Problemas de Fundamentos de Matemáticas (Temas 1,2,3)

Ingeniería Técnica en Diseño Industrial

- 1. Calcula, si existen, cotas superiores e inferiores, supremo e ínfimo, y máximo y mínimo, de los siguientes conjuntos:
 - (a) $\{2, 2.2, 2.22, 2.222, \ldots\}$
 - (b) {0.9, 0.99, 0.999, ...}
 - (c) $\{1, 0.9, 1.1, 0.99, 1.11, \ldots\}$
 - (d) $\{x \in \mathbb{R} : x^2 + x + 1 \ge 0\}$
 - (e) $\{x \in \mathbb{R} : x^2 + x 1 < 0\}$
 - (f) $\{x \in \mathbb{R} : x^2 + x 1 < 0\}$
 - (g) $\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$
 - (h) $\left\{\frac{1}{n}: n \in \mathbb{Z} \setminus \{0\}\right\}$
 - (i) $\left\{ \frac{1}{n} + (-1)^n : n \in \mathbb{N} \right\}$
- 2. Resuelve las siguientes ecuaciones:
 - (a) $|x^2 + x| 6 = 2$
 - (b) $|x-1||x^2+x+1|=0$
 - (c) |x-1| = |x-4|
- 3. Resuelve las siguientes inecuaciones, representando su solución en la recta real:
 - (a) |x+4| < 2
 - (b) |9 2x| < 1
 - (c) |x+3| + |x-1| > 8
 - (d) 0 < |x 3| < 5
 - (e) |x+3| + |x-1| < 3

- (f) |x+1| < |x-3|
- (g) $|3x+1| \ge 1$
- (h) |x+3| + |x-1| < 6
- (i) x+3|-|x-1|<2
- 4. Prueba que, para cualesquiera $a, b \in \mathbb{R}$, se cumple que: $ab \leq (a^2+b^2)/2$.
- 5. Prueba que si $0 \le a \le b$, entonces: $a \le \sqrt{ab} \le (a+b)/2 \le b$.
- 6. Ordena, para x>1, los siguientes números reales: 1, $x, \sqrt{x}, x^2, 1/x,$ $1/\sqrt{x} \ y \ 1/x^2$.
- 7. Ordena los números del ejercicio anterior para 0 < x < 1.
- 8. Compara para x > 0, $\sqrt{\frac{x}{1+x}}$ y $\sqrt{\frac{x+1}{x+2}}$.
- 9. Opera y simplifica cada una de las siguientes expresiones complejas:
 - (a) i^2723
 - (b) $(2-3i)(1+i) (1+2i)^2$
 - (c) $\frac{1+i}{(1-i)^2}$
 - (d) $(2-i)^5$
 - (e) i^{-1}
 - (f) (3-2i)(1+3i)(2-i)
 - (g) $\frac{i+i^2+i^3+i^4+i^5}{1+i}$ (h) $\frac{(1+i)^3}{(1-i)^3}$

 - (i) i^{-221}
 - (j) $\frac{2i(3+i)+(1-i)(2+i)}{i^3(1+2i)}$
 - (k) $\sum_{k=0}^{100} i^k$
 - (1) $\sqrt{5+12i}$
- 10. Resuelve en $\mathbb C$ las ecuaciones:
 - (a) $\frac{3-i}{x} = 4 + 2i$
 - (b) $\frac{z}{2+i} + \frac{3z-i}{2-i} = 3$
 - (c) $x^2 + 2x + 5 = 0$.

- 11. Halla $x, y \in \mathbb{R}$ para que $\frac{3+xi}{1+2i} = y + 2i$.
- 12. Halla el valor de $a \in \mathbb{R}$ para que $\frac{a+3i}{1+i}$ sea imaginario puro.
- 13. Halla $z \in \mathbb{C}$ tal que $\bar{z} + w = 2 + 3i$ y w = 3 + i.
- 14. Halla $a \in \mathbb{R}$ para que $\left| \frac{a+2i}{1-i} \right| = 2$.
- 15. Prueba que si |z|<1 entonces $|Re(1-\bar{z}+z^2)<3$ y $Im(1-\bar{z}+z^2)<2$.
- 16. Prueba que si |z| = 2, entonces:

$$\left| \frac{1}{z^4 - 4z^2 + 3} \right| \le \frac{1}{3}$$

- 17. Prueba que, para cualquier $z \in \mathbb{C}$, se cumple: $|Rez| + |Imz| \le |z|\sqrt{2}$.
- 18. Expresa en forma polar y en forma exponencial los siguientes números complejos:

$$3 + 3i$$
, $-1 + \sqrt{3}i$, -1 , $-2i$, $-2 - 2\sqrt{3}i$

- 19. Calcula: $(1+i)^2 0$ y $(\sqrt{3}-i)^3 0$.
- 20. Halla las siguientes raíces:

$$\sqrt[3]{1}$$
, $\sqrt[3]{i}$, $\sqrt[4]{-1}$, $\sqrt{1-i}$, $\sqrt[3]{1+i}$, $\sqrt[6]{1-\sqrt{3}i}$

- 21. Halla la suma y el producto de las raíces enésimas de la unidad.
- 22. Encuentra las soluciones de la ecuación $z^3 + 8 = 0$ que caen dentro del recinto del plano complejo definido por |z + 1| < 2.
- 23. Halla todos los complejos $z \in \mathbb{C}$ tales que $z^3 |z|^2 = 0$.
- 24. ¿Qué curva o conjunto geométrico representa cada una de las siguientes igualdades o desigualdades?
 - (a) |z i| = |z + i|
 - (b) |z-1|=2
 - (c) |z 1 + 2i| = 3
 - (d) |z i| + |z + i| = 4
 - (e) |z i| < |z + i|

(f)
$$0 < |z - 1| < 2$$

(g)
$$|z-2|+|z+2|=6$$

(h)
$$||z-2|-|z+2||=2$$

En los casos de igualdad, encuentra su ecuación en las variables reales x e y (z=x+iy).