STema 3 Ejercicios S

- 1. Probar que la ecuación $e^x + 2x = 0$ tiene una única raíz. Acotar dicha raíz mediante el método de la bisección con un error menor de 10^{-2} .
- 2. Aplicar el Método de bisección a $f(x) = x^3 16 = 0$, a fin de determinar la raíz cúbica de 16 con un error menor que 0.125.
- 3. Estudiar si el método del punto fijo para la función $F(x) = -\sin(x) + x + 1/2$ converge para condiciones iniciales en el intervalo [0, 1].
- 4. Acotar el error cometido al aplicar tres pasos del método del punto fijo para calcular un punto fijo de $F(x) = -\sin(x) + x + 1/2$ partiendo de $x_0 = 0.5$. Comprobar las condiciones en el intervalo [0, 1].
- 5. Encontrar un intervalo donde la función $F(x) = \exp(-x)/3$ tenga un punto fijo y tal que el método del punto fijo converja para cualquier valor inicial en dicho intervalo.
- 6. Let Probar que si F es una función de clase C^1 y [a,b] es un intervalo tal que $F(x) \in [a,b]$ para todo $x \in [a,b]$ y 0 < F'(x) < 1, entonces la sucesión obtenida al aplicar el método del punto fijo converge monótonamente a un punto fijo de F.
- 7. **Le** Probar que si F es una función de clase C^1 y [a,b] es un intervalo tal que $F(x) \in [a,b]$ para todo $x \in [a,b]$ y -1 < F'(x) < 0, entonces F tiene un único punto fijo c en dicho intervalo, y si x_n es la sucesión obtenida al aplicar el método del punto fijo, entonces $(x_n c)(x_{n+1} c) < 0$ y $|x_n c|$ converge monotonamente (decreciente) a cero.
- 8. Pemostrar que si F es una función de clase C^1 y tiene un punto fijo x_0 tal que $|F'(x_0)| < 1$, entonces existe un intervalo tal que el método del punto fijo converge para toda condición inicial en dicho intervalo.
- 9. Encontrar una solución de $e^x 4x \sin(x) = 0$ en el intervalo [0,1] mediante el método del punto fijo. Probar al menos tres transformaciones de la ecuación y estudiar la convergencia del método.
- 10. Le Discutir la convergencia del método del punto fijo para la función $F(x) = ae^x$, $a \in \mathbb{R}$, para condiciones iniciales en el intervalo [0,1].
- 11. Aplicar cuatro pasos del Método de Newton-Raphson para encontrar una raíz cúbica de 50 partiendo de $x_0 = 4$. Acotar el error.
- 12. Aproximar mediante 4 iteraciones del método de Newton-Raphson partiendo de $x_0 = -0.5$ la posición del mínimo de $f(x) = e^x + x^2/2$. Acotar el error.
- 13. Le Obtener una función diferenciable, con un único cero en [0,1] tal que al aplicar el método de Newton-Raphson partiendo de $x_0 = 0$, obtengamos $x_1 = 1$, $x_2 = 0$, ...
- 14. Le Obtener un ejemplo de función diferenciable tal que al aplicar el método de Newton-Raphson, obtengamos un 3-ciclo, es decir, la sucesión repita siempre los mismos tres valores.
- 15.

 Supongamos que las ecuaciones del movimiento de un proyectil son

$$y = f(t) = 4605(1 - e^{-t/15}) - 147t, \quad x = r(t) = 22400(1 - e^{-t/15}).$$

Determine el tiempo transcurrido hasta el impacto con error menor que 10^{-10} .

- 16. \blacksquare Halle el punto de la parábola $y=x^2$ que está más cerca del punto (3,1) con error menor que 10^{-10} . Utilizar el método de Aitken para estimar el error.
- 17. \blacksquare Halle el punto de la curva y = sen(x sen(x)) que está más cerca del punto (2,1,0,5) con error menor que 10^{-10} . Utilizar el método de Aitken para estimar el error.

- 18. \blacksquare Halle con error menor que 10^{-10} , el valor de x para el que es mínima la distancia vertical entre las gráficas de las funciones $f(x) = x^2 + 2$ y $g(x) = x/5 \sin(x)$. Utilizar el método de Aitken para estimar el error.
- 19. \square La curva formada por un cable colgante se llama catenaria. Supongamos que el punto más bajo de una catenaria es el origen (0,0), entonces la ecuación de la catenaria es $y = C \cosh(x/C) C$. Si queremos determinar la catenaria que pasa por los puntos $(\pm a, b)$, entonces debemos resolver la ecuación $b = C \cosh(a/C) C$, donde la incógnita es C.
 - (a). Pruebe que la catenaria que pasa por los puntos $(\pm 10,6)$ es

$$y = 9,1889 \cosh(x/9,1889) - 9,1889.$$

- (b). Halle la catenaria que pasa por los puntos $(\pm 12, 5)$.
- 20. Let $Si \ p$ es una raíz de multiplicidad n de una función f de clase n+1, entonces $f(x)=(x-p)^nq(x)$, donde $q(p) \neq 0$.
 - (a). Pruebe que h(x) = f(x)/f'(x) tiene una raíz simple en p.
 - (b). Pruebe que si aplicamos elmétodo de Newton-Raphson para hallar la ráiz simple p de h(x), entonces el método queda:

$$x_{k+1} = x_k - \frac{f(x_k)f'(x_k)}{(f'(x_k))^2 - f(x)f''(x)}$$

- (c). Aplicar el método anterior para obtener la raíz de $f(x) = sen(x^3)$ partiendo de $x_0 = 1$. Compararlo con el método usual de Newton-Raphson.
- 21. Aproximar una solución de

$$\begin{cases} x - y^3/10 - z^2/20 = 1, \\ x^2/10 + y - z^3/20 = 1, \\ x/20 - y^3/20 + z = 1, \end{cases}$$

aplicando tres pasos del método del punto fijo, partiendo de (1,1,1)

22. Aproximar una solución de

$$\begin{cases} x - y^3/10 - z^2/20 = 1, \\ x^2/10 + y - z^3/20 = 1, \\ x/20 - y^3/20 + z = 1, \end{cases}$$

aplicando tres pasos del método de Newton-Raphson, partiendo de (1,1,1).

23. Aproximar la distancia entre las curvas paramétricas definidas mediante las ecuaciones

$$r(t) = (\cos t, 2\sin t) \quad t \in [0, 2\pi]$$

y

$$s(t) = (4 - \sin t \cos t, 5 + \cos 2t)$$
 $t \in [0, 2\pi].$

Elegir el método y aplicar cinco iteraciones.

24. Aproximar la ecuación de una recta tangente común a las curvas paramétricas

$$r(t) = (\cos t, \sin t) \quad t \in [0, 2\pi]$$

у

$$s(t) = (3 + 2\sin t, \cos t)$$
 $t \in [0, 2\pi].$

Elegir el método y aplicar cinco iteraciones.