Grado en Matemáticas / Doble Grado en Matemáticas y Estadística

Ampliación de Ecuaciones Diferenciales Tema 1. Sistemas Dinámicos

José Luis Bravo

Curso 2024/2025

Índice

Introducción

Sistemas dinámicos Puntos de equilibrio y estabilidad

Sistemas autónomos

Flujo asociado Órbitas, puntos de equilibrio, diagrama de fases Estabilidad Sistemas gradiente y hamiltonianos Sistemas gradiente y hamiltonianos

Estructura local del flujo

Definición

Un sistema dinámico es una terna $\{E,T,\varphi\}$ donde E es un espacio topológico; T es $\mathbb{R},\mathbb{R}^+,\mathbb{Z}$ o \mathbb{N},D una región y $\varphi\colon D\subset T\times E\to E$, tal que:

1. Para todo $x \in E$, se tiene que

$$\varphi(0,x)=x.$$

2. Para todos $s, t \in T$ y $x \in E$, se tiene que si $(t, x), (s, \varphi(t, x)) \in D$, entonces $(t + s, x) \in D$ y

$$\varphi(t+s,x)=\varphi(s,\varphi(t,x)).$$

Si $\{E, T, \varphi\}$ es un sistema dinámico,

- ightharpoonup E se denomina *espacio de estados.* $x \in E$ es un *estado inicial*.
- ► *T* se denomina *espacio de tiempos*.
- $ightharpoonup \varphi$ se denomina *flujo*.

Sea $F: \mathbb{R} \to \mathbb{R}$. Definimos el flujo

$$\varphi \colon \mathbb{N} \times \mathbb{R} \to \mathbb{R}^n, \quad \varphi(n, x) = F^n(x),$$

donde F^n denota la composición de F consigo misma n veces, con $F^0(x) = x$, es decir:

$$F^{0}(x) = x, \quad F^{n}(x) = F(F^{n-1}(x)).$$

Entonces $\{\mathbb{R}, \mathbb{N}, \varphi\}$ es un sistema dinámico (discreto).

Definición

Sea $\{E, T, \varphi\}$ un sistema dinámico y $x \in E$. Se define órbita de x y se denota por \mathcal{O}_x u $\mathcal{O}(x)$ al conjunto

$$\mathcal{O}_{x} = \{ \varphi(t, x) : \forall t \in T \}.$$

Si el espacio de tiempos es \mathbb{R} o \mathbb{Z} , se denomina semiórbitas positiva (\mathcal{O}_{x}^{+}) y negativa (\mathcal{O}_{x}^{-}) a los siguientes conjuntos:

$$\mathcal{O}_{\mathsf{X}}^+ = \{ \varphi(t,\mathsf{X}) : \forall t \geq 0 \}, \quad \mathcal{O}_{\mathsf{X}}^- = \{ \varphi(t,\mathsf{X}) : \forall t \leq 0 \}.$$

Ejercicio

Obtener las órbitas del sistema dinámico discreto asociado a la función F(x) = 2x.

Idem para
$$F(x) = x$$
 y $F(x) = 1 - x$.

Puntos de equilibrio

Definición

Se dice que $x \in E$ es un punto de equilibrio (o punto fijo o punto *crítico*) si $\mathcal{O}_x = \{x\}.$

Denominamos retrato de fase al conjunto de órbitas del sistema dinámico.

Ejercicio

Obtener los puntos de equilibrio y los retratos de fase de los sistemas dinámicos discretos asociado a las funciones

- ightharpoonup F(x) = x.
- ► F(x) = 2x.
- ► F(x) = 1 x.
- ► $F(x) = x^2 1$.
- $F(x) = x^2 + 1.$

Definición

Se dice que un punto de equilibrio $x_0 \in E$ es estable cuando para cualquier entorno A de x_0 existe un entorno B de x_0 tal que para todo $x \in B$, $\mathcal{O}_x^+ \subset A$.

Cuando el punto de equilibrio no sea estable, diremos que es inestable.

Definición

Se dice que un punto de equilibrio $x_0 \in E$ es un atractor cuando existe un entorno A de x_0 tal que para todo $x \in A$,

$$\lim_{t\to\infty}\varphi(t,x)=x_0.$$

Definición

Se dice que un punto de equilibrio $x_0 \in E$ es asintóticamente estable cuando es un atractor y es estable.

Ejercicio

En los sistemas dinámicos discretos de los ejercicios anteriores, determinar la estabilidad de los puntos de equilibrio.

Consideremos el sistema dinámico discreto asociado a la función F(x)=2x si $|x|\leq 1$ y F(x)=0 si |x|>1. Probar que el origen es un atractor pero no es estable.

Definición

Se dice que x es un estado inicial periodico si existe $r > 0 \in T$ tal que $\varphi(r + s, x) = \varphi(s, x)$ para todo $s \in T$.

Ejercicio

En los sistemas dinámicos discretos de los ejercicios anteriores, determinar si existen estados iniciales periódicos.

Una ecuación diferencial $x^{(n)} = f(t, x, x', \dots, x^{(n-1)})$ es equivalente a la ecuación de primer orden

$$x'_{n-1} = f(t, x_0, x_1, \dots, x_{n-1}), \quad x'_0 = x_1, \quad x'_1 = x_2, \dots, x'_{n-2} = x_{n-1}.$$

El sistema diferencial no autónomo x' = f(t, x), con $f \colon U \subset \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ es equivalente al sistema autónomo de primer orden

$$x' = f(t, x), \quad t' = 1.$$

La familia de ecuaciones diferenciales dependiente de un parámetro $x'=f(x,\lambda)$, con $f\colon U\subset\mathbb{R}^n\times\mathbb{R}\to\mathbb{R}^n$ es equivalente al sistema autónomo de primer orden

$$x' = f(x, \lambda), \quad \lambda' = 0.$$

Reducir las siguientes ecuaciones diferenciales a un sistema autónomo de primer orden:

- 1. Ecuación del péndulo simple: $x'' + \sin(x) = 0$.
- 2. Oscilador de Van der Pol forzado (μ , A, ω son parámetros):

$$\ddot{x} - \mu(1 - x^2)\dot{x} + x = A\cos(\omega t).$$

3. Ecuación logística con cosecha periódica (*r*, *K*, *h* son parámetros):

$$\frac{dP}{dt} = rP\left(1 - \frac{P}{K}\right) - h(1 - \cos(t))$$

Reducir las siguientes ecuaciones diferenciales a un sistema autónomo de primer orden:

4. Problema circular de tres cuerpos restringido:

$$\ddot{x} = x + 2\dot{y} - \left(\frac{(1 - \mu)(x + \mu)}{r_1^3} + \frac{\mu(x - (1 - \mu))}{r_2^3}\right),$$

$$\ddot{y} = y - 2\dot{x} - \left(\frac{(1 - \mu)y}{r_1^3} + \frac{\mu y}{r_2^3}\right),$$

$$\ddot{z} = -\left(\frac{(1 - \mu)z}{r_1^3} + \frac{\mu z}{r_2^3}\right),$$

donde

$$r_1 = \sqrt{(x+\mu)^2 + y^2 + z^2}, \quad r_2 = \sqrt{(x-(1-\mu))^2 + y^2 + z^2}.$$

Sistemas autónomos

Flujo asociado

$$x'=f(x),$$

donde (el campo) $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}^n$ verifica que $f \in \mathcal{C}(\Omega) \cap \text{Lip}_{\text{loc}}(\Omega)$ y Ω es una región (abierto y conexo).

Teorema

Para cada $(t_0, x_0) \in \mathbb{R} \times \Omega$ existe una solución $u \colon I \to \mathbb{R}^n$ del problema de valor inicial x' = f(x), $x(t_0) = x_0$, tal que si $v \colon J \to \mathbb{R}^n$ es cualquier otra solución del problema de valor inicial, entonces $J \subset I$ y u = v en J.

Además u es la única solución con esta propiedad de maximalidad del intervalo de definición.

Dado $x_0 \in \Omega$, denotaremos por $u(t, x_0)$ a (el valor en t de) la única solución maximal del problema de valor inicial x' = f(x), $x(0) = x_0$. Denotaremos I_{x_0} al intervalo (abierto) de definición de $u(\cdot, x_0)$.

Sea

$$D=\bigcup_{x\in\Omega}I_x\times\{x\}\subset\mathbb{R}\times\Omega.$$

Definimos el flujo asociado a x' = f(x) como

$$\varphi \colon D \subset \mathbb{R} \times \Omega \to \Omega, \quad \varphi(t, x) = u(t, x).$$

Diremos que el flujo es completo si $D = \mathbb{R} \times \Omega$.

Demostraremos que $\{D, \mathbb{R}, \varphi\}$ es un sistema dinámico.

Calcular el flujo asociado, φ a cada una de las siguientes ecuaciones diferenciales.

- 1. x' = 0.
- 2. x' = x (crecimiento exponencial).
- 3. x' = x(1 x) (ecuación logística).
- 4. x'' + x = 0 (oscilador armónico simple).
- 5. x' = ax + by, y' = -bx + ay (centro-foco lineal).

Tenemos por definición que $\varphi(0, x) = x$ para todo $x \in E$. Veamos que también verifica la segunda propiedad y por tanto $\{D, \mathbb{R}, \varphi\}$ es un sistema dinámico.

Proposición

Si $u: I_u \to \mathbb{R}^n$ es una solución de x' = f(x) y si $t_0 \in \mathbb{R}$, entonces $v(t) = u(t + t_0)$ también es solución e $I_v = I_u - t_0$.

Como consecuencia de la proposición anterior,

Corolario

Para todos $t_1, t_2 \in T$ y $x \in E$, se tiene que si $(t_1, x), (t_2, \varphi(t_1, x)) \in D$, entonces $(t_1 + t_2, x) \in D$ y

$$\varphi(t_1+t_2,x)=\varphi(t_2,\varphi(t_1,x)).$$

Proposición

Sea $\varphi: \mathbb{R} \times \Omega \to \Omega$ un sistema dinámico continuo de clase \mathbb{C}^{∞} . Definamos el campo vectorial $f: \Omega \to \mathbb{R}^n$ por

$$f(x) = \left. \frac{d}{dt} \varphi(t, x) \right|_{t=0}$$

Entonces f es completo y φ es el flujo de f.

A f se le llama campo de velocidades de φ .

Recordemos el Teorema de continuidad respecto de las condiciones iniciales y parámetros

Teorema

En las condiciones anteriores el conjunto D es abierto y la función $u \colon D \to \mathbb{R}^n$.

$$(t,x) \in D \to u(t,x) \in \mathbb{R}^n$$

es continua.

Como consecuencia de dicho teorema el flujo, φ , es continuo.

Sistemas autónomos

Continuidad y diferenciabilidad

La función u(t,x) es solución del PVI

$$\frac{\partial u}{\partial t}(t,x) = f(u(t,x)), \quad u(0,x) = x.$$

Supongamos que u es de clase 1. Derivando respecto de x,

$$\frac{\partial^2 u}{\partial t \partial x}(t,x) = Df(u(t,x)) \frac{\partial u}{\partial x}(t,x), \quad \frac{\partial u}{\partial x}(0,x) = I.$$

Teorema (Dif. resp. de las condiciones iniciales)

Supongamos que $f \in C^1$.

Entonces la función $u: D \to \mathbb{R}^n$ es de clase 1.

La derivada parcial $u_x(t,x)$ es, para cada $(t,x) \in D$, la solución matricial Z de (la primera ecuación variacional)

$$Z' = Df(u(t,x))Z, \quad Z(0) = I.$$

Nótese que utilizando repetidamente el teorema anterior, si $f \in C^k$, entonces $u \in C^k$.

Como consecuencia, si $f \in C^k$, entonces $\varphi \in C^k$.

Ejercicio

Calcular la derivada respecto de las condiciones iniciales de los siguientes sistemas autónomos.

1.
$$x' = x$$
.

2.
$$x' = x^2$$
.

3.
$$x' = x + y, y' = x - y$$
.

Teorema

El flujo φ de un campo vectorial $f \in C^k(\Omega, \mathbb{R}^n)$ es una aplicación de clase C^k definida de la región $D \subset \mathbb{R} \times \Omega$ a la región $\Omega \subset \mathbb{R}^n$, y que tiene las siguientes propiedades:

- 1. $\varphi(0, x) = x$ para todo $x \in \Omega$.
- **2.** $\varphi(s+t,x) = \varphi(t,\varphi(s,x))$ para todo $x \in \Omega$, $s+t \in I_x$.
- 3. Si $t, -t \in I_x$ para todo $x \in \Omega$, entonces la aplicación $\varphi_t : \Omega \to \Omega$ (definida por $x \mapsto \varphi_t(x) := \varphi(t, x)$) es un difeomorfismo de clase C^k con inversa φ_{-t} .

Si f es completo, el conjunto de aplicaciones $\{\varphi_t : \Omega \to \Omega \mid t \in \mathbb{R}\}$ es un grupo uniparamétrico de difeomorfismos de Ω .

Por ser (D, \mathbb{R}, φ) un sistema dinámico, tenemos las siguientes definiciones.

Definición

Dado $x \in \Omega$, denominamos (semi-)órbita positiva (resp. negativa) de x a

$$\mathcal{O}_x^+ = \{\varphi(t,x) \colon t \geq 0 \cap I_x\} \quad (\mathcal{O}_x^- = \{\varphi(t,x) \colon t \leq 0 \cap I_x\}).$$

Denominamos órbita de x a

$$\mathcal{O}_{\mathsf{X}} = \mathcal{O}_{\mathsf{X}}^+ \cup \mathcal{O}_{\mathsf{X}}^- = \{ \varphi(\mathsf{t}, \mathsf{x}) \colon (\mathsf{t}, \mathsf{x}) \in \mathsf{D} \}.$$

Trivialmente $x = \varphi(0, x) \in \mathcal{O}_x$.

Sistemas autónomos

Órbitas, puntos de equilibrio, diagrama de fases

Definición

Se dice que x es un punto de equilibrio si $\mathcal{O}_x = \{x\}$.

Definición

Se dice que x es un estado inicial periodico si existe T>0 tal que $\varphi(s+T,x)=\varphi(s,x)$ para todo $s\in\mathbb{R}.$

Proposición

Un punto $x \in \Omega$ es punto de equilibrio si y sólo si f(x) = 0.

Sistemas autónomos

Órbitas, puntos de equilibrio, diagrama de fases

Proposición

Para todos $x, y \in \Omega$, si $\mathcal{O}_x \cap \mathcal{O}_y \neq 0$, entonces $\mathcal{O}_x = \mathcal{O}_y$. Es decir, dos órbitas distintas son siempre disjuntas

Definición

Llamaremos diagrama de fases de x' = f(x) a la partición de Ω en órbitas.

Proposición

Si $u: I \to U$ es una solución maximal de x' = f(x) que no es inyectiva, es periódica.

Teorema

Sea $x \in \Omega$. Si u(t, x) no es inyectiva, entonces tenemos dos posibilidades para su órbita:

- 1. $\mathcal{O}_{X} = \{x\}.$
- 2. \mathcal{O}_X es homeomorfa a una circunferencia.

Obtener los diagramas de fases de los siguientes sistemas autónomos:

1.
$$x' = x$$
.

2.
$$x' = x(1-x)$$
.

3.
$$x' = (1-x)e^{x^2}$$
.

4.
$$x' = x$$
, $y' = y$.

5.
$$x' = x$$
, $y' = -y$.

6.
$$x' = y$$
, $y' = -x$.

Sistemas autónomos

Órbitas, puntos de equilibrio, diagrama de fases

Sea $f: \Omega \to \mathbb{R}^n$ un campo de clase C^1 .

Proposición

Dados $x \in \Omega$ e $I_x = (\alpha, \beta)$, supongamos que existe $\lim_{t \to \beta^-} \varphi(t, x) = x_0 \in \Omega$. Entonces $\beta = +\infty$, y x_0 es un punto de equilibrio.

Proposición

Sea C homeomorfo a S^1 en $\Omega \subset \mathbb{R}^n$. Supongamos que C no contiene puntos de equilibrio de f, y que $O_x \subset C$. Entonces $O_x = C$, y en particular la curva $t \mapsto \varphi(t,x)$ es periódica.

Proposición

Sea C homeomorfo a una recta en $\Omega \subset \mathbb{R}^n$. Supongamos que C no contiene puntos de equilibrio de f, y que $O_x \subset C$. Entonces $O_x = C$, y en particular la curva $t \mapsto \varphi(t,x)$ es inyectiva.

Sistemas autónomos

Órbitas, puntos de equilibrio, diagrama de fases

Definición

Sea H una función continua y no constante $H: U \subset \Omega \to \mathbb{R}$. Decimos que H es una integral primera del campo f en un abierto U si H es constante sobre las soluciones de x' = f(x) restringidas a U. Es decir, si para todo x existe c_x tal que $H(\varphi(t,x)) = c_x$ para todo $t \in I_x$ tal que $\varphi(t,x) \in U$.

Proposición

Sea H una función diferenciable, no constante. Entonces H es una integral primera de un campo $f:\Omega\to\mathbb{R}^n$ si y sólo si $\langle \nabla H(x),f(x)\rangle=0$ para todo $x\in\Omega$.

Para cada una de los siguientes sistemas, obtener una integral primera. A partir de ella, obtener el retrato (plano) de fases.

- 1. x' = x, y' = -y.
- 2. x' = x, y' = y.
- 3. x' = y, y' = -x.
- 4. x' = x, $y' = y^2$.
- 5. x' = y, $y' = -\sin x$. (Péndulo simple.)

Definición

Estabilidad

Se dice que un punto de equilibrio $x_0 \in \Omega$ es estable cuando para cualquier entorno A de x_0 existe un entorno B de x_0 tal que para todo $x \in B$, $\mathcal{O}_x^+ \subset A$.

Definición

Se dice que un punto de equilibrio $x_0 \in \Omega$ es un atractor cuando existe un entorno A de x_0 tal que para todo $x \in A$,

$$\lim_{t\to\infty}\varphi(t,x)=x_0.$$

Definición

Se dice que un punto de equilibrio $x_0 \in \Omega$ es asintóticamente estable cuando es un atractor y es estable.

Sea x una solución (maximal) de x' = f(x) tal que $[\tau, \infty) \subset I_x$.

Definición

El ω -límite de x es el conjunto $\omega(x)$ de los puntos $p \in \Omega$ tales que existe una sucesión $\{t_k\}_{k\in\mathbb{N}}$ tal que

$$\lim_{k\to\infty}t_k=\infty,\quad \lim_{k\to\infty}x(t_k)=p.$$

Sea x una solución de x' = f(x) tal que $(-\infty, \tau] \subset I_x$.

Definición

El α -límite de x es el conjunto $\alpha(x)$ de los puntos $p \in \Omega$ tales que existe una sucesión $\{t_k\}_{k\in\mathbb{N}}$ tal que

$$\lim_{k\to\infty}t_k=-\infty,\quad \lim_{k\to\infty}x(t_k)=p.$$

Obtener el conjunto ω -límite de cada punto de Ω para los siguientes sistemas autónomos. Discutir su estabilidad.

1.
$$x' = x(1-x)$$
.

2.
$$x' = -x$$
, $y' = -y$.

3.
$$x' = x + y$$
, $y' = x - y$.

4.
$$x' = y$$
, $y' = -x$.

5.
$$x' = y - x$$
, $y' = -x - y$.

Proposición

Se verifica que $\omega(x) = \{p\}$ si y solo si $\lim_{t\to\infty} x(t) = p$.

Proposición

Si $x : \mathbb{R} \to \Omega$ es una solución periódica de x' = f(x), entonces $\omega(x) = \mathcal{O}_x$.

Definición

Se dice que un subconjunto A de U es positivamente (respectivamente negativamente) invariante por x' = f(x), si

$$\xi \in A, \ t \in I_{\xi}, \ t \ge 0 \ (\text{ resp. } t \le 0) \quad \Rightarrow \quad u(t,\xi) \in A.$$

Si A es simultáneamente positiva y negativamente invariante, se dice que es invariante.

Ejercicio

Demostrar que el primer cuadrante es positivamente invariante por los siguientes sistemas autónomos.

1.
$$x' = -x$$
, $y' = -y$.

2.
$$x' = x + y$$
, $y' = x - y$.

Sea $K \subset \Omega$ compacto y sea x una solución (maximal) de x' = f(x) tal que $\mathcal{O}_{x}^{+} \subset K$. En particular. $[\tau, \infty) \subset I_{x}$.

Proposición

Estabilidad

Si V es un abierto de \mathbb{R}^n que contiene a $\omega(x)$, entonces existe $t_0 \in \mathbb{R}$ tal que $x(t) \in V$ para todo $t \geq t_0$.

Teorema

 $\omega(x)$ es un subconjunto no vacío, compacto, conexo e invariante por x'=f(x).

Corolario

Si $p \in \omega(x)$, entonces $u(\cdot, p)$ está definida en todo \mathbb{R} .

Sea $F \in C^1(U)$, con $U \subset \mathbb{R}^n$ abierto. Se denomina derivada de F a lo largo de las órbitas de x' = f(x) a la función

$$\dot{F}(x) = DF(x)f(x) \ (= \langle \nabla F(x), f(x) \rangle).$$

Si $u: I \to U$ es una solución de x' = f(x), entonces

$$\frac{d}{dt}F(x(t)) = DF(x(t))x'(t)$$

$$= DF(x(t))f(x(t)) = \dot{F}(x(t)).$$

Definición

Se dice que $F \colon U_1 \to \mathbb{R}$ es una función de Liapunov para x' = f(x) en el equilibrio $x_0 \in U_1$, si

- 1. $F \in C^1(U_1)$.
- 2. $F(x_0) = 0$ y F(x) > 0 si $x \neq x_0, x \in U_1$.
- 3. $\dot{F}(x) \leq 0$, si $x \in U_1$.

Si además

$$\dot{F}(x) < 0$$
, si $x \neq x_0, x \in U_1$,

se dice que *F* es de Liapunov estricta.

Teorema

Si F es una función de Liapunov para x' = f(x) en el punto de equilibrio x_0 , entonces x_0 es estable.

Si además, existe R > 0 tal que $B[x_0, R] \subset U$ y $\{x_0\}$ es el único subconjunto de $\{x \in B[x_0, R] : \dot{F}(x) = 0\}$ invariante por x' = f(x), entonces x_0 es asintóticamente estable.

Si F es de Liapunov estricta, entonces se verifica la segunda parte del Teorema y x_0 es asintóticamente estable.

Construyendo una función de Liapunov adecuada probar que el origen es un punto de equilibrio estable de x' = -x.

Ejercicio

Consideremos el sistema dinámico:

$$\begin{cases} x'' = -x + y, \\ y'' = -x - y. \end{cases}$$

Queremos probar que el punto de equilibrio (x, y) = (0, 0) es estable usando una función de Liapunov.

Construyendo una función de Liapunov adecuada de la forma $V(x, y, z) = ax^2 + by^2 + cz^2$, estudiar la estabilidad en el origen del sistema:

$$\begin{cases} \dot{x} = 2y(z-1) \\ \dot{y} = -x(z-1) \\ \dot{z} = xy \end{cases}$$

Corolario

Estabilidad

Sea $\langle \cdot, \cdot \rangle$ un producto escalar en \mathbb{R}^n tal que en un entorno abierto del origen $U_1 \subset U$ satisface

$$\langle f(x), x \rangle < 0$$
, si $x \in U_1 \setminus \{0\}$.

Entonces el origen es asintóticamente estable.

Corolario

Sea $x_0 \in U$ un punto de equilibrio de x' = f(x). Si f es diferenciable en x_0 y si su linealización en $x = x_0$,

$$x' = Df(x_0)x$$

es un atractor, entonces x_0 es asintóticamente estable.

Teorema (Inestabilidad)

Sean $f \in C^1(\Omega, \mathbb{R}^n)$, x_0 un punto de equilibrio de f, y U un entorno abierto de x_0 . Supongamos que existe una función continua $W: U \to \mathbb{R}$, que es de clase C^1 en $U \setminus \{x_0\}$ y que

- 1. $W(x_0) = 0$.
- 2. Existe una sucesión $x_k \to x_0$ tal que $W(x_k) > 0$ para todo k.
- 3. $\dot{W}(x) > 0$ para todo $x \in U \setminus \{x_0\}$.

Entonces x_0 es un equilibrio inestable.

Gradientes y Hamiltonianos

Definición

Si tenemos una función $V: \mathbb{R}^n \to \mathbb{R}$, el sistema diferencial gradiente asociado a V se define como

$$x' = -\nabla V(x)$$

Son equivalentes

- 1. $x_0 \in U$ es un punto de equilibrio.
- **2**. $\nabla F(x_0) = 0$,
- 3. $\dot{F}(x_0) = 0$.

Proposición

Sea $x_0 \in U$ un mínimo local de F(x). Entonces x_0 es asintóticamente estable para el flujo de $x' = -\nabla V(x)$.

Sistemas autónomos

Gradientes y Hamiltonianos

