When is a simplicial toric ideal a complete intersection?

Isabel Bermejo University of La Laguna e-mail: ibermejo@ull.es Ignacio García-Marco University of La Laguna e-mail: iggarcia@ull.es

Abstract

Let k be an arbitrary field and $k[x] = k[x_1, \ldots, x_n]$ and $k[t] = k[t_1, \ldots, t_m]$ two polynomial rings over k. Denote by x^{α} the monomial $x_1^{\alpha_1} \cdots x_n^{\alpha_n}$, where $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^n$. A binomial f in k[x] is a difference of two monomials, i.e., $f = x^{\alpha} - x^{\beta}$ for some $\alpha, \beta \in \mathbb{N}^n$.

Let $\mathcal{A} = \{a_1, \dots, a_n\}$ be a set of nonzero vectors in \mathbb{N}^m . The kernel of the homomorphism of k-algebras $\phi \colon k[x] \to k[t]; \ x_i \longmapsto t^{a_i}$ is called a toric ideal and will be denoted by $I_{\mathcal{A}}$. By [6, Corollary 4.3], it is an \mathcal{A} -homogeneous binomial ideal, i.e., if one sets the \mathcal{A} -degree of a monomial $x^{\alpha} \in k[x]$ as $\alpha_1 a_1 + \dots + \alpha_n a_n \in \mathbb{N}^m$, and says that $f \in k[x]$ is \mathcal{A} -homogeneous if its monomials have the same \mathcal{A} -degree, then $I_{\mathcal{A}}$ is generated by \mathcal{A} -homogeneous binomials. According to [6, Lemma 4.2], the height of $I_{\mathcal{A}}$ is equal to $n - \text{rk}(\mathbb{Z}\mathcal{A})$, where $\text{rk}(\mathbb{Z}\mathcal{A})$ denotes the rank of the subgroup of \mathbb{Z}^m generated by \mathcal{A} .

The ideal $I_{\mathcal{A}}$ is a *complete intersection* (CI) if there exists a system of \mathcal{A} -homogeneous binomials g_1, \ldots, g_s such that $I_{\mathcal{A}} = (g_1, \ldots, g_s)$, where $s = \operatorname{ht}(I_{\mathcal{A}})$. The problem of determining complete intersection toric ideals has a long history; see the introduction of [5].

If n > m and $\mathcal{A} = \{d_1e_1, \ldots, d_me_m, a_{m+1}, \ldots, a_n\}$, where $\{e_1, \ldots, e_m\}$ is the canonical basis of \mathbb{Z}^m , $I_{\mathcal{A}}$ is said to be a simplicial toric ideal. If $d_1 = \cdots = d_m = \sum_{j=1}^m a_{ij}$ for all $i \in \{m+1, \ldots, n\}$, $I_{\mathcal{A}}$ is called a simplicial projective toric ideal and $V(I_{\mathcal{A}}) \subset \mathbb{P}_k^{n-1}$ a simplicial projective toric variety. A theoretical characterization of the property of being a complete intersection in simplicial toric ideals via the semigroup gluing can be found in [4].

The purpose of this work is to provide and implement an algorithm for determining whether a simplicial toric ideal $I_{\mathcal{A}}$ is a complete intersection without computing a minimal system of generators of $I_{\mathcal{A}}$. The detailed proofs of the results here included are in [1].

Now we will present two results that can be applied to general toric ideals. The first one is based on the following idea, we associate to \mathcal{A} another set $\mathcal{A}_{red} \subset \mathbb{N}^m$ with this property:

Theorem 0.1.
$$I_{\mathcal{A}}$$
 is a CI $\iff \mathcal{A}_{red} = \emptyset$ or $I_{\mathcal{A}_{red}}$ is a CI.

Whenever \mathcal{A}_{red} is not empty, the ideal $I_{\mathcal{A}_{red}}$ is simpler that $I_{\mathcal{A}}$ in several senses. Let us present the second result. For certain $i \in \{1, ..., n\}$ one can define

$$m_i := \min \left\{ b \in \mathbb{Z}^+ \mid ba_i \in \sum_{\substack{j \in \{1, \dots, n\} \ j \neq i}} \mathbb{N}a_j \right\}$$

If there exist $i, j: 1 \leq i < j \leq n$ such that $m_i a_i = m_j a_j$, we set $\mathcal{A}' := (\mathcal{A} \setminus \{a_i, a_j\}) \cup \{a_i'\}$ where $a_i' := (a_{i1}', \dots, a_{im}') \in \mathbb{N}^m$ with $a_{ik}' = 0$ if $a_{ik} = 0$ and $a_{ik}' = \gcd\{a_{ik}, a_{jk}\}$ otherwise.

Theorem 0.2. If I_A is a CI, then $I_{A'}$ also is.

Now, me study simplicial toric ideals and get the following:

Theorem 0.3. Let $I_{\mathcal{A}}$ be a simplicial toric ideal. If $I_{\mathcal{A}}$ is a CI, then either $\mathcal{A}_{red} = \emptyset$ or there exist $i, j : 1 \le i < j \le n$ such that $m_i a_i = m_j a_j$.

These results lead to an algorithm that determines whether a simplicial toric ideal is a complete intersection receiving as input the set \mathcal{A} . The algorithm answers True if $I_{\mathcal{A}}$ is a complete intersection or False otherwise. In case the answer is positive, the algorithm gives without any extra effort a minimal set of generators of the simplicial toric ideal.

Meanwhile, for simplicial projective toric ideals, we get the following result which provides a simpler algorithm for this case.

Theorem 0.4. Let I_A be a simplicial projective toric ideal. I_A is a CI $\Leftrightarrow A_{red} = \emptyset$.

We have implemented both algorithms in C++ and in SINGULAR [3]. They will be soon included as a new library cisimplicial.lib [2]. Computational experiments show that our implementation is able to solve large-size instances.

As non-trivial consequences of Theorem 0.4, when k is an algebraically closed field, we completely classify which smooth simplicial projective toric varieties are ideal-theoretic complete intersection and which simplicial projective toric varieties having only one singular point are ideal-theoretic complete intersection.

References

- [1] I. Bermejo and I. García-Marco. Complete intersections in simplicial toric varieties, submitted.
- [2] I. Bermejo, I. García-Marco and J. J. Salazar-González. cisimplicial.lib. A SIN-GULAR 3-1-1 library for determining whether the toric ideal of a simplicial toric variety is a complete intersection, 2010.
- [3] W. Decker, G.-M. Greuel, G. Pfister and H. Schönemann. SINGULAR 3-1-1. A Computer Algebra System for Polynomial Computations, Center for Computer Algebra, University of Kaiserslautern. Available at http://www.singular.uni-kl.de, 2010.
- [4] P. A. García-Sánchez and J. C. Rosales. On complete intersection affine semigroups. Communications in Algebra, **23(14)**: 5395–5412, 1995.
- [5] M. Morales and A. Thoma. Complete intersection lattice ideals. Journal of Algebra **284**: 755–770, 2005.
- [6] B. Sturmfels. *Gröbner Bases and Convex Polytopes*. University Lecture Series 8, American Mathematical Society, Providence, RI, 1996.