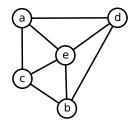
Introdución a la Teoría de Grafos

José Luis Bravo Trinidad

Las Matemáticas en la Enseñanza Secundaria Curso 2018-2019

Mapas y coloraciones

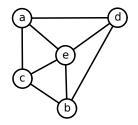


Un grafo es **plano** si admite una "representación gráfica" en el plano de modo que no se corten las aristas.

Dicha representación gráfica se denomina **mapa**.

Dado un mapa, se denomina **región** a cada una de las componentes conexas del complementario en \mathbb{R}^2 del mapa.

Se denomina **grado de una región** a la longitud del "camino que la rodea".



Teorema

Sea G un grafo plano y R el conjunto de regiones de un mapa asociado. Entonces

$$\sum_{r\in R} gr(r_i) = 2\#E.$$

Teorema (Fórmula de Euler)

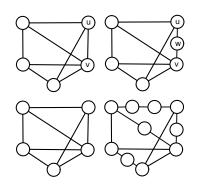
Sea M un mapa conexo, que representa al grafo G = (V, E). Entonces

$$\#V - \#E + \#R = 2.$$

Como consecuencia, podemos determinar si un grafo no es plano:

- Si es conexo y #E > 3#V 6.
- Si es conexo, no contiene un clique de tres vértices y #E > 2#V 4.

Subdivisión elemental

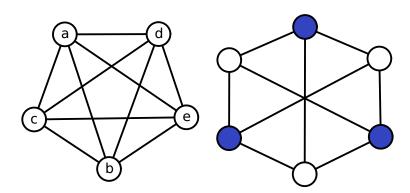


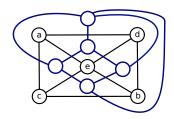
Una **subdivisión elemental** de un grafo G a partir de una arista $\{u, v\}$ es un nuevo grafo en el que la arista $\{u, v\}$ se susitituye por dos aristas $\{u, w\}, \{w, v\}$, donde w es un nuevo vértice.

Una **subdivisión** de un grafo G es un grafo resultante de hacer un número finito de subdivisiones elementales a G (puede ser 0).

Teorema (Teorema de Kuratowsky)

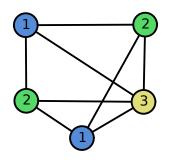
Un grafo G es plano si y solo si no contiene ningún subgrafo que sea isomorfo a una subdivisión de K_5 o $K_{3,3}$.





Dos regiones son **adyacentes** si tienen una arista en común. El **pseudomultigrafo dual** G_M de un mapa M es el pseudomultigrafo (plano) construido del siguiente modo:

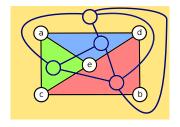
- $oldsymbol{0}$ Los vértices de G_M son las regiones de M.
- ② Para cada arista $e \in E$, definimos una arista de G_M que conecta las dos regiones adyacentes a e.



Una **coloración** de G con k colores es una aplicación $\gamma \colon V \to C$ de modo que si $u, v \in V$ son vértices adyacentes, entonces $\gamma(u) \neq \gamma(v)$.

Una coloración de las regiones de un mapa es una aplicación $\gamma \colon R \to C$ de modo que si $r,s \in R$ son regiones adyacentes, entonces $\gamma(r) \neq \gamma(s)$.

Teorema de los cuatro colores



Teorema (K. Appel, W. Haken, J. Koch)

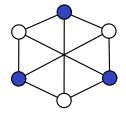
Todo grafo plano admite una coloración con a lo sumo cuatro colores.

Corolario

Todo mapa admite una coloración de las regiones con a lo sumo cuatro colores de modo que dos regiones adyacentes tengan distinto color.

Mapas Teorema de K. Kuratowsky Pseudomultigrafo dual Coloración de grafos

Grafos bipartitos



Un grafo se dice que es **bipartito** si admite una coloración con dos colores.

Un grafo se dice **bipartito completo** si es bipartito y todo vértice del primer color es adyacente a todo vértice del segundo color.

Los denotaremos K_{n_1,n_2} (siendo n_1, n_2 el número de vértices de cada color).

Teorema

Un grafo es bipartito si y solo si no tiene ciclos con longitud impar.

Denominamos **número cromático** de un grafo G al menor número de colores que son necesarios para colorearlo.

Dado un grafo G y $n \in \mathbb{N}$. Denotaremos p(G, n) al número de coloraciones distintas con n colores que admite el grafo G. p(G, x) es un polinomio y se denomina **polinomio cromático**.

Teorema

Sea G un grafo y u, v dos vértices adyacentes. Sea e el lado que los une. Entonces

$$p(G_e, n) = p(G, n) + p(G'_e, n),$$

donde G_e es el subgrafo de G obtenido al eliminar e de G y G_e' es el grafo obtenido al identificar en G_e los vértices u y v.