Las Matemáticas en la Enseñanza Secundaria

Exponencial y logarimo

José Luis Bravo

Curso 2020/2021

Índice

Las funciones exponencial y logaritmo

La función exponencial como serie de potencias La función logaritmo

Introducción

Existen varias definiciones equivalentes de la función exponencial:

- 1. $\exp(x) := \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n$.
- 2. $\exp(x) := \sum_{n=0}^{\infty} \frac{x^n}{n!}$
- 3. exp(x) es la única solución del p.v.i.

$$y'(x) = y(x), y(0) = 1.$$

4. Sea x > 0 y sea, por definición,

$$\log x = \int_1^x \frac{dt}{t}.$$

Entonces la exponencial es la inversa de la función log.

5. La función exponencial es la única función continua tal que

$$f(1) = e, \quad f(x + y) = f(x)f(y).$$

La exponencial como serie de potencias

Proposición

La serie de potencias

$$\sum_{n=0}^{\infty} \frac{x^n}{n!},$$

es absolutamente uniformemente convergente en todo compacto de \mathbb{R} .

Definición

Denominaremos función exponencial, denotada exp, a la función continua (analítica) definida para todo $x \in \mathbb{R}$ por

$$\exp(x) := \sum_{n=0}^{\infty} \frac{x^n}{n!},$$

Proposición

Sean $a, b \in \mathbb{R}$. Se verifica

$$\exp(a)\exp(b)=\exp(a+b).$$

Corolario

Para todo $x \in \mathbb{R}$, $\exp(x) \exp(-x) = 1$.

Proposición

La función exponencial es estrictamente positiva y estrictamente creciente para todo $x \in \mathbb{R}$. Además,

$$\lim_{x \to \infty} \exp(x) = +\infty, \quad \lim_{x \to -\infty} \exp(x) = 0.$$

Proposición

Para todo $x \in \mathbb{R}$, se verifica

$$\exp'(x) = \exp(x), \quad \exp(0) = 1.$$

La exponencial como serie de potencias

Veamos ahora la relación entre la exponencial y el número e.

Definición

Se define el número e como

$$e := exp(1) = \sum_{n=0}^{\infty} \frac{1}{n!}.$$

Proposición

Se verifica

$$e:=\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n.$$

La función exponencial La exponencial como serie de potencias

Teorema

El número e es irracional.

La exponencial como serie de potencias

Dados $x, a \in \mathbb{R}, a > 0$, definimos

$$a^x := \sup_{p \le x, \ p \in \mathbb{Q}} a^p.$$

Proposición

Para todo $x \in \mathbb{R}$, se verifica

$$\exp(x) = e^x$$
.

Teorema

Sea

$$exp(x) := \sum_{n=0}^{\infty} \frac{x^n}{n!},$$

Para todo $x \in \mathbb{R}$, se verifica:

- 1. exp(x) es continua y diferenciable.
- 2. exp'(x) = exp(x).
- 3. exp(x) es estrictamente creciente y exp(x) > 0.
- 4. exp(x + y) = exp(x)exp(y).
- 5. $\exp(x) \to +\infty$ cuando $x \to +\infty$ y $\exp(x) \to 0$ cuando $x \to -\infty$.
- 6. $\lim_{x\to+\infty} x^n exp(-x) = 0$ para todo $n \in \mathbb{N}$.

Como la función exp es estrictamente creciente, existe su función inversa.

Definición

Se define el logaritmo natural, In, como la función inversa de exp, es decir, como la única función tal que

$$ln(exp(x)) = x$$
, para todo $x \in \mathbb{R}$,

Equivalentemente,

$$\exp(\ln(x)) = x$$
, para todo $x > 0$, $x \in \mathbb{R}$.

La exponencial como serie de potencias

Proposición

Para todo x > 0,

$$ln'(x) = 1/x$$
.

En particular, para todo x > 0,

$$\ln(x) = \int_1^x \frac{dt}{t}.$$

Proposición

Para cada $x, y \in \mathbb{R}^+$ se verifica

$$\ln(xy) = \ln x + \ln y.$$

A partir de las funciones exponencial y logaritmo, podemos definir la potencia de modo directo.

Para x > 0, $x \in \mathbb{R}$ y $n \in \mathbb{N}$, tenemos que

$$x^n = \exp(n \ln x), \quad x^{\frac{1}{n}} = \exp\left(\frac{\ln x}{n}\right).$$

Luego, para cada q racional,

$$x^q = \exp(q \ln x)$$
.

Definimos *potencia* $\alpha \in \mathbb{R}$ de x > 0 como

$$x^{\alpha} := \exp(\alpha \ln x), \quad \text{para } x, \alpha \in \mathbb{R}, \ x > 0.$$

La exponencial como serie de potencias

Fijado $\alpha \in \mathbb{R}$, definimos para cada $x \in \mathbb{R}$, x > 0,

$$\mathbf{X}^{\alpha} := \exp(\alpha \ln \mathbf{X}).$$

Proposición

Se verifica que la derivada de x^{α} respecto de x es

$$(\mathbf{X}^{\alpha})' = \alpha \mathbf{X}^{\alpha - 1}$$

y una primitiva es

$$\int x^{\alpha} dx = \begin{cases} \ln x & \text{si } \alpha = -1 \\ \frac{x^{\alpha+1}}{\alpha+1} & \text{si } \alpha \neq -1. \end{cases}$$

Teorema

Sea \ln la función definida implícitamente para x>0 como

$$ln(exp(x)) = x$$
.

Para todo $x \in \mathbb{R}^+$, se verifica:

- 1. In x es continua y diferenciable.
- **2.** $\ln' x = \frac{1}{x}$.
- 3. $\ln x$ es estrictamente creciente $y(x-1)\ln x > 0$ si $x \neq 1$.
- **4.** $ln(xy) = ln x + ln y para todo y \in \mathbb{R}^+$.
- 5. $\ln x \to +\infty$ cuando $x \to +\infty$ $y \ln \to -\infty$ cuando $x \to 0^+$.
- 6. $\lim_{x\to+\infty} x^{-\alpha} \ln x = 0$ para todo $\alpha > 0$, $\alpha \in \mathbb{R}$.

La función logaritmo

Una segunda aproximación es comenzar definiendo la función logaritmo.

Definición

Si x > 0, definimos el logaritmo natural o neperiano de x, ln x, como

$$\ln x := \int_1^x \frac{dt}{t}.$$

La función logaritmo

Teorema

Si x, y > 0, entonces

$$\ln(xy) = \ln x + \ln y.$$

Corolario

Para todo número natural n y todo x > 0,

$$\ln(x^n) = n \ln x.$$

Corolario

Si x, y > 0, entonces

$$\ln\left(\frac{x}{y}\right) = \ln x - \ln y.$$

Proposición

La función \ln es estrictamente creciente y su imagen es \mathbb{R} . En particular

$$\lim_{x\to +\infty} \ln x = +\infty, \quad \lim_{x\to 0^+} \ln x = -\infty.$$

Definición

Definimos la función exponencial, exp, como la función inversa de In. Es decir,

$$\exp(\log(x)) = x$$
, para todo $x > 0$.

Por la proposición anterior, la exponencial está bien definida y su dominio es \mathbb{R} .

La función logaritmo

Teorema

La función exponencial verifica

- 1. $\exp'(x) = \exp(x)$ para todo $x \in \mathbb{R}$.
- 2. $\exp(x + y) = \exp(x) \exp(y)$ para todo $x, y \in \mathbb{R}$.

Definición

Definimos el número e como

$$e := \exp(1)$$
.

Equivalentemente, e está definido implícitamente como

$$1=\int_1^e\frac{dt}{t}.$$

La función logaritmo

Proposición

Para cada número racional q,

$$\exp(q) = e^q$$
.

Análogamente, si a > 0, para todo x racional se verifica que

$$a^{x} = \left(e^{\ln(a)}\right)^{x} = e^{x \ln a}.$$

Por lo que la siguiente definición extiende la definición de exponencial sobre los racionales.

Definición

Si a > 0, definimos la función exponencial de a como

$$a^x := \exp(x \ln a)$$
.

La función logaritmo

Teorema

Si a > 0, entonces

- 1. $(a^b)^c = a^{bc}$ para todo $b, c \in \mathbb{R}$.
- 2. $a^1 = a y a^{x+y} = a^x a^y$ para todo $x, y \in \mathbb{R}$.

A partir de la definición anterior, es sencillo obtener que

$$\left(g(x)^{h(x)}\right)'=g(x)^{h(x)}\left(h'(x)\ln g(x)+h(x)\frac{g'(x)}{g(x)}\right).$$

En particular, si $f(x) = x^a$, entonces

$$f'(x) = ax^{a-1}.$$

La función logaritmo

Teorema

Si f es diferenciable y

$$f'(x) = f(x)$$
, para todo $x \in \mathbb{R}$,

entonces existe $c \in \mathbb{R}$ tal que

$$f(x) = ce^x$$
, para todo $x \in \mathbb{R}$.

Teorema

Si f es continua y

$$f(x + y) = f(x)f(y)$$
, para todo $x, y \in \mathbb{R}$,

entonces o bien f(x) = 0 para todo $x \in \mathbb{R}$ o existe a > 0 tal que

$$f(x) = a^x$$
, para todo $x \in \mathbb{R}$.

La función logaritmo

Teorema

Para todo natural n,

$$\lim_{x\to\infty}\frac{e^x}{x^n}=\infty.$$

Teorema

Para todo $x \in \mathbb{R}$, se verifica

$$e^{x}:=\sum_{n=0}^{\infty}\frac{x^{n}}{n!}.$$

Aplicaciones de la exponencial y el logaritmo

- 1. Desintegración radioactiva. Prueba del carbono 14.
- 2. Crecimiento de poblaciones. Modelo de Malthus y logístico.
- 3. Ley de enfriamiento de Newton.
- 4. Acústica: $B = 10 \log_{10} I/I_0$, donde $I_0 = 10^{-12} w/m^2$ es el umbral de audición.
- 5. Sismología: Escala Richter

$$M = \log A + 3\log(8\Delta t) - 2,92,$$

- ► A: Amplitud de las ondas en milímetros tomadas del sismógrafo.
- Δt: tiempo en segundos desde el inicio de las ondas primarias al de las ondas secundarias.
- M es el valor en la escala, igual para terremotos que liberan la misma cantidad de energía.
- 6. Escalas logarítmicas y semilogarítmicas.