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Departamento de Matemáticas y Computación
Universidad de La Rioja

eduardo.saenz-de-cabezon@unirioja.es
London School of Economics

H.Wynn@lse.ac.uk

November 2010 - Toric Geometry Seminar
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System reliability

System: A set of connected components forming a complex
whole. Appear in nature, industry, also as processes.
Reliability: Probability that a system will perform its intended
function during a specified period of time under stated conditions.
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Reliabilty of coherent systems

Coherent Systems

System: a set S of n components, with increasing efficiency levels
{0, 1, . . . }.
Outcome is a nonnegative integer vector of length n describing
the state of S.
Failure outcome is an outcome that leads to failure of S.
A system is coherent if we cannot move from nonfailure into a
failure state by improving any of the components and vice-versa.
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Reliabilty of coherent systems

Coherent Systems: Example 1
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Figure: An example of coherent system: a network

Each connection can either fail (0) or work (1), D = {0, 1}8

A (minimal) failure state: (0, 0, 0, 1, 1, 1, 1, 1)
A (minimal) nonfailure state: (1, 0, 0, 0, 0, 1, 0, 0)
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Reliabilty of coherent systems

Reliability

The reliability R of system S: probability that the system is operating.
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Reliabilty of coherent systems

Reliability

The reliability R of system S: probability that the system is operating.
The unreliability U of S: probability that S is not operating.
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Reliabilty of coherent systems

Reliability

The reliability R of system S: probability that the system is operating.
The unreliability U of S: probability that S is not operating.
Both probabilities can be expressed in terms of combination of simple
events (resp. minties or mincuts).
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Reliabilty of coherent systems

Reliability

The reliability R of system S: probability that the system is operating.
The unreliability U of S: probability that S is not operating.
Both probabilities can be expressed in terms of combination of simple
events (resp. minties or mincuts).
Orthants express events that include a minimal one:
Qα = {β ∈ S|α � β}.
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Reliabilty of coherent systems

Reliability

The reliability R of system S: probability that the system is operating.
The unreliability U of S: probability that S is not operating.
Both probabilities can be expressed in terms of combination of simple
events (resp. minties or mincuts).
Orthants express events that include a minimal one:
Qα = {β ∈ S|α � β}.
Denoting F̄ to the nonfailure set and F̄∗ the set of minties.

R = Prob(F̄) = Prob(
⋃
α∈F̄∗

Qα)

“probability of the union of all events that include at least one mintie”.
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Evaluation of reliability

Reliability Computation.

Variety of methods for Reliability evaluation and bounds.
Parallel and series reductions.

Pivotal decompositions.

Inclusion-exclusion methods.

Sum of disjoint products.

Markov chain imbeddable structures

Delta-Star and Star-Delta transformations

...

Most assume binary systems and components, independence even or
identically distributed components.
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Evaluation of reliability

Inclusion-exclusion.

The classical approach makes use of the inclusion-exclusion identity:

Prob(F̄) =
X
α∈F̄∗

Prob(Qα)−
X

α,α′∈F̄∗

Prob(Qα ∩Q′α) + · · ·+ (−1)|F̄
∗|+1Prob(

\
α∈F̄∗

Qα)

Truncations give upper and lower bounds and are known as
Bonferroni inequalities:

Prob(F̄) ≤
∑

I∈P(F̄∗)
|I|≤r

(−1)|I|+1Prob(
⋂
α∈I

Qα) (r odd)

Prob(F̄) ≥
∑

I∈P(F̄∗)
|I|≤r

(−1)|I|+1Prob(
⋂
α∈I

Qα) (r even)
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Evaluation of reliability

Abstract tubes.

Inclusion-Exclusion identities and bounds are very redundant in many
situations.
A geometric-algebraic method to obtain improved Bonferroni
inequalities is that of abstract tubes [Naiman, Wynn].

A simplicial complex and a collection of subcomplexes with certain
contractibility properties is associated to the system.
To each subcomplex we associate a chain complex.
The ranks of the modules in this chain complex provide improved
Bonferroni inequalities for the reliability of the system.
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Evaluation of reliability

Algebraic approach

Proposition (Giglio and Wynn 04)

Given a system S of n components, its states can be seen as the
exponent vectors of monomials in R = k[x1, . . . , xn].

The points in F̄∗, are the (exponents of the) minimal generators of
a monomial ideal IS
The points in F̄ represent the (exponents of the) monomials
belonging to the monomial ideal IS .
The points in F represent the (exponents of the) monomials
belonging to the complement R/I.
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Evaluation of reliability

The ideal property corresponds to coherency. Orthants
correspond to divisibility.
Computing the reliability of S amounts to count the monomials in
IS .
We have to compute the denominator of HIS (x).
To provide bounds we need to express the multigraded Hilbert
series of I in terms of some resolution of I.

HIS (x) =
∑

(−1)iβi,µxµ∏
i xi

This method generalizes the clasical inclusion-exclusion approach
(corresponding to Taylor resolution) and the abstract tubes
approach (corresponding to Scarf resolution).
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Evaluation of reliability
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IS = 〈x1x6, x1x4x7, x2x4x6, x1x4x5x8, x2x7, x3x4x5x6, x2x5x8, x3x5x7, x3x8〉

Method Total 0 1 2 3 4 5 6 7 8
Taylor (inc-exc) 511 9 36 84 126 126 84 36 9 1

Scarf (abstr. tube) 103 9 27 37 24 6 0 0 0 0
Hilbert Series (min. res.) 87 9 25 31 18 4 0 0 0 0
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Computation of HIS (x)

CoCoA Singular, Macaulay2 functions for Resolutions
Not so fast, difficult computation.
Resolutions are big objects.
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Fast, doesn’t need to compute resolution.
Does not provide the form usable for bounds.
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Computation of HIS (x)

CoCoA Singular, Macaulay2 functions for Resolutions
Not so fast, difficult computation.
Resolutions are big objects.

CoCoA function HilbertSeriesMultideg
Fast, doesn’t need to compute resolution.
Does not provide the form usable for bounds.

Mayer-Vietoris trees
Fast, doesn’t need to compute resolution.
Provides the form usable for bounds.
Can be used to analyse the structure of the ideal and its resolution.
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Example of application

Application to reliability:
Non-structured systems:

General method.
Tight bounds.
Efficient computation.

Structured systems:
K-out-of-N:

Explicit formulas for bounds and exact reliability.
Consecutive K-out-of-N:

Explicit formulas under i.i.d.
Recursion for bounds and reliability in general.

Series-parallel:
Recursive formulas for reliability and bounds.
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Example of application

K-out-of-N systems

A k-out-of-n system is one that fails if at least k out of a total of n
components fail.
A k-out-of-n system can be modeled by the ideal

Ik,n = 〈xµ : xµ is a squarefree monomial of degree k in n variables〉

It a squarefree stable ideal. The minimal free resolution is known
[AHH]. Their Mayer-Vietoris tree is minimal.
Ik,n has a minimal generating set which consists of

(
n
k

)
monomials.
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Example of application

From the minimal free resolution, the Mayer-Vietoris tree or simplicial
considerations we obtain.

βi(Ik,n) =
(

n

k + i

)(
i+ k − 1
k − 1

)
∀0 ≤ i ≤ n− k.

Multigraded Hilbert series of Ik,n:

H(Ik,n;x) =

∑n−k
i=0 (−1)i

(
i+k−1
k−1

)
(
∑

α∈[n,k+i] x
α)∏

i(1− xi)
,

where [n, k + i] denotes the set of vectors with 1 in the indices of the
(k + i)-subsets of {1, . . . , n} and 0 in the other entries.
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Example of application

For example,

I3,5 = 〈xyz, xyu, xyv, xzu, xzv, xuv, yzu, yzv, yuv, zuv〉

H(I3,5; x) =
xyz + xyu+ xyv + xzu+ xzv + xuv + yzu+ yzv + yuv + zuv

(1− x)(1− y)(1− z)(1− u)(1− v)

−3(xyzu+ xyzv + xyuv + xzuv + yzuv)
(1− x)(1− y)(1− z)(1− u)(1− v)

+
6(xyzuv)

(1− x)(1− y)(1− z)(1− u)(1− v)
,

the Betti numbers of I3,5 are then: β0 = 10, β1 = 15 and β2 = 6.
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Example of application

Consecutive K-out-of-N

A k-out-of-n system works (fails) if at least k consecutive components
work (fail).
It is an important system in different applications [KZ05]

Microwave stations of telecom network
Oil pipeline system
Vacuum system in electron accelerator
Photography of nuclear accelerator
Scan statistics in gene expression
Pattern detection in DNA sequences
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Example of application

Evaluation of the reliability of consecutive k-out-of-n systems:
Assuming i.i.d. components:

Combinatorial recursive and closed form formulas for exact
reliability (Chiang and Niu, Bolloinger and Salvia, Derman et al.)

Systems with independent components
Recursive formula (Chiang and Niu, Shantikumar, Papastavridis et
al.)
Imbedded Markov chain approach: recursive tables (Hwang and
Wright)

Bounds
Only under i.i.d or independence assumptions (Chiang and Nu,
Zuo, Papastavridis et al.)
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Example of application

Algebraic approach:
The ideal corresponding to a consecutive k-out-of-n system is of the
form:

I = 〈x1x2 · · ·xk, x2x3 · · ·xk+1, . . . , xn−k+1xn−k+2 · · ·xn〉

It has n− k + 1 generators in n variables. The minimal resolution of
these ideals is provided by Mayer-Vietoris trees, and therefore the
bounds obtained in this way are tightest among those produced with
our approach [SW08].
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Example of application

The structure of Mayer-Vietoris trees of C(k, n) ideals provide
recursive formulas for their (graded,multigraded) Betti numbers.
Example: Total Betti numbers
For n ≤ 2k we have

β0,k,n = n− k + 1
β1,k,n = n− k
βi,k,n = 0, for i ≥ 2

For n ≥ 2k + 1 we have

β0,k,n = n− k + 1
β1,k,n = n− 2k + 1 + β1,k,n−1

βi,k,n = βi−2,k,n−k−1 + βi−1,k,n−k−1 + βi,k,n−1, for i ≥ 2
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Example of application

Using standard methods we obtain a generating function for the Betti
numbers of the C(k, n) ideal:

Gk(x, y) =
∞∑
i=0

∞∑
n=k

βi,k,nx
iyn =

yk(1 + xy)
(1− y)(1− x2yk+1 − xyk+1 − y)

.

Bounds for reliability.
Asymptotic behaviour of the system can be analyzed (e.g.
application in scan statistics for gene expression).
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Example of application

We also obtain the following recurrence relationship for the graded
Betti numbers, βi,j,k,n, where j is the degree of the term corresponding
monomial.

β0,k,n,k = n− k + 1
β1,k,n,k+1 = n− k for k ≥ n

2
β1,k,n,k+1 = 1 + β1,k,n−1,k+1 for k < n

2
β1,k,n,2k = n− 2k + β1,k,n−1,2k for k < n

2
βi,k,n,j = βi−2,k,n−k−1,j−k−1 + βi−1,k,n−k−1,j−k + βi,k,n−1,j , for i ≥ 2
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Example of application

Example: 4 out of n, i.i.d. components with p=0.9

n Exact Lou, Fu (lower) Lou, Fu (upper) MVT L1 MVT U1 MVT L2 MVT U2
50 0.9958 0.9950 0.9958 0.9953 0.9958 0.9958 0.9958

100 0.9913 0.9908 0.9913 0.9913 0.9913 0.9913 0.9913
1000 0.9141 0.9048 0.9142 0.9003 0.9151 0.9140 0.9141
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Example of application

Example: 4 out of 11, independent components with
pi = 0.7 + 0.02(i− 1) 1 ≤ i ≤ 11

Computation of U using Embedded Markov chain
l j=0 j=1 j=2 j=3 j=4
0 1.000000 0.000000 0.000000 0.000000 0.000000
1 0.700000 0.300000 0.000000 0.000000 0.000000
2 0.720000 0.196000 0.084000 0.000000 0.000000
3 0.740000 0.187200 0.050960 0.021840 0.000000
4 0.760000 0.177600 0.044928 0.012230 0.005242
5 0.775912 0.167200 0.039072 0.009884 0.007932
6 0.793654 0.155182 0.033440 0.007814 0.009909
7 0.811875 0.142858 0.027933 0.006019 0.011316
8 0.830495 0.129900 0.022857 0.004469 0.012279
9 0.849440 0.116269 0.018186 0.003200 0.012904

10 0.868644 0.101933 0.013952 0.002182 0.013288
11 0.888040 0.086868 0.010193 0.001395 0.013507
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Example of application

Computation of MVT(C(4,11)) takes 0.00 seconds, the Hilbert series
numerator contains 33 elements of depth up to 4. Substituting the
variables xi for the corresponding pi we obtain the bounds. The fourth
of them is the actual reliability:

r bound on U sr

1 0.016558 8
2 0.013503 21
3 0.013507 30
4 0.013507 33
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Example of application

Weighted k-out-of-n

System with n components, each with its own positive integer weight
such that the system is failed if and only if the total weight of failed
components is at least k.
Let {w1, . . . , wn} be the weights of the components of Wk,n

Consider the set of products of the variables with their weights:

JWk,n
= {
∏
i∈σ

xwii |σ ⊆ {1, . . . , n}}

then the ideal of the system is given by

IWk,n
= 〈xµ ∈ JWk,n

|deg(xµ) ≥ k〉

To compute the reliability of the system, we consider the multigraded
Hilbert series of IWk,n

putting pi, the probability of component i being
in a working state in place of xwii .
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Example of application

Example:
Weighted 5-out-of-3 system with weights 2, 6, 4

IW5,3 = 〈x2z4, y6〉

.
The numerator of the Hilbert series of IWk,n

is x2z4 + y6 − x2y6z4

Reliabilty of the system is R(W5,3) = p1p3 + p2 − p1p2p3.
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Example of application

Two-stage weighted k-out-of-n systems

Such a system consists of a number of subsystems each of which has
a weighted-k-out-of-n structure (which is called the second-level
structure).
The relation among the subsystems is given by a certain structure,
which is called the first-level structure.
Series weighted k-out-of-n systems are used to model project
management, while parallel weighted k-out-of-n systems can be used
to model shortest path problems [Chen & Yang 05].
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Example of application

In the algebraic translation:
The second level structure is given by the ideal corresponding to
each weighted k-out-of-n system.
The first level structure corresponds to operations among the
ideals involved.

Series structures correspond to union of ideals.
Parallel structures correspond to intersection of ideals.
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Example of application

Consider an assembly project with the following activities:

Activity Estimated Duration Possible delays
A=train workers 6 days 1 day
B=purchase raw materials 9 days 3 days
C=produce product 1 8 days 3 days
D=produce product 2 7 days 2 days
E=test product 2 10 days 2 days
F=assemble products 1 and 2 12 days 4 days

A C FSTART FINISH

B D E
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Example of application

Each activity is subject to delays with a probability of 1− p.
xi = 0 means activity i is delayed, xi = 1 means activity i is not
delayed.
The project fails to be completed within deadline if at least one of
the paths finishes in more than 40 days.
Paths ACF and BCF cannot fail, we consider just paths ADEF
and BDEF .
IADEF = 〈d2f4, e2f4〉 and IBDEF = 〈b3, f4, d2e2〉 they are
respectively a 6-out-of-4 system with weights 1, 2, 2, 4 and a
3-out-of-4 system with weights 3, 2, 2, 4.
I = IADEF + IBDEF = 〈b3, f4, d2e2〉 (series composition since we
need both to work).
Using Hilbert series we obtain R(I) = 2p3 − p4
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Example of application

Mincut ideals of two-terminal networks

Definition
Let N be a two-terminal network and IN its mincut ideal. Let VN the
set of nodes of the network and EN the set of its connections. We say
that a path in N is a sequence of nodes n1, · · · , nk such that (ni, ni+1)
is an edge, all ni are distinct and n1 = s, nk = t. A shortest path in N
is a path in N whose length is minimal among all pathes in N . We
denote lsp(N) the length of a shortest path in N .

Proposition

Let N be a two-terminal network and IN its mincut ideal. Then
dim(I) := dim(R/I) = n− lsp(N).
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Example of application

Definition
An edge p joining two nodes s and t is a basic series-parallel network.
N is a parallel-series network if it is a basic series-parallel network, or
if N = N1 +N2 or N = N1 ×N2, where N1, N2 are series-parallel
networks, + denotes series composition and × denotes parallel
composition .
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Example of application

I I I I I I I I
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+ +

+

×

×

×

Figure: A series-parallel network and its corresponding SP -tree
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Example of application

Proposition (SW09)
Let N1 and N2 be two networks the edges of which are labelled
x1, . . . , xn1 and xn1+1, . . . , xn1+n2 . Let IN1 ⊂ k[x1, . . . , xn1 ] and
IN2 ⊂ k[xn1+1, . . . , xn1+n2 ] be their corresponding mincut ideals. Then
the mincut ideals of their series and parallel compositions are given by

IN1+N2 = IN1 + IN2 IN1×N2 = IN1 ∩ IN2

where IN1+N2 and IN1×N2 are ideals in k[x1, . . . , xn1+n2 ]

Theorem
Let N be a series-parallel network and IN its mincut ideal. The
minimal free resolution of IN is obtained as an iterated mapping cone
(Mayer Vietoris tree).
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Example of application

Proposition

Let A and B be two series-parallel networks. We denote by S(A,B)
the network obtained by the series combination of A and B, and by
P (A,B) the parallel combination of A and B. For any network N , we
denote by lsp(N) the length of the shortest path of the network N , by
numgens(N) the number of minimal generators of IN , by pdim(N) the
projective dimension and by reg(N) the Castelnuovo-Mumford
regularity of IN . Then, we have:

1 lsp(S(A,B)) = lsp(A) + lsp(B);
lsp(P (A,B)) = min{lsp(A), lsp(B)}

2 numgens(S(A,B)) = numgens(A) + numgens(B);
numgens(P (A,B)) = numgens(A) ∗ numgens(B)

3 pdim(P (A,B)) = pdim(A) + pdim(B);
pdim(S(A,B)) = pdim(A) + pdim(B) + 1

4 reg(P (A,B)) = reg(A) + reg(B);
reg(S(A,B)) = reg(A) + reg(B)− 1
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Example of application

Proposition
Let N be a series-parallel network. Then IN is Cohen-Macaulay if and
only if the SP -tree of N is such that for every node of parallel type the
corresponding subtree contains no series node.
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Example of application

Proposition
Let N be a series-parallel network. Then IN is Cohen-Macaulay if and
only if the SP -tree of N is such that for every node of parallel type the
corresponding subtree contains no series node.

Proposition

A series-parallel network is Cohen-Macaulay if and only if it is a series
combination of pure parallel networks.

E. Sáenz de Cabezón, H.P. Wynn (UR, LSE) Algebraic analysis of system reliability Nov 2010 37 / 41



Conclusions

Conclusions

The Algebraic approach provides a general treatment of the reliability
of coherent systems

Exact reliability, bounds, recursive relations, asymptotic behaviour
Binary and multivalued systems
Allows avoiding assumptions on the components’ probability
distributions
Structured and nonstructured problems

E. Sáenz de Cabezón, H.P. Wynn (UR, LSE) Algebraic analysis of system reliability Nov 2010 38 / 41



Conclusions

Conclusions

Computer algebra is a neccessary condition for the use of this
approach in reasonable systems

Minimal resolution, unfeasible
Mayer-Vietoris trees provides fast algorithms
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Conclusions

Conclusions

In the Application to reliability analysis we have:
Best performance in non-structured problems, or under few
assumptions
Competitive in structured systems (k-out-of-n, series parallel,...)
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Future work

Future work

Other structured systems (in progress)
Interaction with existing methods (in particular those that
subdivide the systems)
Produce software for algebraic reliabilty evaluation (in progress)
The role of distributions
Multistate case
Applications (structural reliability, scan statistics, etc...)
...
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