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Conditional independence and other factorizations

Let X1, . . . , Xn be set of jointly distributed univariate random
variables.

Let N = {1, . . . , n} and for any subsets of index of index set
I ⊆ N, we let fJ(xJ) be the marginal joint density function of
XJ = {xj, i ∈ J}, which we shall assume are always positive and
continuous. For non empty index set I, J ⊂ N we define
conditional independence of XI and XJ give XI∩J by

fI∪J(xI∪J) =
fI(xI)fJ(xJ)

f (xI∩J)
,

for all x.
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Another factorization

Assume that I ∩ J ∩ K = ∅ then take

fI∪J∪K(xI∪J∪K) =
fI∪J(xI∪J)fI∪K(xI∪K)fJ∪K(xJ∪K)

fI∩J(xI∩J)fI∩K(xI∩K)fJ∩K(xJ∩K)

For I = {1, 2}, J = {1, 3}, K = {2, 3} this is

f123 =
f12f13f23

f1f2f3

or in the discrete case

pijk =
pij· pi·k p·jk
pi.. p.j. p..k

In the binary case this is equivalent to toric ideal

p000p110p101p001 − p100p010p001 = 0
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Polynomial models

Regression:

η(x1, x2, x3) = θ000 + θ100x1 + θ010x2 + θ001x3

+θ110x1x2 + θ101x1x3

Conditional independence for log-linear models:

log p(x) = θ000 + θ100x1 + θ010x2 + θ001x3 + θ101x1x2 + θ011x1x3

Other example

log p(x) = θ000 + θ100x1 + θ010x2 + θ001x3

+θ110x1x2 + θ101x1x3 + θ011x2x3

Both these are hierarchical models. Equivalently they are based on
simplicial complexes. Also: staircase models.
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Models and toric ideals

Models are independent of the design/support. Toric
varieties/ideals are dependent on model and the support
(usually a product space).

Many examples of same model but different designs:
incomplete layouts, orthogonal fractions, balanced incomplete
designs, response surface designs, optimal designs....
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Monomial ideals

A model simplicial complex has a one-to-one relation with a special

type of monomial ideal, called the Stanley-Reisner ideal.

For a simplicial complex ∆, let I∆ be the squarefree monomial
ideal created by the non-faces of ∆: I∆ = 〈xa : a /∈ ∆〉.

The complexity of the model ∆ can be studied by the
Stanley-Reisner ring R[x]/I∆.

In the description of R[x]/I∆, Betti numbers play a central role.
Graded Betti number is the minimal number of generators ea,j in
degree i + j.
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Betti numbers

Consider the following simplicial complex (model): ∆ = {1,
a, b, c, d, e, ab, ac, ad, ae, bc, bd, be, cd, ce, abc, abd, adc,
bcd, bce} and the Stanley-Reisner ideal generated by it:

I∆ = 〈de, abe, ace, abcd〉 ⊂ R[a, b, c, d, e]

b

b

b

b

b
e

d

c

b

a
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Use T::=Q[a,b,c,d,e]; J:=Ideal(de,abe,ace,abcd); Hilbert(T/J);

HilbertSeries(T/J);

H(t) = 5/2t^2 + 3/2t + 1 for t >= 0

-------------------------------

(1 + 2a + 2a^2) / (1-a)^3

-------------------------------
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BettiDiagram(T/J);

0 1 2 3

-------------------------

0: 1 - - -

1: - 1 - -

2: - 2 3 1

3: - 1 1 -

-------------------------

Hilbert Series (after simplification)

HS =

(

1 − de − abe − ace − abcd
+abde + acde + abce

)

(1 − a)(1 − b)(1 − c)(1 − d)(1 − e)
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BettiDiagram(J);

0 1 2

--------------------

2: 1 - -

3: 2 3 1

4: 1 1 -

--------------------

Tot: 4 4 1

---------------------

Wynn˙Toric˙final.tex 11 November 12, 2010



Alternatively we could use the Artinian closure of Ī∆ which is

I∆ = 〈de, abe, ace, abcd〉 + 〈a2, b2, c2, d2, e2〉

K:=J+Ideal(a^2,b^2,c^2,d^2,e^2); Hilbert(T/K); HilbertSeries(T/K);

-------------------------------

H(0) = 1 H(1) = 5 H(2) = 9 H(3) = 5 H(t) = 0 for t

-------------------------------

(1 + 5a + 9a^2 + 5a^3)

-------------------------------
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K; BettiDiagram(T/K);

Ideal(de, abe, ace, abcd, a^2, b^2, c^2, d^2, e^2)

-------------------------------

0 1 2 3 4

------------------------------

2: 6 2 - - -

3: 2 21 21 7 1

4: 1 5 17 17 5

------------------------------

Tot: 9 28 38 24 6

-------------------------------

A degree-by-degree description of the model border is obtained.
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A example of a design

Consider a Plackett-Burman (PB8) design with eight runs,
seven factors a, b, c, d, e, f, g and generator +−−+− + +.

a b c d e f g
1 -1 -1 1 -1 1 1
1 1 -1 -1 1 -1 1
1 1 1 -1 -1 1 -1

-1 1 1 1 -1 -1 1
1 -1 1 1 1 -1 -1

-1 1 -1 1 1 1 -1
-1 -1 1 -1 1 1 1
-1 -1 -1 -1 -1 -1 -1
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The equivalence classes of models

The results for the 218 models in the algebraic fan of PB8 are
summarized in Table 2, where representatives of six
equivalence classes (up to permutation of factors) are shown.

≺2 (DegRevLex) ≺3 (Lex)

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

1 + 5s + 2s
2 (84) 1 + 7s (1) 1 + 3s + 3s

2 + s
3 (28)

≺1 (Block)

b

b

b

b

b

b

b

b

b

b

b

b

b

b

1 + 6s + s
2 (21) (56) 1 + 4s + 3s

2 (28)

Table 2: Equivalence classes of models ∆ and corresponding Hilbert Series for PB8.
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PB8: Comparing models

Betti table Model

0 1 2 3 4 5 6 7

---------------------------------------------

0: 1 3 3 1 - - - -

1: - 7 29 48 40 17 3 -

2: - - 6 26 45 39 17 3

---------------------------------------------

Tot: 1 10 38 75 85 56 20 3

-------------------------------

b

b

b

b

0 1 2 3 4 5 6 7

---------------------------------------------

0: 1 3 3 1 - - - -

1: - 7 30 52 47 24 7 1

2: - 1 10 33 52 43 18 3

---------------------------------------------

Tot: 1 11 43 86 99 67 25 4

-------------------------------

b

b

b

b

Disconnected model ≺2 DegRevLex:

0 1 2 3 4 5 6

----------------------------------------

0: 1 - - - - - -

1: - 21 70 105 84 35 6

----------------------------------------

Tot: 1 21 70 105 84 35 6

-------------------------------

b

b

b

b

b

b

b
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Matching statistical models with monomial ideals

To repeat: model simplicial complex (hierarchical model) has a
one-to-one relation with a special the Stanley-Reisner ideal.
This relationship is the same whether we consider regression or
log-linear binary categorical model. But the interpretation is
different.

• Decomposable graphical models

• Corner-cut models

• Lattice conditional Independence (LCI) models

• New classes of models
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Decomposabled graphical models

Known results.

• Definition of decomposability

• Chordal

• Is a junction tree

• Quadratic toric ideal

Note that the first three are model statements. But what are
the results for monomial ideals?

• I∆ has a “2-resolution”

• Recent results on Betti numbers
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Linear aberration

• Taking the motivation from the concept of aberration, we
want to fill out lower degrees before higher:

A(w, L) =
1

n

∑

wiᾱLi

wi ≥ 0,
∑

wi = 1.

Theorem: Any algebraic model minimises some A(w, L).

Proof. Use LP arguments for the lower boundary of S(I).

• Generic designs minimise A(w, L) over Cd,n and all vectors
w.

• For generic designs, algebraic models are corner cut models.
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Corner cut models

Corner-cut model

{1, x1, x2, x1x2} is not corner cut
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Corner-cut models and linear aberration

• The state polytope summarises information about linear
aberration, i.e. its vertexes correspond to models that
minimise A(w, L) over the set of identifiable hierarchical
models S.

• The vertexes of S(I) correspond to algebraic models A.

• The (minimum) aberration of designs can be compared
through their state polytopes.

• However, there may be non-algebraic models on the lower
boundary (and thus minimising A(w, L) for some w) or in
the interior of S(I).
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Maximum Betti numbers and corner cut

Bigatti-Hulett-Pardue Theorem: Let I ⊂ R an ideal and let L
be the lex ideal such that H(R/I) = H(R/L). Then
βL
i,j ≥ βI

i,j for all i = 1, . . . , n and j ∈ N.

“Lex segment” construction

New result: For fixed Hilbert function the ideals satisfying
BHP theorem are generalized corner cut (intersection of the
state polytope with the hyperplane of fixed Hilbert function)
and have a vertex in the state polytope which is on the lower
convex boundary of all models with that Hilbert function.

Note for 2k factorial independence models are CC, but
(conjecture CI and other models may be generalised CC.
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Models and factorisations

Consider, for each x the log-density as a function on the index
set:

λ(J) = log fJ(xJ),

so that conditional independence is equivalent to

λ(I ∪ J) = λ(J) + λ(J) − λ(I ∩ J) (1)

If we add the condition that λ(∅) = 0 we can also include
independence: when I ∩ J = 0:

λ(I ∪ J) = λ(J) + λ(J)

Condition (1) is the condition for a valuation.
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Generally additive valuations

Begin with a collection of index sets set S0, closed under
intersection. A valuation µ on S0 is generally additive if for all
any I1, . . . , Im ∈ S0 with I1 ∪ I2 · · · ∪ Im ∈ S

µ(I1 ∪ I2 · · · ∪ Im) =
∑

i

µ(Ii) −
∑

i<j

µ(Ii ∩ Ij)

+
∑

i<j<k

µ(Ii ∩ Ij ∩ Ik) · · · + (−1)m−1µ(∩m
i=1Ii)

Groemer-Perles-Sallee extension theorem: the following are
equivalent

(i) µ is generally additive.

(ii) µ has an additive extension to finite unions.
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Simplified factorisations

(i) Assume general additivity of λ: Lattice Conditional
independence, also equivalent to TDAG.

(ii) Seek complexity reductions in inclusion-exclusion relations
using generalisation of junction tree.
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Special case: junction tree

Example. Let n = 5

S0 = {I1, I2, I3} = {{1, 2, 3}, {2, 3, 4}, {3, 4, 5}}

The full depth 3 inclusion-exclusion identity is

λ({1, 2, 3, 4, 5}) = λ({1, 2, 3} ∪ {2, 3, 4} ∪ {3, 4, 5})
= λ({1, 2, 3}) + λ({2, 3, 4}) + λ({3, 4, 5})

−λ({2, 3}) − λ({3, 4})
−λ({3}) + λ({3}).

λ({1, 2, 3, 4, 5}) = λ({1, 2, 3}) + λ({2, 3, 4}) + λ({3, 4, 5})

−λ({2, 3}) − λ({3, 4}).

The set-theoretic condition which gives the cancelation is
running intersection property that

(I1 ∩ I3) ⊂ I2
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TDAG representation

2 → 1
↑ ր
3
↓ ց
4 → 5

Generating sets correspond to maximal chains.
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Conditional expectations as valuations

E(·|XJ)

E(·|XI∪J∪K) = E(·|XI) + E(·|XJ) − E(·|XI∩J)

Theorem . Let λ be generally additive on a intersection
closed class of sets S0. Let

H(S0) = {h(x) =
∑

I∈S0

gI(xI)}

µh(I) = E(h(x)|xI),

is a generally additive valuation.

One way of thinking about this is that we have a natural
set of regressions.
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Commutivity: Gaussian versus the rest

The Gaussian case is particularly simple. Think of MA
representation:

XI = AIε

Then to every XI there is a subspace and a projector PI
onto that subspace. Pairwise additivity implies general
additivity

PI∪J = PI + PJ − PI∩J = PI + PJ − PIPJ

Equivalent to commutativity!

PIPJ = PJPI

Equivalent to the same for conditional expectations:

EIEJ = EJEI

For the non-Gaussian case the properties hold on H(S0).
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Because of commutativity we have an understanding of LCI
in the Gaussian case:

(i) All the covariance matrices CI in the full Boolean
lattice are simulanteously diagonalizable

(ii) In the diagonal form the projectors are diagonal with
entries 0, 1. eg

I3×3 =





1 0 0
0 1 0
0 0 1



 , P12 =





1 0 0
0 1 0
0 0 0



 ,

P13 =





1 0 0
0 0 0
0 0 1



 , P1 =





1 0 0
0 0 0
0 0 0





I = P12 + P13 − P1, P12P13 = P13P12

Boolean operations: (1, 1, 1) = (1, 1, 0)+ (1, 0, 1)− (1, 0, 0)
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Discrete case

Change in notation:

λ(I) = log pI

where pI is the marginal probability. eg CI is

log pijk = log pij· + log pi·k − log pi··

Conditional expectations:

EI∪J = EJ + EJ − EI∩J

on a restricted subspace (details omitted).
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Shannon information

For any junction tube we have all corresponding identities
for Shannon information:

I(I) = E(λ(I))

I(I1 ∪ I2 · · · ∪ Im) =
∑

1

I(Ii) −
∑

2

I(Ii ∩ Ij)

+ · · · + (−1)d
∑

d

I(
⋂

Ii)
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New classes of models from “new” monomial ideals

One class: networks

1

2

3

4

5

6

7

8

I O

Paths give generators of I∆:

I∆ =< x1x6, x1x4x7, x2x4x6, x1x4x5x8, x2x7,

x3x4x5x6, x2x5x8, x3x5x7, x3x8〉

Model cliques:

234578, 134567, 124567, 23568, 13578, 13467, 12468, 2367, 1278

Wynn˙Toric˙final.tex 32 November 12, 2010



The future

• Model complex versus SR monomial ideal: I∆

• Betti numbers of I∆ and minimal free resolution (and the
model complex)

• Use Hochster’s formula to link to Betti number of the
model to those of I∆

• Factorizations of the full joint pdf

• New models by starting with I∆, or Artinian closure
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One way forward: junction tubes?

Under certain conditions C on the set of cliques the
minimal free resolution of I∆ and will yield the “optimal”
factorization(s) of the joint probability.

1. Start with square free monomial ideal (I∆)

2. From this we get a set of model cliques

3. Assume that corresponding log-likelihood is generally
additive on the Boolean lattice formed by the cliques:
(LCI model)

4. This corresponds to a factorization based on the Taylor
resolution (simple inclusion-exclusion)
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5. Under special conditions C we can reduce the complexity
of the factorization

6. One choice for C is a generalization of the running
intersection property

7. (Hope) This is the first large and interesting class of
monomial ideals and includes decomposable graphic
models as a special case

8. Find some interpretation of the Betti numbers in terms of
factorizations of probability

9. Link the projection representation to the algebra

Wynn˙Toric˙final.tex 35 November 12, 2010



Papers

1. Sonya Petrovich and Erik Stokes: Markov degrees.....
(very useful)

2. Bernstein, Y., Maruri-Aguilar, H., Shmuel O, Riccomagno,
E and HPW: Annals of the Institute of Statistical
Mathematics, 62 (2010),

3. Hugo Maruri-Aguilar, Eduardo Sáenz de Cabezon and
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5. Daniel Bruynooghe (LSE PhD Student) and HPW: new
paper on hierarchical models.
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