Introducción a las ecuaciones diferenciales Sistemas depredador-presa de tipo Gause Detección de hipocalcemia tras una tiroidectomía Superficies de energía potencial Automatización agrícola

Introducción a la Investigación en Matemática Aplicada

Jose Luis Bravo Trinidad

21 de octubre de 2016

Superficies de energía potencial

Automatización agrícola

Introducción

Sistemas planos Problema 16 de Hilbert Problema del centro-foco

Ecuaciones diferenciales

Una ecuación diferencial:

$$F\Big(t,x(t),x'(t),\ldots,x^{(m)}(t)\Big)=0,\quad x(t)\in U\subset\mathbb{R}^n.$$

Una solución es una función x(t) que verifica la ecuación.

Ejemplo: x'(t) = x(t) es una ecuación diferencial y $x(t) = e^t + 2$ es una solución.

Algunos tipos especiales:

• Autónomo:
$$F\left(x(t),x'(t),\ldots,x^{(m)}(t)\right)=0$$

• De primer orden:
$$F(t,x(t),x'(t)) = 0$$

• Autónomo de primer orden:
$$x'(t) = F(x(t))$$
.

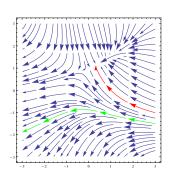
Sistemas planos

Son sistemas de la forma:

$$\begin{cases} x'(t) = f(x(t), y(t)), \\ y'(t) = g(x(t), y(t)) \end{cases}$$

donde f, g son funciones dadas.

Podemos representar la ecuación como un campo de vectores:



$$x'(t) = -1 - x^{2}(t) + y(t),$$

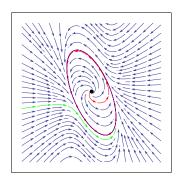
 $y'(t) = 1 + x(t) - y^{2}(t)$

Sistemas planos

Punto singular: Soluciones de

$$\begin{cases} 0 = f(x, y), \\ 0 = g(x, y) \end{cases}$$

 Ciclo límite: Soluciones "cerradas"



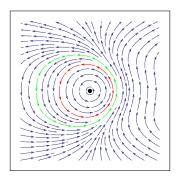
Problema 16 de Hilbert

Obtener una cota del número de ciclos límite del sistema

$$\begin{cases} x'(t) = P(x(t), y(t)), \\ y'(t) = Q(x(t), y(t)) \end{cases}$$

en términos únicamente de los grados de P y Q.

Problema del centro-foco de Poincaré

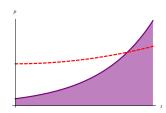


Caracterizar los sistemas polinómicos planos que tienen un centro.

Modelo de Malthus (crecimiento exponencial)

- c = n d tasa de nacimientos menos defunciones

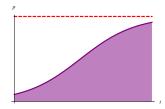
$$p'(t) = cp(t)$$



Modelo de Verhulst (ecuación logística)

- p(t) población
- c = n d tasa de nacimientos menos defunciones
- K capacidad del sistema

$$p'(t) = cp(t) - \frac{c}{K}p^2(t)$$

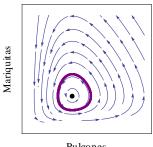


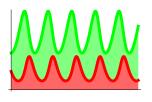
Modelo de Lotka-Volterra (depredador-presa)

$$\begin{cases} x' = Ax - Bxy, \\ y' = -Cy + Dxy \end{cases}$$

Figura: Depredador y presa

Modelo Lotka-Volterra (depredador-presa)





Pulgones

Moelo de Malthus Modelo de Verhulst Modelo de Lotka-Volterra Modelo de Gause

Un modelo de Gause

Consideremos

- x(t) la población de la presa
- y(t) la población del predador
- \bullet F(x) crecimiento de la presa en ausencia del predador
- $\phi(x)$ tasa de caza del predador
- $\psi(x)$ rendimiento de la caza
- ullet μ tasa de defunción del predador

$$\begin{cases} x' = F(x) - y\phi(x), \\ y' = y(\psi(x) - \mu) \end{cases}$$

donde
$$F(x) = rx(1-x)$$
, $\phi(x) = \psi(x) = x^{1/2}$, $k, r, \mu > 0$.

Moelo de Malthus Modelo de Verhulst Modelo de Lotka-Volterra Modelo de Gause

Estudio cualitativo

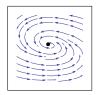
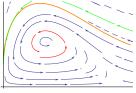
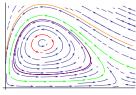


Figura: Estabilidad del punto crítico





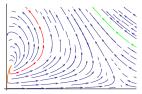
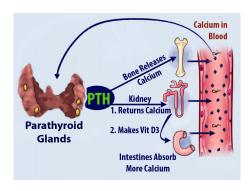


Figura: Dinámica global

Control del calcio iónico mediante la PTH



Modelo (muy) simplificado

Hipótesis de trabajo:

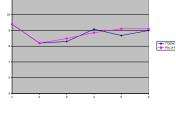
- La parte lineal domina la dinámica
- Se puede despreciar la difusión
- No es necesario considerar la vitamina D
- El calcio siempre vuelve al mismo nivel

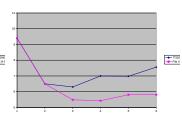
Modelo:

- C(t) concentración de calcio iónico en sangre
- P(t) concentración de PTH en sangre
- C₀ nivel de equilibrio del calcio iónico

$$\begin{cases} C'(t) = a(C(t) - C_0) + bP(t), \\ P'(t) = d(C(t) - C_0) \end{cases}$$

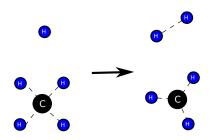
Resultados obtenidos



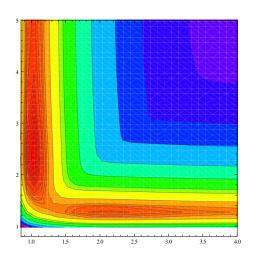


Reacción $CH_4 + H \rightarrow CH_3 + H_2$ Energía potencial Modelo Optimización

Reacción $CH_4 + H \rightarrow CH_3 + H_2$



Energía potencial



Modelo de PES (LEPS)

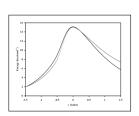
$$\frac{0.03812}{2} \left(D1HH\left(e^{-2\alpha HH(-ReHH+\sqrt{(-x0+x1)^2+(-y0+y1)^2+(-z0+z1)^2})}\right) - 2e^{-\alpha HH(-ReHH+\sqrt{(-x0+x1)^2+(-y0+y1)^2+(-z0+z1)^2})} + D3HHe^{-2\alpha HH(-ReHH+\sqrt{(-x0+x1)^2+(-y0+y1)^2+(-z0+z1)^2})} + 2e^{-\alpha HH(-ReHH+\sqrt{(-x0+x1)^2+(-y0+y1)^2+(-z0+z1)^2})}\right) + \frac{1}{2} \left(D1HH\left(e^{-2\alpha HH(-ReHH+\sqrt{(-x0+x2)^2+(-y0+y2)^2+(-z0+z2)^2})}\right) - 2e^{-\alpha HH(-ReHH+\sqrt{(-x0+x2)^2+(-y0+y2)^2+(-z0+z2)^2})}\right) + D3HH\left(e^{-2\alpha HH(-ReHH+\sqrt{(-x0+x2)^2+(-y0+y2)^2+(-z0+z2)^2})}\right) + 2e^{-\alpha HH(-ReHH+\sqrt{(-x0+x2)^2+(-y0+y2)^2+(-z0+z2)^2})}\right) + \dots$$

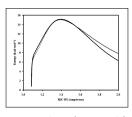
18 / 21

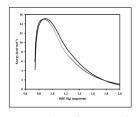
Optimización

Se introduce en la optimización:

- Energías
- Gradientes
- Frecuencias (Hessiana)







: en camino de reacción : en camino de reacción

: en distancia de enlace C-H

H-H

Automatización

Figura: Cosechadora de fresas

Introducción a las ecuaciones diferenciales Sistemas depredador-presa de tipo Gause Detección de hipocalcemia tras una tiroidectomía Superfícies de energía potencial Automatización agrícola

Automatización

