,0,0,0,0,0,0] 244 77.582 219.075 446
221 11 [11,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 250 70.445 229.625 454
229 13 [13,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 274 89.679 253.775 478
273 14 [14,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 353 133.473 475.725 701
323 15 [15,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 578 842.465 3487.55 1076
75 5 [0,4,0,1,0,0,0,0,0,0,0,0,0,0,0] 92 8.229 42.65 123
104 6 [4,0,0,1,1,0,0,0,0,0,0,0,0,0,0] 96 10.708 52.2 140
114 7 [5,0,0,2,0,0,0,0,0,0,0,0,0,0,0] 86 8.044 54.875 144
128 7 [5,0,2,0,0,0,0,0,0,0,0,0,0,0,0] 104 10.528 61.075 147
216 8 [3,0,5,0,0,0,0,0,0,0,0,0,0,0,0] 151 23.513 126.85 254
219 9 [8,1,0,0,0,0,0,0,0,0,0,0,0,0,0] 145 19.017 126.95 251
241 9 [9,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 139 22.934 156.65 302

S15(4) 271 8 [4,3,1,0,0,0,0,0,0,0,0,0,0,0,0] 188 52.956 202.2 892.038 59.4692 357
309 9 [6,1,1,1,0,0,0,0,0,0,0,0,0,0,0] 211 62.039 284.25 439
310 10 [10,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 188 34.511 281.525 429
321 12 [12,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 269 67.673 320.65 523
327 10 [10,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 185 43.396 341.225 502
340 11 [11,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 212 42.852 374.325 509
352 10 [7,3,0,0,0,0,0,0,0,0,0,0,0,0,0] 262 300.513 2434.3 622
371 11 [11,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 315 185.125 505.925 661
29 5 [0,5,0,0,0,0,0,0,0,0,0,0,0,0,0] 97 3.899 258.275 106
50 5 [5,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 99 4.911 533.775 116
95 6 [3,2,0,0,0,1,0,0,0,0,0,0,0,0,0] 115 9.017 73.725 154
96 10 [10,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 120 7.652 24.55 171
99 9 [9,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 127 9.08 25.7 170
109 9 [9,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 138 11.984 30.225 187
110 10 [10,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 124 7.249 31.025 192

S15(5) 119 11 [11,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 127 9.411 36.375 685.921 45.72807 211
131 10 [9,1,0,0,0,0,0,0,0,0,0,0,0,0,0] 121 10.939 45.3 252
134 11 [11,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 174 17.188 48.075 258
135 11 [11,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 173 20.678 225.525 288
152 10 [8,2,0,0,0,0,0,0,0,0,0,0,0,0,0] 180 28.469 144.375 338
162 9 [8,0,0,0,1,0,0,0,0,0,0,0,0,0,0] 205 32.88 83.55 357
180 10 [8,2,0,0,0,0,0,0,0,0,0,0,0,0,0] 269 71.89 269.85 471
201 14 [14,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 306 440.674 1883.525 584



Experiments (n = 20)
nj ω min it timej GAPtime tottime avtime #min
131 8 [0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 188 35.321 321.325 264
145 8 [8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 191 34.252 332.3 265
249 9 [6,2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 233 54.57 550.725 340
257 9 [6,2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 233 53.913 569.15 352
260 8 [8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 197 47.428 573.775 355
319 9 [1,7,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 244 90.809 785.925 451
354 9 [4,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 256 97.12 938.925 500
459 10 [0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 398 182.085 1700.525 787
465 9 [9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 356 363.725 1747.575 752
469 11 [3,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 317 239.548 1802.75 19603.67 980.1835 796
487 9 [9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 384 408.842 2011.8 865
572 12 [6,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 399 826.33 3290.4 1160
575 10 [0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 542 3123.4 3414.425 1235
587 12 [12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 487 1356.94 3657.525 1273
606 11 [11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 507 2100.84 4119.5 1389
607 10 [5,5,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0] 787 2894.21 4181.7 1387
652 11 [9,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 683 2013.25 5538.2 1673
674 12 [12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 821 1999.747 6288.875 1732
694 11 [11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 726 2991.08 7185.075 1851
762 12 [12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 118 690.26 11142.2 2375
57 4 [0,2,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0] 146 15.003 108.725 186
105 7 [7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 169 20.95 158.525 211
182 9 [6,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 195 31.558 311.125 304
186 11 [11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 272 61.55 328.45 364
201 14 [14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 319 300.1 374.2 409
204 9 [9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 284 63.721 394.55 427
254 9 [8,0,0,0,1,0,0,0,0,0,0,0,0,0,0] 378 153.266 635.725 599
259 10 [7,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 295 72.789 653.9 530
263 10 [6,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 294 69.81 695.8 612
274 9 [4,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 336 172.839 751.05 11703.9 585.1952 587
275 11 [8,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 414 217.261 798.075 702
294 8 [5,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 359 396.194 915.575 612
295 11 [8,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 488 2342.7 975.65 802
298 12 [12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 463 174.03 990.675 773
307 10 [6,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 391 187.431 1084.4 808
338 13 [13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 484 432.837 1546.65 1001
367 14 [14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 608 2000.37 2113.475 1248
393 12 [3,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 658 2531.045 2889.325 1502
417 11 [5,0,2,0,0,0,0,0,0,2,3,0,0,0,0,0,0,0,0,0] 563 1093.34 3737.325 1686
431 14 [6,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 781 1367.11 * *



Experiments (n = 20)
nj ω min it timej GAPtime tottime avtime #min
85 4 [0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 147 25.646 341.175 230
298 15 [15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 316 99.513 864.5 455
333 15 [15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 322 91.273 1007.75 465
342 16 [16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 326 99.809 1026.075 466
349 16 [16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 307 76.393 1075.375 512
358 15 [15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 324 86.003 1092.975 480
401 12 [10,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 394 154.683 1372.975 631
415 16 [16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 448 293.327 1474 687
462 15 [15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 361 135.922 1827.75 691
480 14 [14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 527 261.581 1982.85 8912.075 445.6038 786
556 16 [16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 610 592.666 2975.05 1028
569 18 [18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 695 2453.98 3284.75 1158
583 19 [19,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 711 1496.19 3440.55 1164
609 15 [15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 57 11.671 4037.25 1290
619 13 [12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 912 990.061 4518.725 1386
708 18 [18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 582 569.397 * *
710 15 [11,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 733 673.064 * *
752 18 [18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 777 722.174 * *
821 21 [18,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0] 108 35.333 * *
853 21 [19,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 108 43.389 * *
81 5 [0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 140 17.706 219.175 214
107 6 [6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 176 27.955 264.375 251
168 9 [7,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 185 26.037 416.725 291
194 9 [6,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 239 57.189 527.75 427
230 8 [4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 186 39 707.575 471
236 9 [7,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 198 49.312 735.875 474
274 9 [8,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 284 524.051 1027.225 590
277 9 [7,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 276 113.266 1079.7 679
286 9 [6,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 321 676.315 1143.675 698
290 8 [1,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 312 1775.88 1177.15 11215.3 560.7652 630
305 10 [7,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 256 188.763 1345.125 683
310 10 [10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 297 85.818 1407.6 704
348 10 [7,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 403 392.226 2039.675 953
351 11 [11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 432 193.712 2079.4 949
366 10 [9,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 383 295.208 2346.175 912
379 10 [3,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 296 1007.8 2735.2 1116
396 11 [10,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 560 3095.66 3283.85 1222
416 12 [12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 541 693.549 * *
521 14 [14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 611 955.771 * *
583 14 [14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 982 1000.085 * *



Experiments (n = 20)
nj ω min it timej GAPtime tottime avtime #min
101 8 [0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 57 8.393 488.75 246
141 7 [7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 146 33.759 567.975 260
279 12 [12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 99 23.478 1170.65 502
314 10 [10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 199 68.421 1328.55 457
329 11 [7,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 85 17.706 1428.15 461
369 11 [5,5,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 106 25.178 1747.875 493
399 11 [7,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 156 90.957 2166.55 711
425 11 [5,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 65 26.208 2477.4 718
438 13 [13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 115 37.799 2648.8 732
447 15 [15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 60 11.342 2771.675 10007.05 500.3524 808
477 14 [14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 138 51.901 3357.7 929
501 16 [16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 40 7.425 3884.325 1026
534 12 [12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 180 145.075 4557.05 983
536 14 [14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 83 23.15 4752.25 1090
555 13 [9,3,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 166 63.804 5404.225 1190
574 13 [13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 345 777.094 * *
620 14 [14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 721 654.063 * *
727 18 [18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 882 2140.435 * *
786 17 [17,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 734 3000.11 * *
871 17 [17,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 813 2800.75 * *

• av
timej

GAPtime
= 0.23.

• av
it

#min
= 0.59.

• GAP was not able to solve 14 problem in 2h. (∗).



Irreducible and m-irreducible numerical semigroups

Definition

• A numerical semigroup is irreducible if it cannot be
expressed as an intersection of two numerical semigroups
containing it properly.

• A numerical semigroup with multiplicity m is m-irreducible
if it cannot be expressed as an intersection of two numerical
semigroups with multiplicity m containing it properly.
(B.-Rosales, 2010)

Problem: Decompose (minimally) into m-irreducibles
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How are those m-irreducibles?

Proposition (B.-Rosales, 2010)

S is m-irreducible if m(S) = m and it is maximal (w.r.t ⊆) among the set
of numerical semigroup with Frobenius number F(S) and multipliity m.

Corollary (B.-Rosales, 2010)

A numerical semigroup, S, with multiplicity m is m-irreducible if and only
if one of the following conditions holds:

1 S = {0,m,→}.
2 S = {0,m,→}\{f } with f ∈ {m + 1, . . . , 2m − 1}.
3 S is an irreducible numerical semigroup.

Corollary (B.-Rosales, 2010)

Let S be a numerical semigroup with multiplicity m. Then, S is

m-irreducible if and only if g(S) ∈
{
m − 1,m,

⌈
F(S) + 1

2

⌉}
.
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Where to look for those m-irreducible n.s. in the
decomposition?

Definition (Oversemigroups)

Let S be a numerical semigroup with multiplicity m. The set of
oversemigroups of S is

O(S) = {S ′ numerical semigroup : S ⊆ S}

Om(S) = {S ′ ∈ O(S) : m(S ′) = m}.
Jm(S) = {S ′ ∈ Om(S) : S is m-irreducible}.

Definition
Let S be a numerical semigroup. The special gaps of S is the following
set:

SG(S) = {z ∈ G(S) : S ∪ {z} is a numerical semigroup}

where G(S) is the set of gaps of S.

SGm(S) = {z ∈ SG(S) : z > m}. #SGm(S) ≤ m − 1
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Where to look for those m-irreducible n.s. in the
decomposition?

Lemma
Let S ∈ S(m) and S1, . . . ,Sn ∈ Om(S). Then, S = S1 ∩ · · · ∩ Sn if and
only if for all h ∈ {x ∈ SG(S) : x > m} there exists i ∈ {1, . . . , n} such
that h 6∈ Si .

Proposition

Assume that Minimals⊆Im(S) = {S1, . . . ,Sn}. Then, S = Si1 ∩ · · · ∩ Sir
if and only if SGm(S) ∩ (G(Si1) ∪ · · · ∪G(Sir )) = SGm(S), where
{Si1 , . . . ,Sir } ⊆ {S1, . . . ,Sn}.



Translating the problem: Kunz coordinates

Definition
Let S be a numerical semigroup with multiplicity m. If
Ap(S ,m) = {w0 = 0,w1, . . . ,wm−1}, the Kunz coordinates of S is the
vector x ∈ Zm−1

+ with components xi = wi−i
m for i = 1, . . . ,m − 1.

Theorem (Rosales et. al, 2002)

Each numerical semigroup is one-to-one identified with its Kunz
coordinates.
Furthermore, the set of Kunz coordinates of the numerical semigroups
with multiplicity m is the set of solutions of the following system of
diophantine inequalities:

xi > 1 for all i ∈ {1, . . . ,m − 1},
xi + xj − xi+j > 0 for all 1 6 i 6 j 6 m − 1, i + j 6 m − 1,

xi + xj − xi+j−m > −1 for all 1 6 i 6 j 6 m − 1, i + j > m
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Translating the problem: Kunz coordinates
• m(x) = m(S) = m (Multiplicity of x .)
• F(x) = F(S) = maxi{mxi + i} −m (Frobenius number)
• G(x) = G(S) = {n ∈ Z : mxn (mod m) + n (mod m) > n}
(Gaps of x .)

• g(x) = g(S) =
m−1∑
i=1

xi .(Genus of x .)

• SGm(x) = SGm(S).(Special Gaps greater than m of x .)
• Um(x) = Om(S). (Undercoordinates of x :
S ⊆ S ′ ⇐⇒ x ≥ x ′)

Algorithm 1: Computing the special gaps greater than the multiplicity of
a Kunz coordinate.
Input : A Kunz coordinate x ∈ Zm−1

+ .
Compute M1 = {m(xi − 1) + i : xi + xj > xi+j , for all j with i + j < m} and
M2 = {m(xi − 1) + i : xi + xj > xi+j−m − 1, for all j with i + j > m}.

Output: SGm(x) = {z ∈ M1 ∩M2 : z > m and 2z ≥ m x2z (mod m) + 2z (mod m)}.

m-irreducible numerical semigroup ⇒ m-irreducible Kunz coordinates

(
m∑

i=1

xi ∈ {m,m − 1,
⌈

F(x) + 1
2

⌉
)
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Corollary

The set of Kunz coordinates in Zm−1
+ with genus g and Frobenius

number F is the set of solutions of the following system of diophantine
inequalities:

xi > 1 for all i ∈ {1, . . . ,m − 1},
xi + xj − xi+j > 0 for all 1 6 i 6 j 6 m − 1, i + j 6 m − 1,

xi + xj − xi+j−m > −1 for all 1 6 i 6 j 6 m − 1, i + j > m,
m−1∑
i=1

xi = g

F = max
i
{mxi + i} −m ,

xi ∈ Z for all i ∈ {1, . . . ,m − 1},



Translating the problem: Kunz coordinates

If x is a Kunz coordinate, the set of m-irreducible undercoordinates of x
are those x ′ ∈ Zm−1 in the form x ′ = x − y with y ∈ Zm−1

+ , i.e., y
verifying the following inequalities:

yi 6 xi − 1 for all i ∈ {1, . . . ,m − 1},
yi + yj − yi+j 6 xi + xj − xi+j for all 1 6 i 6 j 6 m − 1, i + j 6 m − 1,
yi + yj − yi+j 6 xi + xj − xi+j + 1 for all 1 6 i 6 j 6 m − 1, i + j > m
m−1∑
i=1

yi ∈ M(x , y)

(Pm(x))

where
M(x , y) =

{
m−1∑
i=1

xi −m,

m−1∑
i=1

xi −m + 1,
m−1∑
i=1

xi −
⌈
maxi{m(xi − yi ) + i} −m + 1

2

⌉
}



yi 6 xi − 1 i = 1, . . . ,m − 1,
yi + yj − yi+j 6 xi + xj − xi+j i + j 6 m − 1,
yi + yj − yi+j 6 xi + xj − xi+j + 1 i + j > m
m(xk − yk) + k ≥ m(xi − yi ) + i ∀i

2
m−1∑
i=1

yi −myk > 2
m−1∑
i=1

xi −mxk − k +m − 2

2
m−1∑
i=1

yi −myk 6 2
m−1∑
i=1

xi −mxk − k +m − 1

(Pm
k (x))

k = 1, . . . ,m − 1, and

yi 6 xi − 1 i = 1, . . . ,m − 1,
yi + yj − yi+j 6 xi + xj − xi+j i + j 6 m − 1,
yi + yj − yi+j 6 xi + xj − xi+j + 1 i + j > m
m−1∑
i=1

yi =
m−1∑
i=1

xi −m

(Pm
m(x))

Solving the above problems, we obtain a decomposition into m-irreducibles...
but clearly, it is not minimal.



Denote by Im(x) the maximal elements (w.r.t ≤) in the set Om(x).

Theorem
Let x ∈ Zm−1 a Kunz coordinates. The elements Im(x) are in the form
x − ŷ where ŷ is a nondominated solution of the any of the following
multiobjective linear integer programming problems.

v −min(y1, . . . , ym−1)
s.t.

y ∈ Pk(x)
(MIPk(x))

for k = 1, . . . ,m − 1,m.



Theorem
Let x be a Kunz coordinate. Then, the elements in a minimal
decomposition into m-irreducible Kunz coordinates can be found by
solving the following problems:

min
m−1∑
i=1

yi

s.t.
y ∈ Pk(x)
myk ≤ mxk + k − h + 1

(IPk(x , h))

where k = h (mod m).

min
m−1∑
i=1

yi

s.t.
y ∈ Pm(x) myk ≤ mxk + k − h + 1

(IPm(x , h))



Corollary

For each h ∈ SGm(x), it is enough to solve IPh (mod m)(x , h) if h > 2m
or IPm(x , h) if h < 2m.
Then, at most #SG(S) (≤ m − 1) problems must be solved.



Discarding Solutions: Set Covering

Let x be a Kunz coordinates, s = #SG(x), and {x1, . . . , x s} a set of
m-irreducible coordinates decompose in x (solutions of IPk(x , h) for each
h ∈ SG(x)).
We consider s decision variables

zi =

{
1 if x i is selected for the minimal decomposition,
0 otherwise.

We formulate the problem of selecting a minimal set of m-irreducible
Kunz coordinates as

min
s∑

i=1

zi

s.t. ∑
i/mx i

k+k≥h+1

zi ≥ 1 ,∀h ∈ SG(S), k = h (mod m),

(SC(x))



Algorithm 3: Decomposition into m-irreducible numerical semigroups.
Input : A numerical semigroup S with multiplicity m.
Compute the Kunz coordinates of S : x ∈ Zm−1

+ . (Computing the Apéry
set.)
D = {}. DmIRNS = {}

1 Compute SGm(x).
2 for h ∈ SGm(x) with h = k (mod m) do
if k = h −m then

Solve Pm(x , h): ŷ . Add x − ŷ to D
else

Solve Pk(x , h): ŷ . Add x − ŷ to D.

3 Select a minimal decomposition from D}: Solve (SC(x)).
DmIR = {x ′ ∈ D : z = 1}

for x ′ ∈ DmIR do
S ′ = 〈{m} ∪ {mx ′i + i : i = 1, . . . ,m − 1}〉
Add S ′ to DmIRNS.

Output: DmIRNS.



Example

S = 〈3, 19, 26〉.

Kunz coordinates: x = (6, 8)
Special Gaps: SG3(S) = {16, 23}.
16 > 2 · 3 = 6 and 23 > 2 · 3 = 6 (no m-irreducibles with genus 3)
16 ≡ 1 (mod 3), 23 ≡ 2 (mod 3): Problems to solve P1(x , 16) and
P2(x , 23).

• The optimal solution of P1(x , 16) is y1 = (0, 5), being then
x1 = (6, 3).

• The optimal solution of P2(x , 23) is y2 = (2, 0), being then
x2 = (4, 8).

Discarding: No solution are discarded because S is not 3-irreducible
(g(S) = 14 and F(S) = 23).
x1 → S1 = 〈3, 19, 11〉 and x2 → S2 = 〈3, 13, 26〉 = 〈3, 13〉.
Minimal Decomposition into 3-irreducibles:
〈3, 19, 26〉 = 〈3, 11, 19〉 ∩ 〈3, 13〉
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