2. Problemas de resolución numérica de ecuaciones diferenciales ordinarias

Problema 2.1 Probar que el método de Heun es de segundo orden.

Problema ♣º 2.2 Probar que el método de Euler implícito es de primer orden¹.

Problema 2.3 Estudiar la consistencia (en función de α de la siguiente familia de métodos de un paso:

$$x_{n+1} = x_n + h\left(\left(1 - \frac{\alpha}{2}\right)f(t_n, x_n) + \frac{\alpha}{2}f(t_{n+1}, x_{n+1})\right).$$

Problema 2.4 Probar que el método de Heun es un método de Runge-Kutta y obtener las fórmulas de cuadratura.

Problema 2.5 Obtener la función ϕ que describe el método de Taylor de orden tres para el PVI

$$x' = -x + 2\sin(t), \quad x(0) = 1.$$

Problema 2.6 Aplicar tres pasos del método de Euler para obtener una aproximación del valor en t=1 de la solución del PVI

$$\begin{cases} x' = x - y \\ y' = xy \end{cases}$$

con x(0) = 1, y(0) = 0.

Problema 2.7 Determinar las regiones de estabilidad absoluta del método de Heun, del método del trapecio y del método de Taylor de orden dos.

Problema 2.8 ¿Puede un método de la forma

$$x_{n+2} - 2\alpha x_{n+1} + \alpha^2 x_n = h(\beta_1 f_{n+1} + \beta_0 f_n)$$

ser convergente?

¹Nótese que en este método, $\phi(t,x,h) = f(t+h,y)$, donde y es la solución de y = x + hf(t+h,y). Desarrollar ϕ en serie de Taylor respecto de h hasta primer orden (con lo que los errores dependen de las derivadas segundas).

Problema 2º 2.9 ¿Puede un método de la forma

$$x_{n+2} - 2x_{n+1} + \alpha_0 x_n = h(\beta_2 f_{n+2} + \beta_1 f_{n+1} + \beta_0 f_n)$$

ser convergente? Razonar la respuesta.

Problema 2.10 ¿Para qué valores de α y β es el método

$$x_{n+2} + \alpha x_{n+1} + x_n = h(f_{n+2} + \beta f_{n+1} + f_n)$$

convergente? Razonar la respuesta.

Problema 2.11 ¿Para qué valores de α y β son los métodos de la forma

$$x_{n+2} + x_{n+1} + \alpha x_n = h(f_{n+2} + \beta f_{n+1} + f_n)$$

convergentes?

Problema 2.12 ¿Existe algún método de la forma

$$x_{n+2} - 2x_{n+1} + x_n = h(\beta_1 f_{n+1} + \beta_0 f_n)$$

que sea convergente?

Problema 2.13 ¿Pueden existir β_0, \ldots, β_4 tales que el método

$$x_{n+4} - x_n = h(\beta_0 f_n + \beta_1 f_{n+1} + \beta_2 f_{n+2} + \beta_3 f_{n+3} + \beta_4 f_{n+4})$$

sea de orden 7? (donde f_n denota $f(t_n, x_n)$)

Problema 2.14 ¿Pueden existir $\beta_0, \beta_1, \beta_2$ tales que el método

$$x_{n+2} - x_n = h(\beta_0 f_n + \beta_1 f_{n+1} + \beta_2 f_{n+2})$$

sea de orden 5?

Problema 2.15 ¿Puede un método lineal de dos pasos con $\alpha_2 = 1$, $\alpha_1 > 1$, $\alpha_0 = 0$ ser convergente?

Problema 2.16 Considérense los métodos multipaso de la forma

$$x_{n+3} - x_{n+2} - x_{n+1} + x_n = h(\beta_2 f_{n+2} + \beta_1 f_{n+1} + \beta_0 f_n)$$

- a) ¿Hay algún método de ese tipo que sea convergente?
- b) ¿Cuál es el orden máximo de un método de ese tipo?
- c) Si $\beta_0 = 1$, ¿hay alguno de orden 2? ¿y de orden 3?

Problema 2.17 Para cada $a \in \mathbb{R}$ considerar el método dado por

$$x_{n+2} + (a-1)x_{n+1} - ax_n = \frac{h}{12} \Big((5-a)f_{n+2} + 8(a+1)f_{n+1} + (5a-1)f_n \Big)$$

- a) ¿Para que valores de a es el método que resulta convergente?
- b) Estudiar el orden en función del valor de a.
- c) Estudiar la estabilidad relativa en el caso a = 1/2.

Problema 2.18 ¿Existe algún método lineal explícito tal que

$$C_0 = C_1 = 0, \quad C_2 \neq 0, \quad C_3 = 0$$
?

Problema 2.19 ¿Puede un método de 4 pasos, que verifica la condición de la raíz, ser de orden 7?

Problema 2.20 ¿Puede un método lineal explícito de 7 pasos ser de orden 15?

Problema 2.21 ¿Puede un método lineal implícito de 7 pasos, que verifica la condición de la raíz, ser de orden 14?

Problema 2.22 ¿Puede un método lineal de 8 pasos y orden 11 verificar la condición de la raíz?

Problema 2.23 Pon un ejemplo de método lineal de 2 pasos implícito que no sea convergente.

Problema 2.24 ¿Existe algún método lineal de 2 pasos explícito de orden 3? Si la respuesta es negativa, razonarla. Si es positiva, dar un ejemplo.

Problema 2.25 Considérese el problema de Cauchy $y' = y^2 \cos(\pi x)$, y(0) = 1. Calcular una aproximación de la solución exacta en el punto x = 1 utilizando el método de Taylor de segundo orden con paso h = 1/2.

Problema 2.26 Aplicar el método

$$x_{n+2} - x_{n+1} = \frac{h}{2} (3f_{n+1} - f_n)$$

al problema x'=t+x, x(0)=1, para calcular una aproximación de la solución exacta en el punto t=3/5, utilizando el paso h=1/5. Las aproximaciones iniciales necesarias calcularlas con el método de Taylor de segundo orden.

Problema Lº 2.27 Considérese el problema de Cauchy $x'=t^2x$, x(0)=1. Calcular una aproximación de la solución exacta en el punto t=2/3 utilizando el método

$$x_{n+2} - x_{n+1} = \frac{h}{2}(3f_{n+1} - f_n)$$

con paso h=1/3. Las aproximaciones iniciales necesarias calcularlas con el método de Taylor de tercer orden.

Problema 2.28 Estudiar el orden y la convergencia del método

$$x_{n+2} - x_{n+1} = \frac{h}{2}(3f_{n+1} - f_n).$$

Problema 2.29 Estudiar el orden y la convergencia del método

$$x_{n+4} = x_n + \frac{4h}{3}(2f_{n+3} - f_{n+2} + 2f_{n+1}).$$

Problema 2.30 Pon un ejemplo de método lineal de 3 pasos implícito que no sea convergente.

Problema 2.31 ¿Puede ser convergente un método de la forma

$$x_{n+4} - 3x_{n+3} + \frac{13}{4}x_{n+2} - \frac{3}{2}x_{n+1} + \frac{1}{4}x_n = h\left(\beta_3 f_{n+3} + \beta_2 f_{n+2} + \beta_1 f_{n+1} + \beta_0 f_n\right)?$$

Problema 2.32 Se trata de aplicar el método

$$x_{n+3} - x_{n+2} = \frac{h}{12} (23f_{n+2} - 16f_{n+1} + 5f_n)$$

al problema de valor inicial $x' = t^2 + x$, x(1) = 2, para obtener una aproximación de la solución exacta en el punto t = 5, utilizando el paso h = 1.

- a) Calcular las aproximaciones iniciales necesarias utilizando el método de Taylor de segundo orden.
- b) Indicar como se calcularía la aproximación en el punto t = 5.

Repetir el problema pero calculando las aproximaciones iniciales necesarias con el método de Runge-Kutta

$$x_{i+1} = x_i + hf\left(x_i + \frac{h}{2}, y_i + \frac{h}{2}f(x_i, y_i)\right).$$

Problema 2.33 Dado el método multipaso

$$x_{n+2} - \frac{4}{5}x_{n+1} - \frac{1}{5}x_n = \frac{h}{5}(2f_{n+2} + 4f_{n+1})$$

- a) ¿De qué orden es?
- b) ¿Es convergente?
- c) Demostrar que es relativamente estable para $\bar{h} \in (-1, 1)$.

Problema 2.34 Dado el método multipaso

$$x_{n+4} = x_{n+3} + \frac{h}{24} (9f_{n+4} + 19f_{n+3} - 5f_{n+2} + f_{n+1})$$

- a) ¿De qué orden es?
- b) ¿Es convergente?

Problema 2.35 a) Señalar a que familia o familias de métodos pertenece el siguiente:

$$x_{i+1} - x_i = \frac{h}{2} \Big(f(t_i, x_i) + f(t_i + h, x_i + hf(t_i, x_i)) \Big)$$

- \Box Un paso \Box Multipaso \Box Taylor
- \square Runge-Kutta \square Adams-Bashforth \square Adams-Moulton
- b) ¿Que tendríamos que hacer para demostrar que es convergente?

Problema 2º 2.36 Demostrar que si un método lineal de k pasos es convergente, entonces $\sum_{j=0}^{k} \beta_j \neq 0$.

Problema 2º 2.37 Demostrar que un método lineal de k pasos explícito Universidad de Extranatura. tal que

$$\alpha_k = 1$$
, $\alpha_{k-1} = -1$, $\alpha_{k-2} = \dots = \alpha_0 = 0$