Binomial arithmetical rank of toric ideals associated to graphs

Anargyros Katsabekis

12 November 2010

Anargyros Katsabekis

Toric Geometry Seminar 2010

Binomial ideals

- Consider the polynomial ring K[x₁,..., x_m] over an algebraically closed field K.
- $\mathbf{x}^{\mathbf{u}} := x_1^{u_1} \cdots x_m^{u_m}$ for $\mathbf{u} = (u_1, \dots, u_m) \in \mathbb{N}^m$.
- **Binomial** $B = \mathbf{x}^{\mathbf{u}} \mathbf{x}^{\mathbf{v}}$ is a difference of two monomials.
- Binomial ideal is an ideal generated by binomials.

- G finite, connected and undirected graph having no loops and no multiple edges with vertices {v₁,..., v_n} and edges {e₁,..., e_m}.
- To $e = \{v_i, v_j\}$ we associate a monomial $\mathbf{t}^e = t_i t_j \in K[t_1, \dots, t_n].$
- The toric ideal I_G is the kernel of the *K*-algebra homomorphism $\phi : K[x_1, \dots, x_m] \longrightarrow K[t_1, \dots, t_n]$ given by

$$\phi(x_i) = \mathbf{t}^{\mathbf{e}_i}, \text{ for every } i = 1, \ldots, m.$$

Toric ideals are binomial ideals

• To
$$e = \{v_i, v_j\}$$
 we associate a vector
 $\mathbf{a}_e = (0, \dots, 0, 1, 0, \dots, 0, 1, 0, \dots, 0) \in \mathbb{Z}^n$.

• The toric ideal I_G is generated by all the binomials

$$x_1^{u_1}\cdots x_m^{u_m}-x_1^{v_1}\cdots x_m^{v_m}$$

such that

$$u_1\mathbf{a}_1+\cdots+u_m\mathbf{a}_m=v_1\mathbf{a}_1+\cdots+v_m\mathbf{a}_m.$$

Example

• *G* graph with 8 vertices and edges $e_1 = \{1, 2\}$, $e_2 = \{2, 3\}$, $e_3 = \{3, 4\}$, $e_4 = \{4, 5\}$, $e_5 = \{5, 6\}$, $e_6 = \{4, 6\}$, $e_7 = \{4, 7\}$, $e_8 = \{7, 8\}$, $e_9 = \{3, 8\}$, $e_{10} = \{1, 3\}$.

• I_G is minimally generated by

$$x_3x_8 - x_7x_9, x_1x_3^2x_5 - x_2x_4x_6x_{10}.$$

• $\Gamma = (e_{i_1}, \ldots, e_{i_{2q}})$ even closed walk of G.

$$f_{\Gamma} = \prod_{k=1}^{q} x_{i_{2k-1}} - \prod_{k=1}^{q} x_{i_{2k}} \in I_{G}.$$

• I_G is generated by all the binomials f_{Γ} .

Arithmetical rank

- The arithmetical rank $\operatorname{ara}(I_G)$ of I_G is the smallest integer s for which there exists polynomials F_1, \ldots, F_s in I_G such that $\sqrt{I_G} = \sqrt{(F_1, \ldots, F_s)}$.
- G graph with 5 vertices and edges $e_1 = \{1, 2\}, e_2 = \{2, 3\}, e_3 = \{3, 4\}, e_4 = \{4, 5\}, e_5 = \{1, 5\}, e_6 = \{1, 3\}, e_7 = \{2, 5\}, e_8 = \{3, 5\}.$
- I_G is minimally generated by

$$x_1x_8 - x_6x_7, x_2x_5 - x_6x_7, x_3x_5 - x_4x_6, x_2x_4 - x_3x_7.$$

1 The binomial arithmetical rank $bar(I_G)$ of I_G is the smallest integer *s* for which there exists binomials B_1, \ldots, B_s in I_G such that

$$\sqrt{I_{\mathsf{G}}} = \sqrt{(B_1,\ldots,B_s)}.$$

What is the exact value of $bar(I_G)$?

- If I_G is complete intersection, then $bar(I_G) = ht(I_G)$.
- For the ideal $J = (x_1x_6 x_3x_4, x_1x_5 x_2x_4, x_3x_5 x_2x_6)$ it is known that ara(J) = 3, so bar(J) = 3.
- $J = I_G$ for G the bipartite graph with 5 vertices and edges $e_1 = \{1, 4\}, e_2 = \{2, 4\}, e_3 = \{3, 4\}, e_4 = \{1, 5\}, e_5 = \{2, 5\}, e_6 = \{3, 5\}.$
- A bipartite graph G is one whose vertex set can be partitioned into two subsets X and Y, so that each edge has one vertex in X and one vertex in Y.

Aims of the talk

Theorem

If G is bipartite, then $bar(I_G) = \mu(I_G)$.

Theorem

If I_G is generated by quadratic binomials, then $bar(I_G) = \mu(I_G)$.

- The support of a monomial $\mathbf{x}^{\mathbf{u}}$ is supp $(\mathbf{x}^{\mathbf{u}}) = \{i | x_i \text{ divides } \mathbf{x}^{\mathbf{u}}\}.$
- The support of a binomial B = x^u − x^v is supp(B) = supp(x^u) ∪ supp(x^v).
- An irreducible binomial $B = \mathbf{x}^{\mathbf{u}} \mathbf{x}^{\mathbf{v}} \in I_G$ is called a circuit of I_G if there is no binomial $B' \in I_G$ such that $supp(B') \subsetneq supp(B)$.

Example

- *G* graph with 8 vertices and edges $e_1 = \{1, 2\}$, $e_2 = \{2, 3\}$, $e_3 = \{3, 4\}$, $e_4 = \{4, 5\}$, $e_5 = \{5, 6\}$, $e_6 = \{4, 6\}$, $e_7 = \{4, 7\}$, $e_8 = \{7, 8\}$, $e_9 = \{3, 8\}$, $e_{10} = \{1, 3\}$.
- The circuits are

$$x_3 x_8 - x_7 x_9, x_1 x_3^2 x_5 - x_2 x_4 x_6 x_{10},$$
$$x_1 x_9^2 x_7^2 x_5 - x_2 x_8^2 x_4 x_6 x_{10}.$$

The graph Δ_G

- $C = \{E | \operatorname{supp}(\mathbf{x}^{\mathbf{u}}) = E \text{ or } \operatorname{supp}(\mathbf{x}^{\mathbf{v}}) = E \text{ where } \mathbf{x}^{\mathbf{u}} \mathbf{x}^{\mathbf{v}} \text{ is circuit} \}.$
- C_{\min} is the set of minimal elements of C.
- The graph Δ_G has vertices the elements of \mathcal{C}_{\min} .
- $\{E, E'\}$ is an edge of Δ_G if and only if there exists a circuit $\mathbf{x}^{\mathbf{u}} \mathbf{x}^{\mathbf{v}} \in I_G$ such that $\operatorname{supp}(\mathbf{x}^{\mathbf{u}}) = E$ and $\operatorname{supp}(\mathbf{x}^{\mathbf{v}}) = E'$.

Example

- G graph with 5 vertices and edges $e_1 = \{1, 2\}$, $e_2 = \{1, 3\}$, $e_3 = \{1, 4\}$, $e_4 = \{2, 3\}$, $e_5 = \{2, 5\}$, $e_6 = \{3, 4\}$, $e_7 = \{3, 5\}$, $e_8 = \{4, 5\}$.
- The circuits are

$$x_1x_7 - x_2x_5, x_1x_6 - x_3x_4, x_1x_8 - x_3x_5, x_4x_8 - x_5x_6,$$

 $x_3x_7 - x_2x_8, x_1x_6x_7 - x_2x_4x_8, x_2x_5x_6 - x_3x_4x_7.$

•
$$C_{\min} = \{E_1 = \{1,7\}, E_2 = \{2,5\}, E_3 = \{1,6\}, E_4 = \{3,4\}, E_5 = \{1,8\}, E_6 = \{3,5\}, E_7 = \{4,8\}, E_8 = \{5,6\}, E_9 = \{3,7\}, E_{10} = \{2,8\}\}.$$

• The graph Δ_G has 5 connected components, namely

 $\{E_1,E_2\},\ \{E_3,E_4\},\ \{E_5,E_6\},\ \{E_7,E_8\},\ \{E_9,E_{10}\}.$

Definitions

- A subset *M* of the edges of a graph *G* is called a matching in *G* if there are no two edges in *M* which are incident with a common vertex.
- *M* is a maximum matching if it has the maximum possible cardinality among all matchings.
- The cardinality $\tau(G)$ of a maximum matching in G is commonly known as its matching number.

Lower bound for bar

Definition

For the graph Δ_G we define $\delta(\Delta_G) = \# \operatorname{Vertices}(\Delta_G) - \tau(\Delta_G)$.

Theorem

For a toric ideal I_G we have that

 $\operatorname{bar}(I_G) \geq \delta(\Delta_G).$

Anargyros Katsabekis

Indispensable monomials and binomials

A binomial B ∈ I_G is called indispensable if every system of binomial generators of I_G contains B or −B, while a monomial M is called indispensable if every system of binomial generators of I_G contains a binomial B such that the M is a monomial of B.

Theorem

Let G be a bipartite graph, then $bar(I_G) = \mu(I_G)$.

Sketch of the proof.

- $C_{\min} = { supp(M_1), ..., supp(M_r) }$, where $M_1, ..., M_r$ are the indispensable monomials.
- $\{E, E'\}$ is an edge of Δ_G if and only if there is an indispensable binomial $M_i M_j \in I_G$ with $E = \operatorname{supp}(M_i)$ and $E' = \operatorname{supp}(M_j)$.
- Every connected component of Δ_G is an edge.

Complete graph on 4 vertices

- \mathcal{K}_4 complete graph on 4 vertices with edges $e_1 = \{1, 2\}$, $e_2 = \{2, 3\}$, $e_3 = \{3, 4\}$, $e_4 = \{1, 4\}$, $e_5 = \{1, 3\}$, $e_6 = \{2, 4\}$.
- $I_{\mathcal{K}_4}$ is minimally generated by

$$B_1 = x_1 x_3 - x_2 x_4, B_2 = x_1 x_3 - x_5 x_6.$$

The circuits are:

$$B_1, B_2, B_3 = x_2 x_4 - x_5 x_6.$$

Toric ideals generated by quadratic binomials

Theorem

If I_G is generated by quadratic binomials, then $bar(I_G) = \mu(I_G)$.

Sketch of the proof.

- $C_{\min} = { supp(M_1), ..., supp(M_r) }$, where $M_1, ..., M_r$ are the indispensable monomials.
- Δ_G has g connected components which are edges, where g is the number of indispensable binomials in I_G .
- Δ_G has $\frac{t-g}{2}$ connected components which are triangles, where $t = \mu(I_G)$.

Compute $bar(I_{\mathcal{K}_n})$

- \mathcal{K}_n , $n \ge 4$, is the complete graph on the vertex set $\{v_1, \ldots, v_n\}$.
- Every connected component of $\Delta_{\mathcal{K}_n}$ is a triangle.
- $\Delta_{\mathcal{K}_n}$ has $3\binom{n}{4}$ vertices and $\binom{n}{4}$ triangles, corresponding to all complete subgraphs of \mathcal{K}_n of order 4.

•
$$\operatorname{bar}(I_{\mathcal{K}_n}) = 2\binom{n}{4} = \frac{n(n-1)(n-2)(n-3)}{12}.$$

• $\binom{n}{2} - n = \frac{n(n-3)}{2} \le \operatorname{ara}(I_{\mathcal{K}_n}) \le \binom{n}{2} = \frac{n(n-1)}{2}$

G-homogeneous arithmetical rank

•
$$\deg_G(x_i) = \mathbf{a}_i$$
 for $i = 1, \dots, m$.

$$\bullet \deg_G(\mathbf{x}^{\mathbf{u}}) = u_1 \mathbf{a}_1 + \cdots + u_m \mathbf{a}_m.$$

The G-homogeneous arithmetical rank ara_G(I_G) of I_G is the smallest integer s for which there exists G-homogeneous polynomials F₁,..., F_s in I_G such that

$$\sqrt{I_G} = \sqrt{(F_1,\ldots,F_s)}.$$

• The equality $\operatorname{ara}_G(I_G) = \mu(I_G)$ holds for the two cases studied in this talk.