TORIC GEOMETRY SEMINAR 2010
Combinatorial Commutative Algebra, Optimization and Statistics

TORIC MODELS IN STATISTICS
EXPONENTIAL FAMILIES, MARKOV CHAINS, REVERSIBLE
MARKOV CHAINS, DAG MODELS, BORDERS, DIFFERENTIAL
ALGEBRA

Collegio Carlo Albert

Giovanni Pistone @—m—ouw

giovanni.pistone@gmail.com

November 13, 2010

G. Pistone (CCA) Toric Statistics November 13, 2010 1/35



Abstract

Monomial statistical models of on finite integer sample space have many
applications. The case more commonly discussed is exponential families,
but many other examples are known. We discuss algebraic statistical
models with a monomial parameterization and linear constrains. We give
simple examples of

@ Markov chains,

@ reversible Markov chains,

o DAG models,

together with examples of
@ the border of such models and its relation with manipulation,
o differential equations satisfied by the normalizing constant.

The talk is based on joint work in progress with L. Malago,
E. Riccomagno, M.-P Rogantin, H. Wynn.



A-models: a definition?

@ Let be given a nonnegative integer matrix A € Z7™". The elements are

denoted by A;(j), i=0...m,j=1...n. We assume the row Ay to be the

constant 1. Each row of A is the logarithm of a monomial term denoted
+AG) — totlAl(l) L t;\;n(/).

@ On a finite sample space X we consider unnormalized probability densities
qgix;t) =t xe X, te R';“l.

For each reference measure p1 on X we define the probability density

tAK)
p(x;t) = 5 x e X,

-
xeX tA(X) /‘L(X)
for all t € RT*! such that g, is not identically zero.

@ The parameter ty cancels out, i.e the density is parameterized by t; ...ty
only. The unnormalized density is a projective object.



C-constrained A-model: identification

@ In some applications the statistical model is further constrained by a matrix
C € Zkn.
{ q(x;t) = A0,
ZXGX CI'(X)q(X; t) = 07
for xeX,teRITi=1.. .k

@ Assume s,t € RT and ps = p;. Denote by Z the normalizing constant.
Then p; = ps if, and only if,

Z(s)t"™ = Z()s"™, xe X

hence

m

Z(log t; — log s;))Ai(x) = log Z(t) — log Z(s), x € X.

The confounding condition is
§TA=1, & = (logt; — logs;)/(log Z(t) — log Z(s)),

so that § € ey + ker AT,



Toric ideals; closure of the A-model

@ The ker of the ring homomorphism
klg(x): x € X] 3 q(x) — t2®) € K[to, ..., tm]
is the toric ideal of A, I(A). It has a finite basis made of binomials of the
form ) -
TOUSEN | (O
x: u(x)>0 x: u(x)<0
with v € Z%, Au=0.

@ As ) . u(x) =0, all the binomials are homogeneous polynomials so that
all densities p; in the A-model satisfy the same binomial equation.

Theorem
@ The nonnegative part of the A-variety is the (weak) closure of the A-model.

© Let H be the Hilbert basis of Span (Ao, A1,...) N ZS . Let H be the matrix
whose rows are the elements of H of minimal support.




Example: 3 binary identical RVs, no-3-way-interaction

o X ={+,—)}° Matrix Ais

+++ =+ =+ =+ ++— -t = ———

I 1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0 1
2 0 0 1 1 0 0 1 1
3 o 0 O O 1 1 1 1
12 0 1 1 0 ©0 1 1 0
13 0 1 0 1 1 0 1 0
23 0 O 1 1 1 1 0 O

@ Constrain matrix C is

+++ =+ =+ ——+ - -t = ———
1 -1 0 0 1 -1 0
1 0 1 -1 0 -1 0



@ The toric ideal I(A) is generated by

a(+++)a(=—+)a(—=+-)a(+——-)—a(=++)a(+—-+)a(++—-)a(——-).

@ Matrix H is quadratic
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Toric and Weyl

o Consider the design D C Z9 with reference measure p. Let /(D) be the
ideal of points. Consider the statistical model

d
q(x;t):Htf", xeD, t>0, j=1,...,d,
i=1

with normalizing constant
2(5)= Y £u(x)
x€D
It is the A-model with A;(x) =x;, i=1,...,m.
@ In the Weyl algebra C(t; ...ty,01 ...04) define the operators
A(i,x)=t0; —x;=0iti —(1+x;), i=1,...,d, x€D,

where the second equality follows from the commutation relation
Oiti = 1+ t;0;. For all x € D we have

A(i,x) e t* =0 e (t;it*) — (1 + x;))t* =0,

so that t;0; e t* = x;t* and, by iteration, (£;0;)* e t* = x*t*, o € N.



@ The operator (t;0;)* applied to the polynomial Z(t) € C[ty,. .., tm] gives

(50)* @ Z(t) = > (t:0)™ e =Y xt* (u(x) =1).

xe€D x€D
@ Note the commutativity
(t:0))(40;) = (£;0;)(t:9;),
hence
d d
[To) e z(t) = > [0 et =3 (wa> a
i=1 x€D i=1 x€D

@ By dividing by the normalizing constant we obtain he following expression
for the moments:

z(t) (o) e 2(2) ZH (t:0,)% o t* = E, [X“].

x€D i=1



(C[X] — (C<t1...td,61...ad>

we have
X; — t,'a,'

From the ring homomorphism A: {

Theorem

Q Let x“, a € M, be a monomial basis for D. Then Z(t) satisfies the following
system of #M = #D linear non-homogeneous differential equations:

A(x*) e Z(t) = qutx, ae M.

xeD

@ Let f,(x) be the (reduced) indicator polynomial of a € D. Then Z(t)
satisfies the following system of #D linear non-homogeneous differential
equations:

A(fa(x)) e Z(t)=t?, a€D

© Let g(p.: a € D) be a polynomial in the toric ideal of the monomial
homomorphism p, — t. Then




Directed Acyclic Graphs DAGs

@ A famous model is

Carcinogenic genotype U —— Y Lung cancer
Smoking X ——— Z tar deposit on lungs

where U is unobservable, X, Y, Z are observable.

@ The DAG, together with the ordering
U<X=<Z=<Y
encodes the factorization of probability
p(u;x,z,y) = pi(u)pa(x|u)ps(z|x)pa(ylu, 2),

@ which, in turn, is equivalent to the following two statements of conditional
independence
vz X XAy|u,z

@ It is a constrained A-model.



Intervention

@ Assume we force the population to avoid smoking. The intervention hides
the influence of U on Z, producing the new DAG U — Y <— X. The new
factorization is

p1(u)p3(z]0)pa(y|u, z) on {X =0}

plu 2,y X =0) = {0 on {X =1}

@ The conditional independence statements are equivalent to

1% U,X,Z,—F 1% UI7X,Z/,—|— —p U,X,Z/,-i- 1% U/,X,Z,—F :0

i e { P30 PP 5021 ) = 2 0 5, 2,4)
uu' €, x€0,2,2 €Q3 u#u and z #£ 7

P(U,X727}/)P(U,X/»Z7yl)—P(U7X72ay/)P(U7X/,Z>y/):0

X1Y|U,Z
uteaX7X/EQZaZ€Q3ay7yI€Q4 X#X/andy#y/

@ Does the intervention rule derive from the equations?



Binary case

@ Before intervention:

UlLZ|X {

T T

p(0,0,0,0)p(0,1,0,1)
p(0,0,1,0)p(0,1,1,1)
p(1,0,0,0)p(1,1,0,1)
(1, )p(1,1,1,1)

XAY|U, Z
p(1,0,1,0

@ After intervention:

0,0,0,0)p(1,0,1,0) —
vz|y p( )p( )
p(0,0,0,1)p(1,0,1,1) —

u,l,z,y)=0
x=1) p( y)
foru,z,y =0,1

(0,0,0,+)p(1,0,1,+) —
(07170 +) (171717+)7

( ) =
(0,1,1,0) =
p(1,1,0,0) =
( ) =

p(0,0,1,0)p(1,0,0,0)
p(0,0,1,1)p(1,0,0,1)

p(0,0,1,+)p(1,0,0,+)
p(0,1,1,4+)p(1,1,0, +) =0
—p(0,0,0,1)p(0,1,0,0
—p(0,0,1,1)p
- p(1,0,0,1)

~ p(1,0,1,1)p(1,1,1,0

=0

0

=0
=0



Markov Chains MCs

@ In a Markov chain with state space V/, initial probability my and stationary
transitions P,_,,, u,v € V, the joint distribution up to time T on the
sample space Q7 is

P) = T mo(w)1=0 T[ A1), ()
veVv acA
where (V| A) is the directed graph defined by u — v € A if, and only if,
P,., > 0.
@ A MC is an instance of the A model with m = #V + #A, n = #Q+ and
rows

Ao(w) =1, A (w) = (Xo(w) = 1), As(w) = Na(w)
i.e the unnormalized density is
awit) = to [ 9= T[ e (A)
veV acA

@ The (MC) model is derived from the (A) model by adding the constrains

Zt\,: Z qQusy, UEV.

vev v: u—veA



A-model of a MC

@ The unconstrained A-model of the MC is a Markov proces with
non-stationary transition probabilities.

@ The unconstrained model is described probabilistically as follows. Define
a(v) = >, weatvsw: hence P, = t, . /a(v) is a transition probability.
Also v(v) = a(v)/ >, a(v) is a probability. Consider the change of
parameters

b7T(V) = tV7aV(V)Pv~>W =tvow,

to get

tOH (br(v )(XO H (aa(v)Pvﬁw)NV”W(‘“)

veVv voweA
= toba" H 7(v) Kol H v(v)M H Pl )
vev veV v—oweA

@ It is a change in reference measure.



Example: binary state space V = {+1, -1}

@ For e, e = £1 we have

T

1
Nese, = 3 (L e Xemr)(1+ e2Xy)
t=1
T e e e+ 16
1 2 1 2 1€2
=+ X+ 22X X+ 2257 X, 1.X,
4+4o+4r+4;t+4;t1t

@ The orthogonal space to (Xp = ¢;) and to all the transition’s counts is
orthogonally generated by

@ all monomial terms X<, « € {0,1}, >« > 3, i.e. the interactions of
order at least 3;

Q@ all terms X, X;, s+ 1 < t, i.e. all binary non consecutive interactions;

© all differences X; — X;_1, t =1,..., T, i.e the standard basis of
contrasts;

@ the final value Xr.



Detailed balance

@ Consider a simple graph (V, A).

@ A transition matrix P,_.,, v,w € V, satisfies the detailed balance
conditions if k(v) >0, v € V, and

K(V)Pysw = kK(W)Py—y, v —owe A

@ It follows that 7(v) o x(v) is an invariant probability and the Markov chain
Xn, n=20,1,..., has reversible two-step joint distribution

PXo=v,Xp1=w)=P(Xo=w,Xpy1=v), v,weV,n>0.



Example: 6 vertexes, 8 edges

1 2 3
6 5 4
(1,2} {2,3p {16} {2,5} {34} {56} {45} {36}

17 1 0 1 0 0 0 0 0
2 1 1 0 1 0 0 0 0
F_3| 0 1 0 0 1 0 0 1
T4 0 0 0 0 1 0 1 0
50 0 0 0 1 0 1 1 0
6| 0 0 1 0 0 1 0 1



CoCoA elimination

Use S::=Q[t,k[1..6],p[1..6,1..6]];
Set Indentation;
NI:=6; M:=[];
Define Lista(L,NI);

For I:=1 To NI Do

For J:=1 To I-1 Do
Append (L,k[I]1p[I,J]1-k[J]1p[J,I]); EndFor;

EndFor; Return L; EndDefine;
N:=Lista(M,NI);
LL:=t*Product ([k[I]|I In 1..NI])-1; Append(N,LL);
P0:=[p[1,3],p[1,4],p[1,5],p[2,4],p[2,6], p[3,1]1,p[3,5],
pl4,1],p[4,2]1,pl[4,6],p[5,11,p[5,3]1,p[6,2],p[6,41];
N:=Concat (N,PO) ;
E:=FElim(k,Ideal(N)); GB:=ReducedGBasis(E); GB;



CoCoA output

GB;

[

pl1,3], pl1,4], pl1,8],
pl4,11, pl4,2]1, pl4,6],

pl2,3]1p[3,4]1p[4,5]1p[5,2]
pl1,2]p[2,3]1p[3,6]1p[6,1]
pl1,2]1p[2,5]p[5,6]1p[6,1]
pl2,51p[3,2]p[5,6]1p(6,3]
pl3,41p[4,5]p[5,6]1p(6,3]

pl2,4], pl2,6], pl3,1],
pl5,11, pl5,31, pl6,2],

pl[2,51p[3,2]1p[4,3]1p(5,4],
pl1,6]pl[2,1]1p[3,2]1p(6,3],
pl1,6]pl[2,1]1p[5,2]p(6,5],
pl(2,31p[3,6]p[5,2]p(6,5],
p(3,61pl[4,3]1p[5,4]1p(6,5],

pl1,21p[2,5]1p[3,6]1p[4,3]1p[5,4]1pl[6,1] -
plt,61pl[2,11p[3,4]1p[4,5]p[5,2]p(6,3],

pl1,21p[2,3]1p[3,4]1p[4,5]p[5,6]pl6,1] -
pl1,6]pl[2,11p[3,2]p[4,3]1p[5,4]1p[6,5]]

pl[3,5],
pl6,4]1,



Reversibility on trajectories

Let w = vy - -+ v, be a trajectory (path) in the connected graph G = (V, &) and
let rw = v, --- vy be the reversed trajectory.

Proposition

If the detailed balance holds, the the reversibility condition
P(w) =P (rw)

holds for each trajectory w.

Proof.
Write the detailed balance along the trajectory,

’R—(VO)PVU—>V1 = 7T(V1)PV1—>V07

7T(V1)PV1—>V2 = 7T(V2)PV2—>V17

7T(Vn—1)Pv,,,1—>v,, = 7T(Vn)Pv,,—w,,flv

and clear w(vq) - - - m(v,—1) in both sides of the product.




Kolmogorov's condition

We denote by w a closed trajectory, that is a tra- ~—e
jectory on the graph such that the last state co- 1 ; I
incides with the first one, w = vyv1 ... Vv,vy, and ! .
by rw the reversed trajectory rw = vyv, ... 1\ 4

Theorem (Kolmogorov)

Let the Markov chain (X,),cn have a transition supported by the connected
graph G.

@ If the process is reversible, for all closed trajectory

‘ Pv0~>v1 e Pv,,—)vo = Pv0~>v,, T Pv1—>vo

@ [If the equality is true for all closed trajectory, then the process is reversible.

v

@ The Kolmogorov's condition does not involve the 7.

@ Detailed balance, reversibility, Kolmogorov's condition are algebraic in
nature and define binomial ideals.



Transition graph

@ From G = (V, &) an (undirected simple) graph, split each edge into two
opposite arcs to get a connected directed graph (without loops)
O = (V,.A). The arc going from vertex v to vertex w is (v — w). The
reversed arc is r(v — w) = (w — v).

1 2 1

4 3 4 3

@ A path or trajectory is a sequence of vertices w = vgvy - - - v, with
(vker = vk) € A, k=1,...,n. The reversed path is rw = vpvp_1 - vp.
Equivalently, a path is a sequence of inter-connected arcs w = a; ... a,
ak = (k1 — wk), and rw = r(a,) ... r(a1).



Circuits, cycles

@ A closed path w = vgvy - - - v,_1Vg is any path going from an initial vy back
to vp; rw = vgVu_1 - - v1Vvg is the reversed closed path. If we do not
distinguish any initial vertex, the equivalence class of closed paths is called a
circuit.

@ A closed path is elementary if it has no proper closed sub-path, i.e. if does
not meet twice the same vertex except the initial one vy. The circuit of an
elementary closed path is a cycle.

1 2 1 2 1 2

P ] >

A
\/
° <

4 3 4 3 4 3
1 2 1 2 1 2
- ] e
A
° —Pp-oO
4 3 4 3 4 3



Kolmogorov's ideal

@ With indeterminates P = [P,_,,], (v — w) € A, form the ring
k[Py—w : (v = w) € A]. For a trajectory w, define the monomial term

w=ay-a,— PY= ﬁPak = H pla(«),
=1 acA

with N;(w) the number of traversals of the arc a by the trajectory.

2-33-44-11-2 o 2
2-3 3-4 4-2 " o
2-33-4 4-11-2 @ Py Ps PPy

2-3 3-4 4-11-2  ¢<ps

Definition (K-ideal)

The Kolmogorov's ideal or K-ideal of the graph G is the ideal generated by the
binomials P¥ — P, where w is any circuit.




Bases of the K-ideal

Finite basis of the K-ideal
The K-ideal is generated by the set of binomials P“ — P™, where w is cycle.

Universal G-basis
The binomials P¥ — P™, where w is any cycle, form a reduced universal Grobner
basis of the K-ideal. )

Six cycles: w1 =1—22—44—1(green), w, =2—-33 =442,
w3:1—>22—>33—>24—>1(red),w4:rwl,W5:rw2,w6:rw3.

L V-

t/gcd{t, t} e t,/gcd{t, t} rt,

| ()=
rocadt, t} rt, t,




Cycle space of O

@ For each cycle w define cycle vector

+1 if ais an arc of w,
zy(w) = ¢ —1 if r(a) is an arc of w, ac A
0  otherwise.

@ The binomial P¥ — P is written as P? (@) — pz~ («)

@ The definition of z can be is extended to any circuit @ by
z,(@) = N,(w) — Ny(rw).

@ There exists a sequence of cycles such that z(&) = z(w1) + - - - + z(w)).

@ We can find nonnegative integers A(w) such that z(@) = > o Mw)z(w),
i.e. it belongs to the integer lattice generated by the cycle vectors.

@ Z(0) is the cycle space, i.e. the vector space generated in k** by the cycle
vectors.



Cocycle space of O

@ For each subset W of V, define cocycle vector

+1 if a exits from W, W
u(W) =< —1 if a enters into W, ae A
0 otherwise.
° °
4 3

@ The generated subspace of k* is the cocycle space U(O)

@ The cycle space and the cocycle space orthogonally split the vector space
{y € kA Ya = —Yr(a),a € A}

@ Note that for each cycle vector z(w), cocycle vector u(W),
Zy(w)ua(W) = z(ay(w)upa) (W), a € A, hence

z(w)~u(W):2Zua(W):2 Z 1- Z 1| =0.

acw acw,u,(W)=+1 aCw,u,(W)=-1



Toric ideals

@ Let U be the matrix whose rows are the cocycle vectors u(W), W C V. We
call the matrix U = [ua(W)]wcv aca the cocycle matrix.

@ Consider the ring k[P,: a € A] and the Laurent ring k(tw: W C V),
together with their homomorphism h defined by

h: Po— [ ™) =t
wcv

@ The kernel I(U) of h is the toric ideal of U. It is a prime ideal and the
binomials P= — P= | z € ZA, Uz = 0 are a generating set of /(U) as a
k-vector space.

@ As for each cycle w we have Uz(w) = 0, the cycle vector z(w) belongs to
kerz U = {z € Z* : Uz = 0}. Moreover, P* (*) = p= pz (©) = pre,
therefore the K-ideal is contained in the toric ideal /(U).



The K-ideal is toric

Theorem

The K-ideal is the toric ideal of the cocycle matrix.

Definition (Graver basis)

z(w1) is conformal to z(ws), z(w1) C z(wy), if the component-wise product is
non-negative and |z(w1)| < |z(w2)| component-wise, i.e. z,(w1)zs(w2) > 0 and
|za(w1)| < |za(w2)| for all @ € A. A Graver basis of Z(O) is the set of the
minimal elements with respect to the conformity partial order C.

Theorem

@ For each cycle vector z € Z(0), z =} .o Mw)z(w), there exist cycles
w1, ...,w, € C and positive integers a(w), . .., a(w,), such that
zt >z wi), z7 >z (w;), i=1,...,nand z =Y 7_; a(w;)z(wj).

Q@ The set {z(w): w € C} is a Graver basis of Z(O). The binomials of the
cycles form a Graver basis of the K-ideal.




Example of proof

1-+422—-+412—-333—-23—>44—-534—-11—>42—44—-2

z(wA) = ( 1 -1 0 0 0 0 1 -1 1 -1 )
z(wB) :( 0 0 1 -1 1 -1 0 0 -1 1 )
z(wc) = ( 1 -1 1 -1 1 -1 1 -1 0 0 )
1 2 1 2 1 2 1 3)
P o o—P9 ) P
A
+2 +2 —ol Y |
Y Y
° ~— e <
4 3 4 3 4 3 4 @ 3
z(w) =z(wa) + 2z(wg) + 2z(wc)= (3, — —4,4,-4,0,0,-1,1)
z+(w): z+(w3)+3z+(wc) (3, 0 4 0.,4,0,0,0,0 71)
1 (3) 2 l 2 1 2
A
“
@) @ = +3
Y Y
¢ o ~—e




Positive K-ideal

@ The strictly positive reversible transition probabilities on O are given by:

Pv—>W = S(V, W) H t;VA)W(S)
S

=s(v,w) H ts H ts,

S:veS,w¢s S: weS,v¢Ss
where s(v, w) = s(w, v) >0, ts > 0.
@ The first set of parameters, s(v, w), is a function of the edge.

@ The second set of parameters, ts, represent the deviation from symmetry.
The second set of parameters is not identifiable because the rows of the U
matrix are not linearly independent.

@ The parametrization can be used to derive an explicit form of the invariant
probability.



Parametric detailed balance

Theorem

Consider the strictly non-zero points on the K-variety.

© The symmetric parameters s(e), e € &, are uniquely determined. The
parameters ts, S C V are confounded by ker U = {U*t = 0}.

@ An identifiable parametrization is obtained by taking a subset of parameters
corresponding to linearly independent rows, denoted by ts, S C S:

Pysw = s(v,w) H ts H t_.;_1

SCS: veS,w¢s SCS: weS,v¢s

© The detailed balance equations, k(v)P,_, = &(w)P,,_,, are verified if, and

only ff,
K(v) H tg>
S: ves




Detailed balance ideal

Definition
The detailed balance ideal is the ideal
Ideal (H k(v) — L k(V)Py—w — k(W)P, L, (v — w) € A) )
veVv

in k[e(v):v eV, P, (v—w) e A

© The matrix [P, w],_,,c4 is a point of the variety of the K-ideal if and only

if there exists k = (k(v): v € V) such that (x, P) belongs to the variety of
the detailed balance ideal.

@ The detailed balance ideal is a toric ideal.

© The K-ideal is the k-elimination ideal of the detailed balance ideal.




Parameterization of reversible transitions

@ There exist a (non algebraic) parametrization of the non-zero K-variety of

the form
Pv—)w = S(Va W)[i(w)l/%i(v)_l/2

@ Such a P is a reversible transition probability strictly positive on the graph G
with invariant probability proportional to « if, and only if,

k(v)/2 > Z s(u, w)r(w) Y2,

w#v

@ In the Hastings-Metropolis algorithm, we are given an unnormalized positive
probability x and a transition Q,_,, > 0 if (v — w) € A. We are required
to produce a new transition P,_,,, = Q,_wa(v, w) such that P is reversible
with invariant probability x and 0 < a(v, w) < 1. We have

Quowa(v,w) = s(v, W)K(W)l/zli(v)_l/z
and moreover we want
s(v, w)r(w)l/?
Quoswh(v)1/2

a(v,w) =



