PROBLEMAS DE LA ASIGNATURA MATEMÁTICAS I Ingeniería Técnica en Diseño Industrial

Tema V: La integral doble

1. Calcular las siguientes integrales definidas:

$$\int_0^1 (x^3 - 2x + 1) dx, \quad \int_0^\pi \sin(3x) dx, \quad \int_{-2}^2 \frac{1}{x^4} dx, \quad \int_0^3 \sqrt{x + 1} dx,$$

$$\int_0^1 e^{2x-1} dx, \quad \int_{-1}^1 (x^2 e^x) dx, \quad \int_1^4 \frac{2x}{\sqrt{x^2+1}} dx, \quad \int_1^2 (\cos x \sin x) dx,$$

- 2. Hallar el área encerrada por la curva $y = x^2 + x 2$, las rectas x = -3, x = 2 y el eje OX.
- 3. Hallar el área encerrada por la curva $y=|x^2-4x+3|$ entre x=0, x=4 y el eje de abcisas.
- 4. Calcular el área del círculo de radio r y centro el origen de coordenadas.
- 5. Calcular el área encerrada por la elipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- 6. Calcular el área encerrada por las parábolas $y^2 = 4x$ y $x^2 = 4y$.
- 7. Hallar el área de la figura limitada por la curva $y^3=x,$ la recta y=1 y la recta x=8.
- 8. Calcular el área encerrada por la curva $y^2 = x^2 x^4$.
- 9. Calcular el volumen engendrado por la rotación de una circunferencia de centro 0 y radio r alrededor del eje OX.
- 10. Hallar el volumen del sólido generado por la revolución alrededor del eje OY del área comprendida en el primer arco del cicloide $x=t-\sin t,$ $y=1-\cos t$ y el eje OX.
- 11. Calcular los volúmenes engendrados al girar alrededor del eje OX y del eje OY la recta y = 11 3x entre las rectas x = 2 y x = 3.

- 12. Calcular el área de la superficie engendrada por la revolución alrededor del eje OX de la parábola $y^2 = 4x$ entre x = 0 y x = 2.
- 13. Calcular el área de la superficie engendrada por la revolución alrededor del eje OX del lazo de la curva $9y^2 = x(3-x)^2$.
- 14. Hallar el área engendrada por la curva $x = e^t \sin t$, $y = e^t \cos t$ al girar alrededor del eje OX entre t = 0 y $t = \frac{\pi}{2}$.
- 15. Calcular la longitud del arco de curva $y = 2x\sqrt{x}$ entre x = 0 y x = 2.
- 16. Hallar la longitud del arco de curva $y = \ln \frac{e^x 1}{e^x + 1}$ entre x = 2 y x = 4.
- 17. Calcular la longitud del arco de curva $x=e^t\cos t,\ y=e^t\sin t$ entre t=0 y t=4.
- 18. Calcular la longitud del arco de curva $x=t,\ y=t^2,\ z=\frac{2t^3}{3}$ entre t=0 y t=1.
- 19. Calcular la longitud del arco de curva $x = 2\cos t$ $y = 2\sin t$, $z = \frac{3}{\pi}t$.
- 20. Calcular las siguientes integrales:
 - (a) $\int_S \int x dx dy$ siendo S el recinto de \mathbb{R}^2 limitado por las curvas $y=x^2+x, \ y=2x^2-2$ y las rectas x=1 y x=2. SOLUCIÓN: $\frac{19}{12}$.
 - (b) $\int_S \int (x+y) dx dy$, siendo S el recinto de \mathbb{R}^2 limitado por las rectas $y=2,\ y=1\ x=3y\ y\ x=y$. SOLUCIÓN: 14.
 - (c) $\int_S \int \sqrt{a^2 x^2} dx dy$, siendo S el recinto del primer cuadrante del círculo $x^2 + y^2 = a^2$. SOLUCIÓN: $\frac{2a^3}{3}$.
 - (d) $\int_S \int xe^{\frac{-x^2}{y}} dxdy$, siendo S el recinto de \mathbb{R}^2 limitado por la curva $y = x^2$ y las rectas y = 1, y = 2 y x = 0. SOLUCIÓN: $\frac{3(e-1)}{4e}$.
 - (e) $\int_S \int \sqrt{2ax x^2 y^2} dx dy$, hallando su expresión en un nuevo sistema de coordenadas dado por $x = a + u \cos v$, $y = u \sin v$, siendo S el recinto de \mathbb{R}^2 limitado por la circunferencia $x^2 + y^2 2ax = 0$. SOLUCIÓN: $\frac{2\pi a^3}{3}$.

- (f) $\int_S \int \sqrt{1-x^2-y^2} dx dy$, siendo S el recinto de \mathbb{R}^2 limitado por el circulo de radio R=1 y centro en (0,0). SOLUCIÓN: $\frac{2\pi}{3}$.
- (g) $\int_0^a \int_0^{\sqrt{a^2 x^2}} \sqrt{x^2 + y^2} dx dy$. SOLUCIÓN: $\frac{\pi a^3}{6}$.
- (h) $\int_S \int \frac{x^2}{y^2} dx dy$, siendo S el recinto de \mathbb{R}^2 limitado por la curva $y = \frac{1}{x}$ y las rectas y = x, x = 1 y x = 2. SOLUCIÓN: $\frac{9}{4}$.
- (i) $\int_S \int y dx dy$, siendo S el semicírculo de diámetro a y centro en el punto $C=(\frac{a}{2},0)$. SOLUCIÓN: $\frac{a^3}{12}$.
- (j) $\int_S \int (x^2 + y^2) dx dy$, siendo S el recinto limitado por la circunferencia $x^2 + y^2 = 2ax$. SOLUCIÓN: $\frac{3\pi a^4}{2}$.
- (k) $\int_S \int (x^2 + y^2) dx dy$ siendo S el recinto de \mathbb{R}^2 delimitado por la elipse: $\frac{x^2}{9} + \frac{y^2}{4} = 1$. SOLUCIÓN: $\frac{39\pi}{2}$.

21. Calcular las siguientes áreas:

- (a) Área de la región del plano limitada por la curva $y=x^2$ y las rectas y=2x y x=1. SOLUCIÓN: $\frac{2}{3}u^2$.
- (b) Área de la región del plano situada sobre el eje OX y limitada por dicho eje, la parábola $y^2=4x$ y la recta x+y=3. SOLUCIÓN: $\frac{10}{3}u^2$.
- (c) Área de la región del plano situada en el primer cuadrante y limitada por la parábola semicúbica $y^2 = x^3$ y la bisectriz del primer cuadrante x = y. SOLUCIÓN: $\frac{1}{10}u^2$.
- (d) Área del paraboloide $x^2+y^2=2z$ limitada por el plano z=2. SOLUCIÓN: $\frac{2\pi(5\sqrt{5}-1)}{3}u^2$.
- (e) Área de la superficie del paraboloide $z=\frac{x^2}{2a}+\frac{y^2}{2b}$ limitada por el cilindro $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$. SOLUCIÓN: $\frac{2\pi ab(2\sqrt{2}-1)}{3}u^2$.

(f) Área de la parte de la superficie del paraboloide $y^2+z^2=2ax$ comprendida entre el cilindro $y^2=ax$ y el plano x=a. SOLUCIÓN: $\frac{2a^2(3\sqrt{3}-1)}{3}u^2$.

22. Calcular los siguientes volúmenes:

- (a) Volumen en el primer octante comprendido entre el plano O X Y, el plano z=x+y+2 y el cilindro $x^2+y^2=16$. SOLUCIÓN: $\left(\frac{128}{3}+8\pi\right)u^3$.
- (b) Volumen limitado por las superficies: $z=x^2+y^2,\ y=x^2,$ el plano O X Y y el plano y=1. SOLUCIÓN: $\frac{88}{105}u^3.$
- (c) Volumen limitado por las superficies: $x^2+4y^2=z$, el plano O X Y y lateralmente por $y=x^2$ y $x=y^2$. SOLUCIÓN: $\frac{3}{7}u^3$.
- (d) Volumen limitado por las superficies: $y=\sqrt{x},\,y=2\sqrt{x},\,x+z=6$ y z=0. SOLUCIÓN: $\frac{48\sqrt{6}}{5}u^3.$