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Introducction

A surface is a set of points such
that (locally) is homeomorphic
to an open subset of a plane.

The interpolation consist of,
given some points that belong
to an unknown surface, to
obtain an equation such that
the surface defined by the
equation passes throught all the
original points.
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Introducction

A surface S in R is (locally) the graph of a function

f : R2 → R3, f (x , y) = (f1(x , y), f2(x , y), f3(x , y)),

that is, for some (open) set U,

S = {(f1(x , y), f2(x , y), f3(x , y)) : x , y ∈ U}.

There are two tangent directions in each point (x0, y0) of the
surface,

∂f

∂x
(x0, y0),

∂f

∂y
(x0, y0),

and one normal direction (that must be different from zero)

N(x0, y0) =
∂f

∂x
(x0, y0)× ∂f

∂y
(x0, y0),
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Introducction

A surface is defined as the
imagen of several functions as
above, such that they define the

same set in the intersections.

The normal to the surface
induces an orientation: two
tangen vectors are positively
oriented if their cross product
“points to the same direction”
as the normal.

A surface is orientable if we
may define it as the imagen of
several functions that induce the
same orientation in the
intersections.
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Introducction

A surface is closed if “it has no
borders”.

A surface is compact if it is
closed and bounded (contained
in a sphere).
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Introducction

A special surface is the graph of a function of two variables
f (x , y), that is

S = {(x , y , f (x , y) : x , y ∈ U},

where U is some region of R2.

Jose Luis Bravo Trinidad Interpolation in surfaces



7 / 23

Introducción
Interpolation of a function of two-variables

Triangulated surfaces

Rectangular grid
Scattered data

Introducción

In this section we will consider the interpolation of a function of
two variables.

(x , y)→ f (x , y).

We assume we have a list of points where we have
measured/evaluated the function.

Accordingly to how the points are distributed, we shall consider
two cases:

Regular grid.

Scattered points.
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Introduction

We assume we have some h > 0 and vectors:

pX = (x0, x1, . . . , xn), pY = (y0, y1, . . . , yn)

Moreover, we assume we know the set

Z = {f (x , y) : x ∈ pX , y ∈ pY }.
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Bilinear interpolation

Assume (x , y) is a point in the rectangle of the grid defined by

R = {(x , y) : xi ≤ x ≤ xi+1, yj ≤ y ≤ yj+1}.

We define the interpolation function L(x , y) with the following
procedure:

1 We do a linear interpolation of (xi , yj), (xi+1, yj) to obtain
L(x , yj).

2 We do a linear interpolation of (xi , yj+1), (xi+1, yj+1) to
obtain L(x , yj+1).

3 We do a linear interpolation of L(x , yj) and L(x , yj+1) to
obtain L(x , y).
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Bilinear interpolation

Alternatively, we may consider

L(x , y) = a0 + a1x + a2y + a3xy ,

and obtain a0, a1, a2, a3 from the (linear) equations

L(xi , yj) = f (xi , yj), L(xi+1, yj) = f (xi+1, yj)

L(xi , yj+1) = f (xi , yj+1), L(xi+1, yj+1) = f (xi+1, yj+1)
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Bicubic spline interpolation

Assume (x , y) is a point in the rectangle R. We define the bicubic
interpolation B(x , y) as

B(x , y) =
3∑

i=0

3∑
j=0

aijx
iy j ,

where {aij} are obtained solving the (linear) system:

B(x , y) = f (x , y), x ∈ {xi , xi+1}, y ∈ {yj , yj+1}
∂B

∂x
(x , y) =

∂f

∂x
(x , y), x ∈ {xi , xi+1}, y ∈ {yj , yj+1}

∂B

∂y
(x , y) =

∂f

∂y
(x , y), x ∈ {xi , xi+1}, y ∈ {yj , yj+1}

∂B

∂xy
(x , y) =

∂f

∂xy
(x , y), x ∈ {xi , xi+1}, y ∈ {yj , yj+1}
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Bicubic spline interpolation

The values of the derivatives of f at the points are estimated from
the values of the neighbors:

∂f

∂x
(xi , yj) =

f (xi+1, yj)− f (xi−1, yj)

xi+1 − xi−1
.

∂f

∂y
(xi , yj) =

f (xi , yj+1)− f (xi , yj−1)

yi+1 − yi−1
.

And analogously, the value of the cross derivative:

∂f

∂xy
(xi , yj) =

∂f
∂x (xi , yj+1)− ∂f

∂x (xi , yj−1)

yi+1 − yi−1
.
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Introduction

Assume we have a list of points P = {(x0, y0), . . . , (xn, yn)} and we
know the set

Z = {f (x , y) : (x , y) ∈ P}.
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Linear interpolation

First we triangularize P with
Delaunay triangulation.

Assume that P is a point of the
triangle A,B,C . Then we define
the linear interpolation as

I (P) = xf (A) + yf (B) + zf (C ),

where, x , y , z are the
coordinates of P in a barycentric
system of coordinates.
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Radial basis interpolation

A radial basis function φ is a function that deppends only of the
distance, that is, φ(r) = φ(‖r‖) for any r ∈ Rn. Let

x0, . . . , xn ∈ Rn the points where we know the value of our
function f . Fixed a radial basis function, φ, a radial basis

interpolation is defined at any point x ∈ Rn by

I (x) =
n∑

i=0

wiφ(x − xi ),

where {wi} are obtained imposing I (xi ) = f (xi ), i = 0, . . . , n
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Clough-Tocher interpolation

Clough-Tocher interpolation is
an extension of bilinear
interpolation to scattered data.

We start obtaining the Delaunay
triangulation of P.

We divide each triangle in three
using the barycenter.
In each of the triangles we
interpolate by a cubic
polynomial.
We impose conditions of the

derivatives and on the
continuity and differentiability in
the border of the triangles.
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Definition

An oriented triangle is a list of three points. We say two oriented

triangles (A1,A2,A3), (B1,B2,B3) are equivalent if one of the
following conditions holds:

1 A1 = B1, A2 = B2, A3 = B3.

2 A1 = B2, A2 = B3, A3 = B1.

3 A1 = B3, A2 = B1, A3 = B2.

The edges of the triangle (A1,A2,A3) are the tuples (A1,A2),
(A2,A3), (A3,A1).

We say that the edges (A1,A2) and (A2,A1) have opposite
orientation.

A triangle (A1,A2,A3) induces an orientation in each of the
vertices.
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Definition

A triangulated closed oriented surface is a set of triangles such
that the union of all triangles defines a closed oriented surface.

It has the following properties:

All the faces with a common vertex induce the same
orientation in that vertex.

Each edge is included in exactly two faces. Moreover, it has
opposite orientation in each one (closed surface).
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Loop

Loop subdivision scheme smooths a surface defined by a
triangulation.

Let e = (v1, v2) be an edge of the triangulation.

Let {u1, u2} the vertices of the faces containing the edge e and
different from v1, v2.

Define a new vertex ve as

ve =
3

8
(v1 + v2) +

1

8
(u1 + u2)
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Loop

Now, let v be a vertex of the triangulation. Let v1, . . . , vn the
vertices sharing an edge with v .

Define a new vertex v ′ as

v ′ = (1− nα)v + α

n∑
i=1

vi ,

where α = 3/16 if n = 3, and if n > 3,

α =
1

n

(
5

8
−
(

3

8
+

1

4
cos

2π

n

)2
)
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Loop

For each triangle (A,B,C ) of the triangulation let a, b, c are the
edges.

Replace the triangle (A,B,C ) by the following triangles:

(A′, vc , vb), (B ′, va, vc), (C ′, vb, va), (va, vb, vc),

where va, vb, vc are the new vertices defined from the edges a, b, c
as above, and A′,B ′,C ′ are the new vertices defined from the
vertices A,B,C .
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Butterfly

Butterfly subdivision scheme interpolates a surface defined by a
triangulation.

Let e = (v1, v2) be an edge of the triangulation.

Let {u1, u2} the vertices of the faces containing the edge e and
different from v1, v2.

Let {u11, u12, u21, u22} the vertices of the faces containing the
edges (v1, u1), (v1, u2), (v2, u1), (v2, u2) and different from
v1, v2, u1, u2.

Define a new vertex:

ve =
8

16
(v1 + v2) +

2

16
(u1 + u2)− (u11 + u12 + u21 + u22)
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Butterfly

For each triangle (A,B,C ) of the triangulation let a, b, c are the
edges.

Replace the triangle (A,B,C ) by the following triangles:

(A, vc , vb), (B, va, vc), (C , vb, va), (va, vb, vc),

where va, vb, vc are the new vertices defined from the edges a, b, c
as above

Jose Luis Bravo Trinidad Interpolation in surfaces


	Introducción
	Introducción

	Interpolation of a function of two-variables
	Rectangular grid
	Scattered data

	Triangulated surfaces
	Loop scheme for surface subdivision
	Butterfly scheme for surface interpolation


