| |
Estoy interesado en la bifurcación de soluciones periódicas,
(tema
de mi
Tesis Doctoral) y en el concepto de bifurcación en general. También
estamos
estudiando el comportamiento asintótico de las soluciones en ecuaciones
diferenciales periódicas.
Por otra parte, estamos tratando de modelar la evolución de un paciente
sometido a una tiroidectomía, utilizando ecuaciones diferenciales autónomas.
Tesis Doctoral:
Bifurcación de soluciones periódicas
Artículos publicados:
|
J.L. Bravo, A. Tineo “The number of Bifurcation Points of a Periodic Ordinary Differential
Equation with Cubic Nonlinearities” Nonlinear Studies, 2001.
|
|
J.L. Bravo, M. Fernández, A. Tineo “The Set of First-Order Differential Equations with
Periodic or Bounded Solutions” Extracta Mathematicae, 2001.
|
|
J.L. Bravo, M. Fernández, A. Tineo “A result of Ambrosetti-Prodi Type for First Order ODE’s
with Concave and Coercive Right Member” Nonlinear Studies, 2002
|
|
J.L. Bravo, M. Fernández, A. Tineo “The Number of Bifurcation Points of a Periodic
One-Parameter ODE with at most two periodic solutions” Nonlinear Analysis, 2004
|
Ponencias presentadas en congresos:
|
“The Set of First-Order Differential Equations with
Periodic or Bounded Solutions” en las
“XIV Jornadas de Matemáticas” de la
Asociación Matemática Venezolana, Barquisimeto
(Venezuela) 2001.
|
|
“The number of bifurcation points of a periodic ODE with
cuadratic nonlinearities” en
“International Conference
on Dynamical Methods for Differential Equations”, Valladolid,
2002.
|
|
“Comportamiento de la hipocalcemia postquirúrgica tras
tiroidectomía” en “XVII Asamblea
de la Sociedadad
Extremeña de O.R.L. y Patología Cervicofacial”, Don Benito, 2003.
|
|