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Ax —b (MIPA.c)
n
X ezl

where A€ Z™" b Z™and C € Z/*"
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Partial order induced by C

Linear partial order over Z

X<cy<<=CxsxCy




Solution Notion for MOILP

Definition
A feasible vector X € R” is said to be a nondominated

solution for MIP, ¢(b) if there is no other feasible
vector y such that

cgy<cx Vj=1,... .k

with at least one strict inequality for some .
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solution for MIP, c(b) if there is no other feasible
vector y such that

cgy<cx Vj=1,... .k

with at least one strict inequality for some .

If x* is a nondominated solution, the vector
(c1 x*,...,cx x*) is called efficient.
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Solution Notion for MOILP

Test Families for
initi MOILP
Definition :
p-Grobner bases
A feasible vector x € R” is said to be a nondominated Solving MOILP
solution for MIP4 ¢(b) if there is no other feasible preplems
7 Computational

vector y such that Results
cgy<cx Vj=1,... .k

with at least one strict inequality for some .

If x* is a nondominated solution, the vector
(c1 x*,...,cx x*) is called efficient.

X = {nondominated solutions}.
Ye = {efficients solutions}.
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Standard Methods:

e Dynamic Programming (Li-Haimes, 1990).
e Implicit Enumeration (Fukuda-Matsui, 1992).

o Multicriteria Branch and Bound (Ulungu-Teghem,
1997).
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Standard Methods:

e Dynamic Programming (Li-Haimes, 1990).

Test Families for
MOILP

p-Grobner bases

e Implicit Enumeration (Fukuda-Matsui, 1992). LSS
o Multicriteria Branch and Bound (Ulungu-Teghem, Computational
1 997) Results

Non-Standard Methods:
o Partial Grobner Bases: Test Families.

¢ Barvinok Functions: Augmentation Algorithms,
Digging, Binary Search.



Outline

@ Test Families for MOILP

@ p-Grobner bases

©® Solving MOILP problems

@O Computational Results




Test Family

Test Families for

Definition (Test Family) MOILP
A finite collection G}, ..., G~ of sets in Z" x Z7 is a R
test family for MIP, ¢ if and only if: Sotloms
1. ¢ is totally ordered by the second component Reaurs
with respect to <¢, forj=1,...,r.
2. Forall(g,h)€ G, j=1,....,r,A(h—g) = Ah,
hh—g>0.

3. If x e N" is dominated, there is some g/('; in the
collection and (g, h) € G, such that x — g <¢ x.
4. If x € N is a nondominated solution in a MIP, ¢

then for all (g, h) € gfc andforallj=1,...,n
either x — g is negative or x — g does not compare
with x.



Algorithm

Test Families for
MOILP

e If x* is dominated: p-Grabner bases

@ There is some j and (g, h) € G such that x* — g e
is feasible and x* — g <¢ x*. Discard x* and add SR
X* — g to the list. Results

@ For the remaining chains there may exist some
(g, h) such that x* — g is feasible but
non-comparable with x*. We keep tracks of all of
them.

« If x* is non-dominated:
€@ Keep it as an element in our solution set.
@ Reducing x* by the chains in the test family we
can only obtain either non-comparable feasible
solutions, that we maintain in our structure.



Example

p-Grobner bases

Solving MOILP
2 2 -1 0 10 1 0 0 problems.
A= |: 02 O 1 :| ’ C= |: 1 10 0 0 :| . ggrsr:ﬁ;tatuonal
\\ 1A 9
1 ) 92 —2>
94 ¢

Elements in G<, = {91, G5}




b= (17,11)' — Feasible Solution: (9, 4,9, 3)
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(8,0,1,11)
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la=(Xx"=x":u—veKer(A),u,v>0)=
(XU — XV, xYs — xVs)




la=(Xx"=x":u—veKer(A),u,v>0)=
(XU — XV, xYs — xVs)

— {(U1, V1), ey (Us, Vs)}




la=(xY=x":u—veKer(A),u,v>0)=
(x4 — x"1 L xYs — xYs)

— {(u1,w1),...,(us, vs)}

— {(uj, vi,w) : w € setlt(uj,v;),i=1,...,8}
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la=(xY=x":u—veKer(A),u,v>0)=
(x4 — x"1 L xYs — xYs)

B {(U17 V1)7 ey (u87 VS)}
— {(uj, vi,w) : w € setlt(uj,v;),i=1,...,8}

— {(9,h) : g = +(ui — vj),h — g € setlt(u;, v;),i =
1,...,8}

Test Families for
MOILP

p-Grobner bases

Solving MOILP
problems

Computational
Results



la=(xY=x":u—veKer(A),u,v>0)=
(x4 — x"1 L xYs — xYs)

B {(U17 V1)7 ey (u87 VS)}
— {(uj, vi,w) : w € setlt(uj,v;),i=1,...,8}

— {(9,h) : g = +(ui — vj),h — g € setlt(u;, v;),i =
1,...,8}

xU—xV=x"9_xh gec Ker(A), hbh—g>0,
h— g € setlt(h— g, h).
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Partial Reduction

The reduction of (g, h) € Z" x Z! by an ordered set
G C Ker(A) x Z1, consists of:

Algorithm 1: Partial Reduction Algorithm

input : R ={(g,h}, S={(g; M} G ={a....9}
For each (g,h) € S:
fori=1,...,tdo

repeat
if h — g; and h — § are comparable by < then
| Ro={(g— g max<.{h—&.h—a})}
else
| Ro={(@-9.h—9).,(3—g.h—8)}
end
Foreachr € R, and s € R:
if r <¢c sthen
| R:=R\{s}
end
S: =R
R:= RU Ry;
until {i:h—h >0} =0;

end
output: R, the partial reduction set of (g, h) by G¢
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Extension for a finite collection of ordered sets of pairs
inZ" x 721
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Extension for a finite collection of ordered sets of pairs
in Z" x Z} : Establishing the sequence in the collection
to compute reductions.
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Extension for a finite collection of ordered sets of pairs
in Z" x Z} : Establishing the sequence in the collection

i Test Families f
to compute reductions. Test Familes for

p-Grobner bases

pRem((g, h), (G)),: Reduction set of the pair Soling MOILP
(g, h) by the family {G;}!_, for a fixed sequence (pjr:m:l::uonal
Of indices ag. Results



Extension for a finite collection of ordered sets of pairs
in Z" x Z} : Establishing the sequence in the collection

to compute reductions. () Familes for
p-Grobner bases
pRem((g, h), (G)),: Reduction set of the pair Solving MOILP
(g, h) by the family {G;}!_, for a fixed sequence Zf::z;ml
of indices o. Results

Theorem

LetG be a setinZ" x 7, whose maximal chains are
Gi,...,Gi, and o, o two sequences of the indices
(1,...,t). Then,

pRem((g, h),G), = pPRem((g, h),G),» (g,h) € Z"xZ"



Extension for a finite collection of ordered sets of pairs
in Z" x Z} : Establishing the sequence in the collection

to compute reductions. () Familes for
p-Grobner bases
pRem((g, h), (G)),: Reduction set of the pair Solving MOILP
(g, h) by the family {G;}!_, for a fixed sequence Zf::z;m
of indices o. Results

Theorem

LetG be a setinZ" x 7, whose maximal chains are
Gi,...,Gi, and o, o two sequences of the indices
(1,...,t). Then,

pRem((g, h),G), = pPRem((g, h),G),» (g,h) € Z"xZ"

pRem((g. h),(4i)) = pPRem((g, h), (Gi)), for any o.



Partial Grobner Basis

Definition (Partial Grobner basis)

A family G = {Gy,...,Gn} C Ker(A) x Z] is a partial
Grébner basis (p-Groébner basis) for the family of
problems MIP, ¢, if G4, ..., Gn are the maximal chains
for the partially ordered set | J; G; and for any

(g9,h) € Z" x Z" , with h — g > 0:

g € Ker(A) <= pRem((g, h),G) = {0}.

A p-Grdbner basis is said to be reduced if every
element at each maximal chain cannot be obtained by
reducing any other element of the same chain.
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Theorem

The reduced p-Grébner basis for MIP, ¢ is the unique
minimal test family for MIP, ¢
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S-polynomials
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’ ’ Solving MOILP
S'((g.h), (g, ) = oroblorms
(9-g —2(h—H),y+g-2h ifyv+g-2n=<cy+g —2H Sl s

(¢ —g—2h —h),y+g —2K) ify+g —2n <cy+g—2h
(9-9 —2(h—h),v+g-2h) ify+g —2h xy+g—2h
S2((g,h). (g . h)) =

(g—g —2(h—h),v+g—2hn ify+g—2h=<cy+g —2h
(@ —9g—2(h —h),y+g —2h) ify+g —2h <cy+g—2h
(g —g—2(H —h),v+g —2h) ify+g —2h =~+g—2h

where v € N whose components are ; = max{h;, h,'.}, i=1,...,n.



S-polynomial Criterion

Theorem (Extended Buchberger Criterion)

LetG ={Gy,...,Gi} withG; C Iy foralli=1,...,t, be
the maximal chains for the partially ordered set
{gi: gi € Gi, forsomei=1,... t}. Then the following
Statements are equivalent:

© G is a p-Grébner basis for the family MIP4 ¢.

@ Foreachi,j=1,...,tand(g,h) € G,

(g/a h,) € gj! pRem(Sk((g7 h)7 (gla h/))v g) = {O} s
fork =,1,2.
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Algorithm for computing p-Grébner basis

Test Families for

MOILP

Algorithm 2: Partial Buchberger Algorithm p-Grdbner bases
Solving MOILP

input : A generating set for I = ((g,h) : g € Ker(A),h,h—ge Z*): G problems

repeat o
. . putational
Compute, Gy, ..., G, the maximal chains for G. Results

fori,j € {1,....1}, i+ j, and each pair (g, h) € G;, (¢’, ') € G; do
Compute RK = pRem(Sk((g, h),(g', 1)), 9), k =1,2.
if R“ = {0} then
| Continue with other pair.
else
| Add ¢(F(r)) to G, for each r € R¥.
end

end

until R = {0} for every pairs ;
output: G = {Gy,...,Gqg}
p-Grébner basis for MIP4 ¢.




Computing the nondominated solutions
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Algorithm 3: Nondominated solutions computation for

Solving MOILP
MIP,, c(b) probems
input : MIP, ¢(b) ggg:ﬁétauonal

STEP 1. Compute a generating set for /4.
([Hosten-Sturmfels, 1995], [Di Biase-Urbanke, 1996])

STEP 2. Compute the partial reduced Grébner basis for MIP, ¢,
gC = {g17"'7gf}'

STEP 3. Compute an initial feasible solution, o, for MIP4 ¢(b): A
solution for the diophantine system of equations Ax = b,
x e 7"

STEP 4. Calculate the set of partial remainders:
R := pRem((co, @), Gc)-

output: Nondominated Solutions : R.




Computational Experiments

Multiobjective Knapsack

Problem sog pgrdbner pos total act_pGB
knap4_2 0.063 249.369 1.265 250.697 164.920
knap4_3 0.063 1002.689 2.012 1004.704 772.772
knap4_4 0.063 1148.574 2.374 1151.011 763.686
knap5_2 0.125 1608.892 0.875 609.892 1187.201
knap5_3 0.125 3500.831 2.035 3503.963 2204.123
knap5_4 0.125 3956.534 2114 3958.773 3044.157
knap6_2 0.185 2780.856 2.124 2783.165 2241.091
knap6_3 0.185 3869.156 2.018 3871.359 2790.822
knap6_4 0.185 4598.258 3.006 4601.449 3096.466

Multiobjective Transportation Problems

Problem sog pgrébner pos total act_pGB
tranp3x2_2 0.015 11.813 0.000 11.828 7.547
tranp3x2_3 0.015 7.218 13.108 30.341 6.207
tranp3x2_4 0.015 6.708 15.791 21.931 4.561
tranp3x3_2 0.047 1545.916 1.718 1547.681 928.222
tranp3x3_3 0.047 3194.333 11.235 3205.615 2172.146
tranp3x3_4 0.047 3724.657 7.823 3732.527 2112.287
tranp4x2_2 0.046 675.138 2122 677.306 398.093
tranp4x2_3 0.046 1499.294 6.288 1505.628 119.519
tranpdx2_4 0.046 2285.365 7.025 2292.436 1654.048
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